特許第6141195号(P6141195)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サウジ アラビアン オイル カンパニーの特許一覧

特許6141195車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム
<>
  • 特許6141195-車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム 図000002
  • 特許6141195-車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム 図000003
  • 特許6141195-車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム 図000004
  • 特許6141195-車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム 図000005
  • 特許6141195-車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6141195
(24)【登録日】2017年5月12日
(45)【発行日】2017年6月7日
(54)【発明の名称】車両内燃機関の排気ガスからのCO2の車載での回収及び貯蔵のための廃熱を利用する膜分離方法及びシステム
(51)【国際特許分類】
   F01N 3/08 20060101AFI20170529BHJP
   B01D 53/22 20060101ALI20170529BHJP
   F01N 5/02 20060101ALI20170529BHJP
   F01N 3/24 20060101ALI20170529BHJP
【FI】
   F01N3/08 A
   B01D53/22
   F01N5/02 F
   F01N5/02 J
   F01N3/24 T
【請求項の数】14
【全頁数】17
(21)【出願番号】特願2013-550624(P2013-550624)
(86)(22)【出願日】2012年1月20日
(65)【公表番号】特表2014-508240(P2014-508240A)
(43)【公表日】2014年4月3日
(86)【国際出願番号】US2012022058
(87)【国際公開番号】WO2012100182
(87)【国際公開日】20120726
【審査請求日】2015年1月16日
(31)【優先権主張番号】61/434,677
(32)【優先日】2011年1月20日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】511304464
【氏名又は名称】サウジ アラビアン オイル カンパニー
(74)【代理人】
【識別番号】100087398
【弁理士】
【氏名又は名称】水野 勝文
(74)【代理人】
【識別番号】100067541
【弁理士】
【氏名又は名称】岸田 正行
(74)【代理人】
【識別番号】100103506
【弁理士】
【氏名又は名称】高野 弘晋
(74)【代理人】
【識別番号】100126147
【弁理士】
【氏名又は名称】川上 成年
(72)【発明者】
【氏名】ハマド,エサム,ザキ
【審査官】 小笠原 恵理
(56)【参考文献】
【文献】 米国特許出願公開第2010/0071559(US,A1)
【文献】 特開2010−201991(JP,A)
【文献】 特開2007−177684(JP,A)
【文献】 特開平06−002615(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01N 3/08
B01D 53/22
F01N 3/24
F01N 5/02
(57)【特許請求の範囲】
【請求項1】
車両に動力を供給するために使用される炭化水素燃料内燃機関(ICE)により排出された高温の排気ガスストリームと共に大気へ放出されるCO2の量を減らす方法であって、
a.前記高温の排気ガスストリームを前記ICEから前記車両に搭載された第1の廃熱回収ゾーンへ通し、
熱交換関係にある通路のための前記ICEから前記高温の排気ガスストリームを受け取るための入口と、より低い温度で冷やされた排気ガスストリームを放出するための排出出口と、を有する少なくとも1つの熱交換器に、前記高温の排気ガスストリームを接触させて、前記冷やされた排気ガスストリームを放出し、
前記廃熱回収ゾーンはさらに、前記高温の排気ガスストリームの中の前記廃熱を電気的及び/又は機械的エネルギーに変換するための少なくとも1つの熱回収装置を含み、
b.前記冷やされた排気ガスストリームを、前記廃熱回収ゾーンの前記排気ガスストリーム排出出口と連通し、CO2が浸透する透過側面を備えた膜を有する少なくとも1つの膜モジュールに接する膜分離ゾーンへ通し、前記透過側面は、CO2排出出口と、前記冷やされた排気ガスストリームに接する未透過側面と、を有し、前記未透過側面は、処理された排気ガスストリーム出口を含み、
ここで、前記高温の排気ガスストリームの前記電気的及び/又は機械的エネルギーの一部分は、前記膜モジュールを横切る圧力差を生成するために利用され、
c.前記膜モジュールの前記透過側面から高密度化ゾーンへ前記CO2を通し、前記温度及び前記CO2の体積を低減し、
d.前記車両に搭載された一時的貯蔵のための貯蔵ゾーンへ前記密度を高めたCO2を転送し、
e.低減されたCO2含有量を有する前記処理された排気ガスストリームを、前記膜モジュールの前記処理された排気ガスストリーム出口と連通する排気ガスダクトへ通し、前記大気へ前記処理された排気ガスストリームを放出する、ことを含む方法。
【請求項2】
前記車両のICEのスタートアップに続いて、実質的に連続的に作動する請求項1の方法。
【請求項3】
前記高温の排気ガスストリームの少なくとも1つの部分の圧力を増加させるために、ターボチャージャーを通して前記排気ガスストリームを通すことを含む請求項1の方法。
【請求項4】
前記膜モジュールに導入される前に、前記高温の排気ガスストリームの温度を下げるために、前記ターボチャージャーの下流の第2の廃熱回収ゾーンを通して前記高熱の排気ガスストリームを通すことを含む請求項3の方法。
【請求項5】
前記大気へ放出される前記処理された排気ガスストリームのCO2含有量が少なくとも10%低減された請求項1の方法。
【請求項6】
大気へ放出されるCO2の量を減らすために、車両に動力を供給するために使用される炭化水素燃料内燃機関(ICE)により排出されたCO2を含む高温の排気ガスストリームの車載での処理のためのシステムであって、
a.熱交換関係の通路のための前記ICEから前記高温の排気ガスストリームを受け取るための入口と、冷やされた排気ガスストリームのための出口と、を備えた少なくとも1つの熱交換器を含み、前記高温の排気ガスストリームからの廃熱を電気的及び/又は機械的エネルギーに変換するための少なくとも1つの熱交換器と共に作動する少なくとも1つの熱回収装置をさらに含み、熱交換リレーション中の前記高温の排気ガスストリームを受け取り、より低い温度に冷やされた排気ガスストリームを放出するための、前記車両に搭載された第1の廃熱回収ゾーンと、
b.CO2が浸透する透過側面と、前記冷やされた排気ガスストリームにより接触される未透過側面と、を有する膜モジュールを含み、前記未透過側面は、処理された排気ガスストリーム出口を含み、前記廃熱回収ゾーンからの前記排気ガスストリーム排出出口と連通する膜分離ゾーンと、
ここで、前記熱回収装置からの電気的及び/又は機械的エネルギーの一部は、前記膜モジュールを横切る圧力差を生成するために利用され、
c.少なくとも前記CO2を液化するために、及び、前記冷やされた排気ガスストリームから低減されたCO2含有量の処理された排気ガスストリームを生成するために、前記CO2の前記温度及び体積を下げるための手段を含み、透過CO2を受け取るための前記膜モジュールの前記透過側面と連通する高密度化ゾーンと、
d.前記車両に搭載された一時的貯蔵のための前記密度を高めたCO2を受け取るための貯蔵ゾーンと、
e. CO2の量が減らされた処理された排気ガスストリームを放出するために前記膜モジュールからの前記処理された排気ガスストリーム出口と連通する排気ガスダクトと、を含むシステム。
【請求項7】
CO2の分離のための前記膜モジュールに通される排気ガスストリームの前記体積量を調整するためのプロセッサ及びコントローラーを含む請求項6のシステム。
【請求項8】
前記膜モジュールに通される排気ガスストリームの体積量は、前記ICEの動作条件に基づいて制御される請求項7のシステム。
【請求項9】
前記膜モジュールに通される排気ガスストリームの体積量は、少なくとも前記CO2を液化するために、前記高密度化ゾーンでの前記手段の能力に基づいて制御される請求項7のシステム。
【請求項10】
前記第1の廃熱回収ゾーン又は前記膜モジュールを通過せずに、前記大気へ前記排気ガスストリームのすべて又は一部分を放出するためのそらす手段を含む請求項7のシステム。
【請求項11】
前記膜モジュールに入る前記排気ガスストリームの圧力を増加させるためのターボチャージャーを含む請求項6のシステム。
【請求項12】
前記膜モジュールの前記透過側面と連通するCO2のための低圧入口を含む請求項6のシステム。
【請求項13】
前記膜モジュールの前記透過側面から回収された前記CO2の一部分を、前記ICEへ通すことを含む請求項1の方法。
【請求項14】
前記熱回収装置により生成された前記電気的及び/又は機械的エネルギーの少なくとも一部は、前記車両に搭載された補助の電気的な及び/又は機械システムに動力を供給するために使用される請求項1の方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、廃熱を生ずる内燃機関及び他の熱機関により動力が供給された車両の排気ガスストリームからの二酸化炭素排出の低減に関する。
【背景技術】
【0002】
現在一般に認められている考えは、地球温暖化が二酸化炭素(CO2)及びメタン(CH4)のような温室効果ガスの排出によるということである。地球規模の人間に起こされたCO2排出は、一般に移動性の発生源、すなわち、内燃機関(ICE)により動力が供給される、自動車、トラック、バス及び列車から生ずると推測される。この比例する寄与は、開発途上国の自動車及びトラック所有の予測される急増により、近い将来、急速に増大するだろう。現在、輸送セクターは原油の主力市場であり、例えば、電気モーターと蓄電池により動力が供給される自動車などの代替技術からの挑戦に直面して、輸送セクターで原油市場の存続可能性を維持するために、CO2排出の制御は環境上の責任及び望ましい目的の両方である。
【0003】
移動性の発生源からの二酸化炭素管理は、空間と重量制限、いくらかの規模の経済の不足、及び、移動性の発生源に動力を供給するICEの動作の動的な性質を含む多くの挑戦を有する。
【0004】
燃焼ガスからのCO2の捕獲のための従来技術の方法は、発電所のような固定汚染源に主に焦点を合わせた。酸素を使用した燃焼を使用する移動性の発生源からのCO2排出量を削減する問題に取り組むものは、CO2捕獲物質の再生及び再使用のための手段を提供しない、及び/又は、高温の発生源から回収された廃熱を利用しない。酸素のみを使用する燃焼は、排気ガスからのCO2の分離より、より大きいエネルギー強度である酸素窒素分離を必要とし、車両に搭載されて試みられる場合には、分離の問題はさらに困難になるだろう。
【0005】
CO2捕獲技術の焦点は、静止している発生源又は固定した発生源にあった。移動性の発生源からのCO2の捕獲は、それが逆の規模の経済を持った分散型システムを含んでいるので、高価すぎると一般に考えられた。その問題の解法は、車載での車両空間の制限、付加的なエネルギー及び装置条件、及び、例えば、急な加速度及び減速の断続的な時間のような車両のオペレーティング・サイクルの動的な性質により非実用的に見えた。
【0006】
したがって、本発明は、CO2の車載での一時的な貯蔵により効率的にコスト効率が良く車両からのCO2排出量を削減する問題に取り組む方法、システム及び装置を提供することを目的とする。そのようなシステムの大量生産に対する能力は、これらの移動性の発生源の分散した性質に関連した他のコストを少なくとも部分的に相殺するだろう。
【0007】
本発明は、車両から大気へそうでなければ放出される、本質的に純粋なCO2を取り込み格納するのに適し、その結果、それは、CO2が必要とされ、又は、永続的な貯蔵サイトへ送られる多くの商用及び工業プロセスのうちのどの中でも利用することが可能であるシステムと方法を提供することをさらに目的とする。
【0008】
ここに使用されるように、用語「内燃機関」(すなわちICE)は、熱機関を含み、その中で、炭素を含む燃料は電力又は仕事を生ずるために燃焼し、除去されるか放散されなければならない廃熱を発する。
【0009】
ここに使用されるように、用語「移動性の発生源」は、CO2を含む排気ガスストリームを生ずる1つ以上の内燃機関により動力が供給され、品物及び/又は人々を輸送するために使用することが可能である既知の輸送機関の広い種類のうちのいずれかを意味する。これは、陸上、列車及び船で移動するすべてのタイプの自動車両を含み、ここで、大気へ放出される前に、ICEからの排気は内蔵するダクトへ放出される。
【0010】
ここに使用されるような用語「車両」は、便利な速記法として理解され、「移動性の発生源」と同義であり、一般に、その用語が上に使用されるように「輸送機関」と同一の広がりを有する。
【0011】
ここに使用されるように、用語「廃熱」は、主として高温の排気ガス(〜300-650℃)及び高温の冷却液(〜90-120℃)に含まれている典型的なエンジンが生ずる熱である。付加的な熱は、シリンダーブロック及びその関連する部品からの対流及び放射、及び、マニホールド、パイプ、触媒コンバーター及びマフラーを含み、それを介して排気ガスは通過する他の部品により排出され失われる。この熱エネルギーは、典型的な炭化水素(HC)燃料が供給するエネルギーの約60%になる。
【発明の概要】
【0012】
上記の目的及び他の利点は、排気ガスストリームからCO2の選択的なガス浸透により大気へ放出されたCO2の量を減らすために、車両に動力を供給するために使用される、炭化水素の燃料が供給された内燃機関(ICE)により排出されたCO2を含む広く排気ストリームの車載での処理のための方法及びシステムを包含する本発明により達成される。
【0013】
排気ガスストリームからのCO2の膜分離のプロセスは、使用された特定のタイプの膜モジュールのために、温度、圧力及び流量の所定の最適条件の下で、膜の未透過側面に排気ガスを接触することを含む。CO2は、駆動力の下で膜に浸透し、それが集められる膜の透過側面へ通過する。
【0014】
実質的に純粋なCO2ガスは、膜の透過側面から回収され、ガスを圧縮し液体の及び/又は固体CO2を形成する高密度化ステップのコンプレッサーの取入れ口を通過する。その後、車両に燃料を供給する設備、又は他の適切な受け取る場所でそれを除去することが可能であるまで、密度が高められたCO2は、車両に搭載された貯蔵所の中で維持される。
【0015】
膜を横切った圧力差は、CO2に膜に浸透させる駆動力を供給することが可能である。それは、透過側面の真空、又は、未透過側面に供給された排気ガスストリームのより高圧力でありえる。例えば、芳香族ポリアミド中空糸のような膜モジュールは比較的高い圧力差で作動することが可能である。CO2に加えて、H2O及びH2S(存在する場合)は、さらにこの種の膜に浸透するだろう。
【0016】
圧縮が精力的に要求しているので、排気ガスストリームから回収されたCO2の密度を高めるのに必要な圧縮エネルギーを低減するために、以下の手段の1つ以上を利用することが可能である。
【0017】
1.高温の排気ガスストリームはターボチャージャーへ導入することが可能であり、それによって、ガスを加圧するために、移動する排気ガスストリームの運動エネルギーのうちのいくらかを使用する。
【0018】
2.熱エネルギーは、最初に300℃から650℃の範囲の温度である排気ガスストリームから回収することが可能であり、排気ガスを圧縮するために使用される機械的エネルギー/又は電気的エネルギーに変換される。
【0019】
3.排気ガスストリームの所定の部分は、膜モジュールに圧縮されて導入される。
【0020】
本発明のシステムと装置の主要な部品は、膜モジュール、真空ポンプ、ターボチャージャー、及び/又はコンプレッサー、熱回収装置、及び、高密度化のための手段である。膜モジュールの機能は排気ガスから選択的にCO2を分離することである。本発明で使用される適切な膜モジュールは、下記の1又は組み合わせから選ぶことが可能である。
【0021】
a.中空糸膜ユニット、
b.螺旋状の巻き膜モジュールユニット、
c.フラット・シート膜。
【0022】
膜は以下の材料から造ることが可能である。
【0023】
a.セルローズ、酢酸塩、ポリイミド、ポリアミド、ポリスルフホン、ポリカーボネート、及び、ポリエーテルイミドのような材料を含む、選択的にCO2を透過する非多孔性のポリマー、
b.均質膜、
c.多孔性の支持層及び選択的なCO2透過性の材料の非常に薄い非多孔性の層から形成された合成物、
d.その中で液体が優先的にCO2を透過するために選択されている液体支持膜、
e.促進輸送膜、
f.セラミック膜。
【0024】
それが比較的それほど高価でなく、高い透過率を所有しており、選ぶべき様々な材料があるため、ガソリン排気ストリームに使用の現在好ましい膜材料は重合体である。希薄混合気を有する過剰酸素の使用により一般的に燃えない酸素(その存在は時間がたつにつれてポリマーを分解する)を含んでいるディーゼル機関排気からCO2を分離するために、好ましい膜材料はセラミック及び酸素分解に抵抗するために作成される、より高価なポリマーである。
【0025】
代替実施形態において、膜は選択的に窒素に浸透する非多孔性のポリマーになりえる。
この実施形態において、N2透過は大気へ放出される。また、CO2未透過は、上に記述されるような高密度化及び貯蔵にさらされる。
【0026】
膜モジュールに対する排気ガスの流量は、排気ガス出口の中の検知されたCO2濃度のレベル、規定された経験的に決定した動作時間、又は、膜モジュールの能力の完全利用を保証する他の手段に基づいて調節することが可能である。1つの運転モードにおいて、排気ガスの圧力、温度及び流量の状態は、CO2の浸透を最適化するために所定のレベルに維持される。また、任意の過剰排気ガスも膜からそらされ、未処理の大気に放出される。
【0027】
本方法とシステムは以下のものを含む。
【0028】
a.高温排気ガスストリームを受け取る手段に搭載された第1の廃熱回収ゾーン。少なくとも1つの熱交換器は、熱交換リレーション中の通路のためのICEから高温の排気ガスストリームを受け取るための入口と、より低温で排気ストリームを排出するための排出出口と、を有し、熱回収ゾーンはさらに、排気ガスストリームから電気的及び/又は力学的エネルギーに廃熱を変換するための少なくとも1つの熱回収装置を含む。
【0029】
b.廃熱利用ゾーンの排気ガスストリーム排出出口と連通する膜分離ゾーン。膜分離ゾーンは、CO2が浸透する透過側面に少なくとも1つの膜を有する膜モジュールと、冷やされた排気ガスストリームに接触される未透過側面と、を含み、透過側面はCO2排出出口を有し、未透過側面は、処理された排気ガスストリーム出口を含む。
【0030】
c.透過CO2を受け取るための膜モジュールの透過側面との連通した高密度化ゾーン。高密度化ゾーンは、少なくともCO2を液化するために、及び、低減されたCO2含有量の処理された排気ガスストリームを生ずるために、CO2の温度及び体積を下げるための手段、を含む。
【0031】
d.車両に搭載された一時的貯蔵のための密度が高められたCO2を受け取るための貯蔵ゾーン。
【0032】
e.膜モジュール・ゾーンからの処理された排気ガスストリーム出口と連通した排気ガスダクト。
【0033】
1つの実施形態において、膜モジュールのためのCO2浸透駆動力は、膜とのその接触前に排気ガスを、例えば、コンプレッサー、ターボチャージャー又は他の既知の手段の使用により、加圧することにより供給される。他の実施形態の中で、膜の透過側面と連通した真空ポンプは、低圧のゾーン、及び、膜を横切った対応する圧力差を生成する。他の実施形態の中で、蒸気のような分散媒は膜モジュールに入れられ、CO2を運び去り、かつ膜を横切ってCO2分圧差を維持するために膜の透過側面を過ぎて通過し、それによって、透過側面に対する真空、又は、未透過側面に対する圧力の必要をなくす。一掃のための蒸気は、例えば小さなシェル及びチューブ蒸気ボイラーの中で、熱い排気ガスストリームに熱交換中の水を通すこと、及び、膜モジュールの透過側面へ蒸気を導くことにより、供給することが可能である。モジュールから放出されたCO2及び蒸気/水は、クーラー/セパレーターに通され、CO2は高密度化のために引き出され、水は大気に放出されるか、又は、蒸気を発生する熱交換器で再利用することが可能である。この実施形態の中で使用される水は、排気ガス冷却及びCO2取込プロセスの一部として、排気ガスストリームから抽出するか、又は分離した貯蔵器から取り出すことが可能である。上に記述された駆動力の組み合わせも使用することが可能である。
【0034】
本発明は、種々様々の既知の商用・工業的用途のいずれかの中での後の使用ための、その高密度化、及び、車両に搭載された密度が高められたCO2の一時的貯蔵により従う、エンジン排気ガスからの実質的に純粋なCO2の分離のための方法及びシステムを提供する。分離及び高密度化ステップのためのエネルギー必要量のすべて又は部分は、排気ガスストリーム、エンジンの冷却システム及びシリンダーブロック、及び、関連する金属部品を含むエンジンの廃熱から取り出される。本発明の環境上の利点は明らかである。
【0035】
本発明の方法及びシステムは、車両に動力を供給するために使用される炭化水素燃料の燃焼により発生された廃熱を使用した、選択的なガス浸透、高密度化及び一時的な車載での貯蔵により、効率的なポスト燃焼CO2分離のための様々な構成要素を統合する。上に言及されたように、及び、図1のダイヤグラムに関して、典型的な内燃機関が生ずる合計の廃熱は、典型的な炭化水素(HC)燃料が提供するエネルギーの約60%である。このエネルギーは、主として高温の排気ガス(〜300-650℃)及び高温の冷却液(〜90-120℃)に含まれている。付加的な熱も、シリンダーブロック及びその関連する部品、及び、マニホールド、パイプ、触媒コンバーター及びマフラーを含む排気ガスが通過する他の部品からの対流及び放射により排出され失われる。
【0036】
エネルギーは排気ガスからCO2を分離するために、及び、効率的な車載での貯蔵のための膜モジュールから回収されたCO2のすべて又は部分を圧縮し、液化又は凍らせるために、必要である。エネルギーのワーク成分は、ワークを生ずるために廃熱の一部を使用することにより発生される。
【0037】
CO2分離及び高密度化サイクルの起動中に、又は特別の必要性のために、エンジン出力の一部、又は車載でのバッテリーに格納された電気は、すべて又はワーク/エネルギー必要量の一部分を提供するために使用することが可能である。通常動作中に、分離と高密度化に必要なエネルギーの少なくとも一部分が、廃熱から生ずる。
【0038】
排気ガスからのCO2分離は、窒素ガス及び他の燃焼生成物からのガスのCO2の膜分離により達成される。効率的な一時的な車載での貯蔵のためのCO2の高密度化は、例えば、5-1600kg/m3の範囲の最終密度のドライアイスを形成する、ガスの圧縮、液化及び/又は冷凍により遂行される。室温では、CO2は液体として存在することが可能である。CO2の臨界点は31℃及び73バールである。固体のドライアイスを形成する液体の凝固点は、-78℃である。したがって、冷凍ははるかに大きな温度低下を必要とするが、密度は約1.4〜1.6g/cm3で高く、それにより、適切な受取り設備に対する受渡し、及び/又は、燃料を補給するまで、搭載されてCO2を格納するのに必要な空間を低減する。
【0039】
現在好ましい動作条件は、およそ50℃から200℃の範囲の温度である。圧力勾配は膜及び/又は膜モジュール又はシステムのタイプに応じて変化するだろう。課された圧力勾配は、車両の連続運転の長期間にわたる最大のCO2流束を維持するものである。これらの動作条件は、膜材料の広い選択を可能にし、CO2を分離し密度を高めるために要求されるワーク及び/又は電気エネルギーに変換することが可能である排気ガスストリームから熱エネルギーが回収されることを可能にし、搭載された移動性の発生源の設置と動作のために実際的なサイズ及び質量の熱交換装置の使用を可能にする。
【0040】
この相変化を達成する方法は、本分野で既知である。高密度化ステップ、及び、液化された及び/又は固化したCO2の維持に必要なワーク・エネルギーの部分、あるいは、すべては、システムと運転環境の特定の要求に基づいて選択される熱から電力への変換装置の使用により、大気に通常失われる熱から引き出される。内部冷却は、排気ガスの高温との熱交換により比較的容易に達することが可能である。移動性の発生源に搭載されて利用可能な限定された体積で使用される特定の利用可能な装置の選択は、当業者の能力内に十分に様々な相互関係があった要因の分析を必要とする。
【0041】
冷凍のためのエネルギー必要量は、下記に述べられるプロセスから取り出すことができる。
【0042】
1.圧縮に必要とされる力学的エネルギーは、廃熱を電気又は機械的なワークに変換する熱回収ユニットから得られる圧縮冷凍サイクル。さらに、力学的エネルギーのうちのいくらかは、大気へ放出される低いCO2の排気ガスの拡張により回収される。
【0043】
2.廃熱は、そのサイクルに可動部がなく、したがって、エンジンの伝動装置からワークのうちのどれも消耗させない吸着冷凍サイクルに直接供給される。
【0044】
3.急速な膨張、及び、液体又はガス中のCO2の析出につながる透過ガスの冷却のための音速以下又は超音速ノズルの使用は、一時的な搭載された貯蔵、及び、回収のために形成する。
【0045】
部分的な圧縮は、ターボチャージャーに排気ガスを通過することにより達することが可能であり、それにより、排気ガスストリームの流動エネルギーのうちのいくらかを回収する。
【0046】
本発明は、排気ガスストリームの中のCO2の少なくとも一部分を分離し密度を高め、それにより、燃料を補給する、又は、他の適切な施設でそれを回収することが可能なまで、一時的貯蔵のためのその体積を著しく低減するために、車両に搭載されて使用可能である廃熱の自由エネルギーを使用することにより、空間の限定及び補助電源の要求の問題を解決する。本発明は、(a)エンジン排気ガスストリームの少なくとも一部分から、CO2のすべて又は相当な部分を取り除く冷却膜分離法、(b)エンジン廃熱のうちのいくらかを使用する実質的に純粋なCO2の回収、(c)電気的な及び/又は機械的な力、すなわち、ワーク・エネルギーへのエンジンの廃熱のいくらかの変換、及び、(d)分離のための膜を横切って圧力差を生成し、かつ、一時的な車載での貯蔵のためのCO2の密度を増加させるこの力の使用、を含む。分離と高密度化のためにエネルギーを供給する廃熱の使用は、排気ガスストリームの中の燃焼生成物からCO2を分離するプロセスを単純化し、著しくコストを低減し、高密度化は、CO2の一時的な車載での貯蔵のための体積要求を低減する。
【0047】
本発明は、1つ以上のCO2コンプレッサーを動かすエンジンのワークのいくつかの部分の任意の使用をさらに包含する。エンジンが減速モードで作動しており、エンジンを速力を落とす役目をする場合、及び、エンジンがアイドリングしている場合には、エンジンのワークは利用することが可能である。車載でのプロセッサ及びコントローラーは適切な所定のエンジン動作条件でエンジンへのコンプレッサー駆動連動装置を係合するために利用することが可能である。
【0048】
本発明は、化石燃料、あるいは炭化水素燃料の燃焼によって動作する、乗用車、トラック、バス、ヘビーデューティーの車両、列車、船、飛行機などのような広範囲の移動性の発生源で使用することが可能である。本発明のシステム及び装置は、新しい移動性の発生源上に、及び/又は、既存の移動性の発生源を改造することにより設置することが可能である。
【0049】
本発明は、多数の他の排気ガスから効率的なポスト燃焼CO2分離し、車両のICEから回収した廃熱を使用した、その高密度化、及び、輸送機関に搭載された次の一時的貯蔵のためのシステムを形成するために、様々な構成要素の統合に基づく。本システムは、(a)廃熱及び関連するエネルギーの一部分を回収し、かつ、それによってCO2及びエンジンの排気ガスストリームの中の他の成分の温度を下げる第1の熱交換ゾーン、(b)圧力差を生成するためにエンジン廃熱のいくらかを使用する排気ガスストリームからのCO2の分離のための膜分離ゾーン、(c)廃熱のいくらかが、電気的な及び/又は機械的な力(ワーク・エネルギー)に変換されるエネルギー転換ゾーン、(d)CO2の密度を増加させるために、廃熱から由来した力が使用される高密度化ゾーン、及び、(e)任意に、液体又は固体の形をしている密度が高められたCO2の一時的な車載での貯蔵のための断熱され冷却された貯蔵ゾーン、を含む。固体CO2がガスの形態に昇華させるために、分離した貯蔵領域は必要とされるだろう。本発明の方法の実施において、システムを動かすエネルギー必要量のすべて又はかなりの部分は、エンジンの廃熱から生ずる。
【0050】
CO2捕獲サイクルの開始中に、あるいは他の特別の運用上のニーズの要求を満たすために、エンジンの力又はその代わりに車載のバッテリーに蓄積された電力の一部を使用することが可能である。システムの通常の定常状態動作中に、CO2分離及び高密度化に必要なエネルギーの少なくとも一部分が、ICEの廃熱から生ずるだろう。
【0051】
固定発生源からのCO2排出量を削減する従来技術プロセスに対する本発明が有する1つの利点は、適度な温度廃熱の比較的高い即座の入手しやすさである。燃料の電力量価値を最大限にし、環境へ硫黄酸化物及び廃熱のような汚染物の排出を最小限にするために、石炭又はガス燃料の発電施設からの燃焼ガスの温度が、大幅に下げられるので、熱エネルギーのコストは、固定発生源からのCO2捕獲のための損失の主なアイテムである。
【図面の簡単な説明】
【0052】
本発明は、同じ又は同様の部材が同じ番号により識別される付属の図面に関連して、さらに下記に述べられる。
【0053】
図1図1は、従来技術の中で決定されるような典型的な内燃機関による、熱や動力への炭化水素燃料エネルギーの変換の概要の図である。
【0054】
図2図2は、図1を組込み、本発明の方法を図示した概略図である。
【0055】
図3図3は、CO2浸透を強化するために、膜の下流の減少した圧力を利用する、本発明の実施形態の概要の図である。
【0056】
図4図4は、浸透を強化するために、膜の上流の増加した圧力を利用する、本発明の実施形態の概要の図である。
【0057】
図5図5は、液体の吸収性物質を利用する本発明の実施形態の概要の図である。
【発明を実施するための形態】
【0058】
燃料の燃焼からの廃棄熱エネルギーは、他の分離と高密度化を達成するエネルギーの形態に変換される、排気ガスストリームからのCO2の選択的なガス浸透及び分離のための発明の直接の高密度化方法の概観を提供する図2の概要図が参照される。
【0059】
本発明のいくつかの代表的な実施形態は図3、4及び5に示される。真空で駆動されるプロセスを図示する図3をまず参照して、熱い排気ガスストリーム20は、廃熱のいくらかを「E」により表わされる電気的又は機械的エネルギーに変換するために、300℃から650℃の温度で作動する第1の熱回収(HR)ユニット30を通過する。
【0060】
その後、冷やされた排気ガスストリーム22は、1以上の膜42を含む膜モジュール40へ導入される。膜42の透過側面は、真空ポンプ46により生成された軽度の真空により相対的により低い圧力である。膜42を横切った圧力差は、CO2流束を強化するか、又は、透過側面に対する膜を通って流れるために必要とされる駆動力を提供する。CO2ガス流44と任意の水蒸気、及び/又は、他の透過ガスは、高密度化ステップに進む前にさらにガスの温度を下げるために、HRユニット32に通過される。水蒸気は凝縮し、CO2の冷却の間に除去される。存在する場合には、他のガス、例えばNOx、SOx及び炭化水素蒸気は、様々な既知の処理(不図示)のいずれかにより除去することが可能である。圧縮され液化され及び/又は固体のCO2は、一時的な車載の貯蔵所の中で維持される。未透過ガス52は、HR34を介して任意に通され、大気に放出される。
【0061】
図4は圧縮駆動プロセスを示す。高温の排気ガスストリームは、廃熱のいくらかを電気的又は機械的エネルギー「E」に変換するために、それは300℃から650℃の温度で作動する第1の熱回収ユニットHR30を通過する。圧力を増加させてさらに排気ガスストリームを分割するために、より低温の排気ガスストリーム22はターボチャージャー100を通過し、その結果、部分24はCO2膜分離され、捕獲され、残留物27は大気へ放出される。この体積の分割は、CO2捕獲及び高密度化に利用可能な結合したエネルギーに関して、排気ガスストリーム22の流量に基づくことが可能である。ターボチャージャー100が最適条件で膜モジュールを駆動する十分な圧力を出さない場合には、わずかの排気ガスストリーム24は、さらに任意のコンプレッサー102により加圧することが可能である。
【0062】
その後、加圧された排気ガス24は、膜モジュール40へ導入される。膜42の透過側面は、高密度化ユニットのファン/コンプレッサーの吸込み側により生じた相対的により低い圧力である。圧力差は、CO2に透過側面に膜42を通過させる駆動力を供給する。CO2及び任意の水蒸気、及び/又は、他の透過ガスは、高密度化ステップに進む。圧縮され、液化され、及び/又は固体のCO2は、一時的な車載の貯蔵所の中で維持される。未透過ガス52は、HRユニット34を任意に通過し、大気に放出される。
【0063】
図3と4のプロセスの上記の記載から、部分的にその圧力を増加させて、かつさらに排気ガスストリームを分割するためにターボチャージャーへ任意に排気ガスストリーム20を導入することが可能であることは明らかであり、その結果、一部分は膜モジュール40中の効率的なCO2除去にさらされ、及び、残留物27は、大気へ直接放出される。この体積の分割は、CO2捕獲及び高密度化に利用可能なエネルギーに関して、排気ガスストリーム流量に基づくことが可能である。任意のターボチャージャーが使用されていれば、膜モジュールを入力する排気ガスストリームの圧力は増加され、それによって、真空ポンプ46により生じた圧力差を増加させる。
【0064】
今、図5で概略的に示されたシステムと装置を参照して、いわゆるハイブリッドの方法は記述される。高温の排気ガスストリーム20は、改良されたターボチャージャー100により任意に加圧され、液体の吸収材からCO2を放すために、CO2回収ゾーン130中のCO2に富んだ液体の吸収材との熱交換リレーションの中を通される。より低温の加圧されたCO2に富んだ排気ガスストリーム26は、膜分離モジュール140の未透過側面に通され、CO2は膜142に浸透し、冷やされた液体吸収材144により吸収される。未透過であるCO2希薄エンジン排気ストリーム50は膜分離モジュール140から通され、大気に対するCO2希薄排気ガスストリーム52として放出される前に、熱交換器150中のCO2希薄吸収材との熱交換リレーションの中を任意に通される。あるいは、吸収材はその温度を下げるために外気クーラー又は熱回収ユニット30に通すことが可能である。
【0065】
上に記述されるようなユニット30で熱交換により吸収材から取り除かれたCO2ストリーム44は、コンプレッサー49により圧縮され、移動性の発生源から取り除かれるまで、一時的貯蔵所としての圧力容器80に蓄積される。熱したCO2希薄液体吸収材146は、膜分離モジュール140に対するそのリターンの前に、上に記述されたような熱回収ユニット、クーラー150中のCO2希薄エンジン排気ストリーム、又は、外気との熱交換リレーション中のポンプ148により循環する。
【0066】
サイズ又は能力、HR装置の場所及び動作条件は、例えばエンジン排気ガスストリームから、廃熱の利用しやすさに基づいて決定される。これは、排気ガスストリーム又はエンジン冷却液である廃棄熱ストリームの温度及び体積流量の両方を含むだろう。単一又は1つを超えるタイプの熱回収装置は、廃棄熱ストリーム及びその温度の性質及びフロー条件に依存して使用することが可能である。HR装置の選択及び評価は、当業者の1つの能力内にある。
【0067】
熱/エネルギー回収システムの動作は、温度とフローのセンサーからデータを受け取り、それは流量調整弁との通信を制御する、あらかじめプログラムされたプロセッサ及びコントローラーにより制御することが可能である。例えば、液体の吸収材が膜の透過側面に使用される図5に関して記述された実施形態の中で、エンジン排気ガスストリームの温度は、液体の吸収材料との熱交換リレーションの中でCO2を取り除くためにその温度を十分に上げるために、それを通すことにより下げることが可能である。より低い温度を有するより低温の排気ガスストリームは、その後、任意に電力を生ずる熱電気の装置(不図示)に、さらなる熱を交換することが可能である。最後に、相対的により低い温度の排気ガスは膜分離モジュールへ導入することが可能であり、ここで、CO2は膜に浸透し、液体の吸収材により吸収される。
【0068】
ガソリン又はディーゼル燃料のICEからの排気ガスストリームは、約13%の水蒸気を含んでいる。水蒸気は高密度化プロセスの初期段階中に液体を形成するために凝結し、当技術においてよく知られている方法及び装置によりプロセスから取り除くことが可能である。水は、液体の形で大気へ放出する、あるいは、単独又は処理された低いCO2含有量排気ガスストリームと一緒の排出のために、蒸気の形態に戻す変換をするために高温の表面との接触へ通されることが可能である。いかなる場合も、実質的に、水蒸気はすべて、窒素及びいくらかの残存するCO2と共に大気へ放出されるだろう。
【0069】
CO2は、逆に膜及び/又は高密度化プロセスをもたらすことが可能である汚染物質を低減するためにそのように装備をされる車両の触媒コンバーターの下流の排気ガスストリームから取り除かれることが、望ましい。さらに、エンジンがスタートアップで冷たい場合には、触媒コンバーターの下流の排気ガスは、コンバーターに生じる発熱反応により、上流より熱くなる。
【0070】
既存の膜、モジュール及び関連するシステムは、透過としてCO2、水蒸気及びH2Sの分離を達成するために、天然ガスの処理で既知である。好ましい実施形態の中で、排気ガスストリームを処理するために使用される触媒コンバーターの中で形成されるかもしれない任意のH2S及び/又はNH3も、膜を通過しない他の化合物に酸化する。この変換は、例えば、これらの化合物を含んでいるコンバーターの中で、膜の上流の位置でニッケル及び/又はマンガン化合物に排気ガスストリームを接触することにより、例えば遂行することが可能である、
【0071】
様々なエンジンからの排気ガスストリームの中にさらにありうる少量のSOx及びNOxは、固体の吸着剤との接触、又は、現在様々なタイプの排ガス規制装置の中で使用される他の既知の方法により所定のレベルへ除去されるか低減することが可能である。当業者により理解されるように、多くのタイプの膜は、これら及びICE排気ガスストリームの中にありえる他の汚染物質のppm(ppm)のレベルの濃度で効率的に作動することが可能である。
【0072】
CO2高密度化構成部品は、その一時的な車載の貯蔵所に対してCO2の気圧調節、液化又は固化を保証するため、適切な積極的な/受動的な冷却システムと共に単一又は複数のステージ・コンプレッサーにより遂行することが可能である。CO2貯蔵所は、移動性の発生源に搭載された単一のタンク、又は、多数のタンクになりえる。燃料槽も、例えば燃料側面とCO2貯蔵側面の間の柔軟な浮き袋のような、移動する区画を有することにより、密度が高められたCO2を格納するために使用することが可能である。
【0073】
熱管理と制御はシステムの効率的な動作を引き受けるために必要とされる。熱は熱回収装置により高温の排気ガスから取り除かれなければならないだろう。電気的な発電又はワークに必要な熱を供給するために、熱は他の構成要素に供給されなければならないだろう。熱の供給及び除去は、伝導、対流、放射及び/又は、これらの方法の組み合わせを含む、異なる方法を使用して遂行することが可能である。システムコンポーネントのすべての制御は、移動性の発生源のエンジン管理ユニット又はエンジン制御システムに、又は性能を最適化する分離したCO2分離制御及びマネジメントシステムにより統合することが可能である。
【0074】
伝導の場合には、熱は金属のような熱の伝導する材料を使用して、供給するか除去することが可能である。排気ガスがチューブを通って通される場合、熱は、チューブ外壁を介して伝導を使用して、チューブの外部から取り除くことが可能である。流体はチューブの外部の外壁からの熱を供給するか除去するために使用することが可能である。フィン、チューブの内部のメタル・メッシュ、及び、他の設計及び既知の技術は、高温のガスに接する表面積を増加させて、かつ伝熱を増強するために使用することが可能である。フィン及び他の表面変動も、システムの伝熱を強化するためにチューブの外部の外壁に使用することが可能である。CO2排気ガスも、伝熱流体を供給するか除去するために使用される、チューブの外部及びチューブの内部上に通すことが可能である。
【0075】
図3及び4はHR構成部品の配置に適している位置を記載する。これらの概要の図は、限定的でない実施例を表わすことが理解される。単一の技術又は多数の技術は、廃熱を、CO2を圧縮し補助的設備に動力を供給するための電気エネルギー又はワークに変換するために使用することが可能である。
【0076】
本発明の実施で使用される熱回収(HR)構成部品のタイプは、次のタイプの装置を、しかし、制限されず、含むことが可能である。
【0077】
1.廃熱を電気エネルギーに変換するために使用される熱電気の装置は、エネルギー変換を最適化するために異なる位置及び配置に配置することが可能である。熱電気の装置は、装置の高温の側面として、排気管、キャプチャー構成部品、シリンダーブロック又は他のエンジン構成部品と、熱伝導性の接触で固定することが可能である。熱電気の装置の冷たい側面は、装置を冷やすために空気対流に露出することが可能である。熱電気の装置の冷たい側面は、伝熱を容易にしさらに熱電気のモジュールの効率を制御するために、さらに積極的な冷却システム、例えば循環する液体、に接することが可能である、
【0078】
熱電気のモジュールの高温の側面は排気ガス側面に設置され、冷たい側面は、1つの(アクティブ・システム)、又は、空気にさらされた(受動的なシステム)として言及された閉じた冷却システムに設置される。熱電気のモジュールは、高温の側面から熱の一部を取り除き、高密度化装置、及び/又は、機器に搭載された他のものを動かすために使用することが可能である電力を発生する。
【0079】
熱電気の装置は、排気ガスに対する圧力損失効果を最小限にするために円筒状又は長方形のパイプのような異なる形状を装うことが可能である。
内部及び/又は外部フィンも、熱電気の装置の伝熱、及び、故にそれらの性能を増強するために使用することが可能である。高温を利用するために、熱電気の装置を、非常に接近して、あるいは、シリンダーブロックの上に、搭載してよい。適切な材料は高温に耐えるために選択されている。
【0080】
2.熱電気のモジュールを使用して発生された電力は、次には高密度化装置及び/又は他の機器に電力を供給する電気的な貯蔵システム、例えばバッテリー、に供給することが可能である。
【0081】
熱電気のモジュールのための半導体の選択はアプリケーションの温度範囲に基づく。異なる熱電気の装置の積み重ねは、熱回収、そしてその結果電気エネルギー発電を最適化するために使用することが可能である。
【0082】
3.シリンダー中のガスが膨張し、それによって、高密度化コンプレッサーを動作するために必要な機械的な仕事を実行することが可能であるピストンを駆動するために、又は、CO2を液化するか凝固するのに冷却の冷気を供給する圧縮冷凍サイクル・ユニットのコンプレッサーを動作するために、エンジンの1つ以上のシリンダーの壁にICE排気からの廃熱が供給されるスターリング・エンジン。
【0083】
4.高密度化コンプレッサーを動作するか、又は、CO2を液化するか凝固するのに冷却の冷気を供給する圧縮冷凍サイクル・ユニットのコンプレッサーを動作するために機械的な仕事を生じさせるタービンに蒸気を供給する蒸気発生器。
【0084】
5.小さな形状記憶合金エンジン又はコンプレッサーは、(CuSn、InTi、TiNi及びMnCuのような)合金の形状を変更するために廃熱を利用し、取り込まれたCO2の密度を増加させるために使用される機械的な仕事を発生する。エンジン・コンプレッサーは、必要とされる圧縮を発生するために、合金の高温の側面及び低温の側面を有することにより作動する。次の特許が、まれな合金のこれらのタイプに基づいた熱機関について記述する。USP 3,913,326、USP 4,055,955、USP 5,442,914、USP 7,444,812、及び公表された米国出願2009/0315489。これらの特許文献の開示は、引用によりここに組込まれる。
【0085】
6.単一の又は多数の熱回収システムは、排気ガス及び冷却液システムに設置することが可能である。
【0086】
7.単一の又は多数の熱回収システムは、必要な力を発生し、かつ有効に排気ガスの温度を下げるために設置することが可能であり、それによって、CO2を液化する及び/又は凝固するために必要とされられる下流のエネルギーを低減させる。
【0087】
本発明のさらなる実施形態において、キャプチャーエージェントの再生の後に回収されるCO2の一部分は、大気と燃料と混合されるために、適切なダクトを介してエンジンの空気取入れ口に戻される。システム・オペレーションのこの態様は、エンジン使用温度を下げるために、及び、それによって、燃料の燃焼中に生成されたNOx化合物の量を減らすために、現在使用される排気ガス再循環(EGR)のための既知の方法と同様である。排気ガス体積の5〜15パーセントと等しいCO2の量は、取入れ口に戻すことが可能である。CO2のリターンは、さらに排気の中のNOx化合物を低減する有益な効果がある燃料混合に引き込まれた空中窒素の量をさらに減らす。排気ガスストリームの中のCO2のパーセントも増加される。
【0088】
CO2の再循環は、自動車両の排気ガス循環のために、慣例通りに用いられた、同様な装置及び制御システムにより実行することが可能である。CO2の再循環も既存のEGRシステムと共に試みることが可能である。エンジン動作条件に基づいて、又は、エンジンが冷たいか、急な加速度が持続している場合、及び/又は、ICEが重い負荷の下にある場合のスタートアップでのような再循環を完全に中止する現在の実行に従って、CO2は、排気ガスのすべて又は所定の部分を交換することが可能である。
【0089】
本発明のさらなる実施形態の中で、膜モジュールから回収されたCO2の一部分は、水と混合されて、もとの場所に形成される水素及び一酸化炭素の中間的な反応により、メタンと水を形成する既知の方法を使用して触媒的に反応する。その後、メタンと水は、エンジン吸気口に供給された従来の炭化水素燃料を補うために使用される。CO2に反応させた水は、排気ガスストリーム、又は、その目的で備わる分離した車載の発生源から回収することが可能である。
【0090】
本発明は、移動性の発生源からの、ポスト燃焼CO2キャプチャー及び車載の貯蔵所に取り組む。運転コストと機器の要求を最低限にするために、慣例通りに大気へ放出される利用可能な熱は、効率的な車載の貯蔵所のために、生成されたCO2のすべて又は部分を液化及び/又は凝固するために、圧縮により、燃焼ガスからCO2を分離するために必要とされるエネルギーを供給するために、実際的な極大量に利用される。給油所で回収のためにそれを放出するか除去することが可能である場合には取り込まれたCO2は、燃料を補給するまで、貯蔵することが可能である。改質のような化学反応あるいはエンジン設計の主要な変化を含んで提案された方法と比較して、本発明の装置は配置されるのが、より容易である。
【0091】
本発明の様々な実施形態は、添付図面上に記述されたが、他の修正及び変形は、この記載からの当業者に明らかになり、本発明の範囲は、続く請求項により決定される。
図1
図2
図3
図4
図5