【課題を解決するための手段】
【0009】
本発明は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層とを有する積層体と、前記対向電極上を覆って前記積層体を封止する無機層とを有する太陽電池であって、前記光電変換層は、一般式R−M−X
3(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含み、前記無機層は、金属酸化物、金属窒化物又は金属酸窒化物を含む太陽電池である。
以下、本発明を詳述する。
【0010】
本発明者は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層とを有する積層体を、前記対向電極上を覆う無機層で封止することにより、太陽電池の耐久性を向上できることを見出した。これは、無機層で封止を行うことにより、この無機層が水蒸気バリア性を有し、封止樹脂で封止を行った場合と比較して水分が内部に浸透することを抑制できるためと考えられる。
無機層で封止を行う際、緻密な層を形成するためには、例えば、スパッタ法等が好適に用いられる。しかしながら、光電変換層に例えばフラーレン等の有機半導体が含まれる場合、スパッタ法等では封止時に有機半導体を劣化させてしまい、光電変換効率が低下するという問題が生じた(初期劣化)。これに対して、本発明者は、光電変換層として特定の有機無機ペロブスカイト化合物を用いた場合には、スパッタ法等により緻密な無機層を形成した場合にでも、ほとんど初期劣化が生じないことを見出した。また、有機無機ペロブスカイト化合物を用いた光電変換層を有する太陽電池は、光電変換効率の点でも優れる。
本発明者らは、光電変換層として特定の有機無機ペロブスカイト化合物を用い、該光電変換層を含む積層体を、金属酸化物、金属窒化物又は金属酸窒化物を含む無機層で封止することにより、光電変換効率に優れ、封止時の劣化(初期劣化)を抑制しつつ、太陽電池の耐久性を向上できることを見出し、本発明を完成させるに至った。
【0011】
本発明の太陽電池は、電極と、対向電極と、上記電極と上記対向電極との間に配置された光電変換層とを有する積層体と、上記対向電極上を覆って上記積層体を封止する無機層とを有する。
なお、本明細書中、層とは、明確な境界を有する層だけではなく、含有元素が徐々に変化する濃度勾配のある層をも意味する。なお、層の元素分析は、例えば、太陽電池の断面のFE−TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。また、本明細書中、層とは、平坦な薄膜状の層だけではなく、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。
【0012】
上記電極及び上記対向電極の材料は特に限定されず、従来公知の材料を用いることができる。なお、上記対向電極は、パターニングされた電極であることが多い。上記対向電極がパターニングされた電極である場合には、上記無機層は、上記光電変換層上も覆って上記積層体を封止する。
上記電極及び上記対向電極の材料として、例えば、FTO(フッ素ドープ酸化スズ)、ナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金、Al/Al
2O
3混合物、Al/LiF混合物、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO
2、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記電極及び上記対向電極は、それぞれ陰極になっても、陽極になってもよい。
【0013】
上記光電変換層は、一般式R−M−X
3(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含む。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、光電変換効率を高めることができるとともに、封止時の劣化(初期劣化)を抑制しつつ太陽電池の耐久性を向上させることができる。
【0014】
上記Rは有機分子であり、C
lN
mH
n(l、m、nはいずれも正の整数)で示されることが好ましい。
上記Rは、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、グアニジン、ホルムアミジン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CH
3NH
3)等)、及び、フェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、ホルムアミジン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオン、及び、フェネチルアンモニウムが好ましく、メチルアミン、ホルムアミジン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。
【0015】
上記Mは金属原子であり、例えば、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。
【0016】
上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。
【0017】
上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。
図1は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造である、有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上すると推定される。
【0018】
上記有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。上記有機無機ペロブスカイト化合物が結晶性半導体であることにより、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。
【0019】
また、結晶化の指標として結晶化度を評価することもできる。結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の結晶化度の好ましい下限は30%である。結晶化度が30%以上であると、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
また、上記有機無機ペロブスカイト化合物の結晶化度を上げる方法として、例えば、熱アニール、レーザー等の強度の強い光の照射、プラズマ照射等が挙げられる。
【0020】
上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、後で記す電子輸送層又はホール輸送層としての役割を果たしてもよい。
上記有機半導体として、例えば、ポリ(3−アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物、及び、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
【0021】
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、Cu
2O、CuI、MoO
3、V
2O
5、WO
3、MoS
2、MoSe
2、Cu
2S等が挙げられる。
【0022】
上記光電変換層は、上記有機半導体又は上記無機半導体を含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層構造体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体であってもよい。製法が簡便である点では積層構造体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合構造体が好ましい。
【0023】
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
【0024】
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体である場合、上記複合構造体の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。
【0025】
上記積層体においては、上記電極と上記光電変換層との間に、電子輸送層が配置されていてもよい。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
【0026】
上記電子輸送層は、薄膜状の電子輸送層のみからなっていてもよいが、多孔質状の電子輸送層を含むことが好ましい。特に、上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体である場合、より複雑な複合構造体(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合構造体が成膜されていることが好ましい。
【0027】
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
【0028】
上記積層体においては、上記対向電極と上記光電変換層との間に、ホール輸送層が配置されていてもよい。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物、カーボンナノチューブ、グラフェン等のカーボン含有材料等が挙げられる。
【0029】
上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
【0030】
上記積層体は、更に、基板等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板、金属箔等が挙げられる。
【0031】
本発明の太陽電池は、上記積層体が、上記対向電極上を覆う無機層で封止されたものである。
上記積層体を、上記対向電極上を覆う無機層で封止することにより、太陽電池の耐久性を向上させることができる。これは、上記無機層で封止を行うことにより、上記無機層が水蒸気バリア性を有し、封止樹脂で封止を行った場合と比較して水分が内部に浸透することを抑制できるためと考えられる。ここで、上記無機層は、その端部を閉じるようにして上記積層体全体を覆うことが好ましい。これにより、水分が内部に浸透することを確実に防止することができる。
【0032】
上記無機層で封止を行う際、緻密な層を形成するためには、例えば、スパッタ法等が好適に用いられる。しかしながら、上記光電変換層に例えばフラーレン等の有機半導体が含まれる場合、スパッタ法等では封止時に有機半導体を劣化させてしまい、光電変換効率が低下するという問題が生じた(初期劣化)。これに対して、本発明の太陽電池においては、上記有機無機ペロブスカイト化合物を含む光電変換層を用いることにより、優れた光電変換効率を発揮できるとともに、封止時の劣化(初期劣化)を抑制して、太陽電池の耐久性を向上させることができる。
なお、上記無機層ではなく従来のエポキシ樹脂等の封止樹脂で封止を行い、かつ、上記光電変換層に上記有機無機ペロブスカイト化合物を用いた場合には、太陽電池の耐久性が充分でなくなるだけでなく、封止時の劣化(初期劣化)も生じる。これは、上記有機無機ペロブスカイト化合物中の有機成分が封止樹脂に溶け込んでしまうためと考えられる。
【0033】
上記無機層は、金属酸化物、金属窒化物又は金属酸窒化物を含む。
上記金属酸化物、金属窒化物又は金属酸窒化物は、水蒸気バリア性を有するものであれば特に限定されないが、例えば、Si、Al、Zn、Sn、In、Ti、Mg、Zr、Ni、Ta、W、Cu若しくはこれらを2種以上含む合金の酸化物、窒化物又は酸窒化物が挙げられる。なかでも、Si、Al、Zn又はSnの酸化物、窒化物又は酸窒化物が好ましく、Zn又はSnの酸化物、窒化物又は酸窒化物がより好ましく、上記無機層に特に高い水蒸気バリア性及び柔軟性を付与できることから、Zn及びSnの両金属元素を含む金属元素の酸化物、窒化物又は酸窒化物が更に好ましい。
【0034】
なかでも、上記金属酸化物、金属窒化物又は金属酸窒化物は、一般式Zn
aSn
bO
cで表される金属酸化物であることが特に好ましい。ここで、a、b、cは正の整数を表す。
上記無機層に上記一般式Zn
aSn
bO
cで表される金属酸化物を用いることにより、上記金属酸化物がスズ(Sn)原子を含むため、上記無機層に適度な可撓性を付与することができ、上記無機層の厚みが増した場合であっても応力が小さくなるため、上記無機層、電極、半導体層等の剥離を抑えることができる。これにより、上記無機層の水蒸気バリア性を高め、太陽電池の耐久性をより向上させることができる。一方、上記金属酸化物が亜鉛(Zn)原子を含むため、上記無機層は特に高いバリア性を発揮することができる。
【0035】
上記一般式Zn
aSn
bO
cで表される金属酸化物においては、ZnとSnとの総和に対するSnの比Xs(重量%)が70>Xs>0を満たすことが好ましい。また、Y=c/(a+2b)で表される値Yが、1.5>Y>0.5を満たすことが好ましい。
なお、上記無機層中の上記一般式Zn
aSn
bO
cで表される金属酸化物に含まれる亜鉛(Zn)、スズ(Sn)及び酸素(O)の元素比率は、X線光電子分光(XPS)表面分析装置(例えば、VGサイエンティフィックス社製のESCALAB−200R等)を用いて測定することができる。
【0036】
上記無機層は、上記一般式Zn
aSn
bO
cで表される金属酸化物を含む場合、更に、ケイ素(Si)及び/又はアルミニウム(Al)を含むことが好ましい。
上記無機層にケイ素(Si)及び/又はアルミニウム(Al)を添加することにより、上記無機層の透明性を高め、太陽電池の光電変換効率を向上させることができる。
【0037】
上記無機層の厚みは、好ましい下限が30nm、好ましい上限が3000nmである。上記厚みが30nm以上であれば、上記無機層が充分な水蒸気バリア性を有することができ、太陽電池の耐久性が向上する。上記厚みが3000nm以下であれば、上記無機層の厚みが増した場合であっても、発生する応力が小さいため、上記無機層、電極、半導体層等の剥離を抑制することができる。上記厚みのより好ましい下限は50nm、より好ましい上限は1000nmであり、更に好ましい下限は100nm、更に好ましい上限は500nmである。
なお、上記無機層の厚みは、光学干渉式膜厚測定装置(例えば、大塚電子社製のFE−3000等)を用いて測定することができる。
【0038】
本発明の太陽電池においては、上記対向電極と上記無機層との間に、更に、平坦化樹脂層を有することが好ましい。このような平坦化樹脂層を配置することにより、本発明の太陽電池は、より高い耐久性を発揮することができる。
なお、上記平坦化樹脂層が配置されている場合には、上記対向電極と上記平坦化樹脂層との間にも上記無機層が配置されていてもよい。これにより、本発明の太陽電池の耐久性を更に向上させることができる。
【0039】
上記平坦化樹脂層を構成する樹脂は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂でも光硬化性樹脂でもよい。上記熱可塑性樹脂として、例えば、ブチルゴム、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリビニルアルコール、ポリ酢酸ビニル、ABS樹脂、ポリブタジエン、ポリアミド、ポリカーボネート、ポリイミド、ポリイソブチレン、シクロオレフィン樹脂等が挙げられる。上記熱硬化性樹脂として、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。上記光硬化性樹脂として、例えば、アクリル樹脂、ビニル樹脂、エン−チオール樹脂等が挙げられる。
【0040】
上記平坦化樹脂層は、脂環式骨格を有する樹脂を含有することが好ましい。
上記脂環式骨格は特に限定されず、例えば、ノルボルネン、イソボルネン、アダマンタン、シクロヘキサン、ジシクロペンタジエン、ジシクロヘキサン、シクロペンタン等の骨格が挙げられる。これらの骨格は単独で用いられてもよく、2種以上が併用されてもよい。
【0041】
上記脂環式骨格を有する樹脂は、脂環式骨格を有していれば特に限定されず、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよいし、光硬化性樹脂であってもよい。これらの脂環式骨格を有する樹脂は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記脂環式骨格を有する樹脂は、反応性官能基を有する樹脂を製膜した後、上記反応性官能基を架橋反応させた樹脂であってもよい。
【0042】
上記脂環式骨格を有する樹脂として、例えば、ノルボルネン樹脂(TOPAS6013、ポリプラスチックス社製)、TOPASシリーズ(ポリプラスチックス社製)、アダマンタンアクリレート(三菱ガス化学社製)の重合物等が挙げられる。
【0043】
上記平坦化樹脂層において、上記脂環式骨格を有する樹脂は、脂環式骨格を有さない樹脂と混合して用いられてもよい。
【0044】
上記平坦化樹脂層の厚みは、好ましい下限が100nm、好ましい上限が100000nmである。上記厚みが100nm以上であれば、上記平坦化樹脂層によって上記対向電極上を充分に覆いつくすことができる。上記厚みが100000nm以下であれば、上記平坦化樹脂層の側面から浸入してくる水蒸気を充分にブロックすることができる。上記厚みのより好ましい下限は500nm、より好ましい上限は50000nmであり、更に好ましい下限は1000nm、更に好ましい上限は2000nmである。
【0045】
本発明の太陽電池においては、更に、上記無機層上に封止樹脂層を有することが好ましい。これにより、太陽電池の耐久性をより向上させることができる。
上記封止樹脂層を構成する樹脂は特に限定されず、例えば、エポキシ樹脂、アクリル樹脂、シリコン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ブチルゴム、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリビニルアルコール、ポリ酢酸ビニル、ABS樹脂、ポリブタジエン、ポリアミド、ポリカーボネート、ポリイミド、ポリイソブチレン、フッ素樹脂等が挙げられる。なかでも、上記無機層にクラック等がある場合であっても、上記封止樹脂が上記有機無機ペロブスカイト化合物中の有機成分を溶かし出し難いという観点から、シリコン樹脂、ブチルゴム、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリイソブチレンが好ましい。
【0046】
上記封止樹脂の厚みは、好ましい下限が100nm、好ましい上限が100000nmである。上記厚みのより好ましい下限は500nm、より好ましい上限は50000nmであり、更に好ましい下限は1000nm、更に好ましい上限は20000nmである。
【0047】
本発明の太陽電池においては、上記無機層上、又は、上記無機層上に封止樹脂層を有する場合には該封止樹脂層上に、ガラス板、樹脂フィルム、無機材料を被覆した樹脂フィルム、又は、アルミニウム等の金属箔等を配置することが好ましい。これにより太陽電池の耐久性をより向上させることができる。なかでも、無機材料を被覆した樹脂フィルムを配置することがより好ましい。
【0048】
図2は、本発明の太陽電池の一例を模式的に示す断面図である。
図2に示す太陽電池1においては、基板6上に電極2と、対向電極3と、この電極2と対向電極3との間に配置された光電変換層4とを有する積層体が、該積層体全体を覆う無機層5で封止されている。ここで無機層5の端部は、基板6に密着することにより閉じている。図示はしないが、無機層5を覆うように封止樹脂層が配置されていてもよく、無機層5又は封止樹脂層上に金属層が配置されていてもよい。また、積層体と無機層5の間に、平坦化樹脂層が配置されていてもよい。
【0049】
本発明の太陽電池を製造する方法は特に限定されず、例えば、上記基板上に上記電極、上記光電変換層、上記対向電極をこの順で形成して積層体を作製した後、上記無機層で上記積層体を封止し、更に、上記無機層上を封止樹脂で覆う方法等が挙げられる。
【0050】
上記光電変換層を形成する方法は特に限定されず、真空蒸着法、スパッタ法、気相反応法(CVD)、電気化学沈積法、印刷法等が挙げられる。なかでも、印刷法を採用することで、高い光電変換効率を発揮できる太陽電池を大面積で簡易に形成することができる。印刷法として、例えば、スピンコート法、キャスト法等が挙げられ、印刷法を用いた方法としてロールtoロール法等が挙げられる。
【0051】
上記無機層で上記積層体を封止する方法として、真空蒸着法、スパッタ法、気相反応法(CVD)、イオンプレーティング法が好ましい。なかでも、緻密な層を形成するためにはスパッタ法が好ましく、スパッタ法のなかでもDCマグネトロンスパッタリング法がより好ましい。
上記スパッタ法においては、金属ターゲット、及び、酸素ガス又は窒素ガスを原料とし、上記積層体の上記対向電極上に原料を堆積して成膜することにより、無機層を形成することができる。
【0052】
上記無機層上を封止樹脂で覆う方法は特に限定されず、例えば、シート状の封止樹脂を用いて上記無機層上をシールする方法、封止樹脂を有機溶媒に溶解させた封止樹脂溶液を上記無機層上に塗布する方法、封止樹脂となる反応性官能基を有する化合物を上記無機層上に塗布した後、熱又はUV等で反応性官能基を有する化合物を架橋又は重合させる方法、封止樹脂に熱をかけて融解させた後に冷却する方法等が挙げられる。
上記反応性官能基として、例えば、エポキシ基、アルケニル基、アルコキシ基、イソシアネート基等が挙げられる。