【文献】
岩谷周、外3名,ビジュアルセンサネットワークのためのリソース指向アーキテクチャ,電子情報通信学会技術研究報告,社団法人電子情報通信学会,2008年 9月18日,Vol.108,No.213,pp.21〜25(SIP2008−93)
【文献】
木本雅彦、外3名,LiveE!気象アプリケーション開発ツールキットの概要,電子情報通信学会技術研究報告,社団法人電子情報通信学会,2009年12月11日,Vol.109,No.351,pp.85〜89(IA2009−80)
【文献】
神崎正英,セマンティックHTML/XHTML,株式会社毎日コミュニケーションズ,2009年 5月30日,初版,pp.320〜322
(58)【調査した分野】(Int.Cl.,DB名)
前記実行可能命令は、前記第1の名前をサーバに対して公開すること(139)を含むさらなる動作を前記プロセッサに行わせ、前記サーバは、前記第1の名前を記憶することにより、前記第1の時間属性または前記第1の場所属性または前記第1のタイプ属性に基づいて、クエリが前記センサデータについて行われることを可能にする、請求項1に記載のデバイス。
前記実行可能命令は、ディスプレイ上で前記第1の名前を表示するための命令を提供することを含むさらなる動作を前記プロセッサに行わせる、請求項1〜3のいずれか1項に記載のデバイス。
前記第1の名前をサーバに対して公開すること(139)をさらに含み、前記サーバは、前記第1の名前を記憶することにより、前記第1の時間属性または前記第1の場所属性または前記第1のタイプ属性に基づいて、クエリが前記センサデータについて行われることを可能にする、請求項8に記載の方法。
前記第1のセンサデータと第2のセンサデータとを集計することであって、前記第2のセンサデータは、第2の時間属性または第2の場所属性または第2のタイプ属性を含む第2の属性を有する、ことと、
前記第1の名前を前記集計された第1のセンサデータおよび第2のセンサデータに割り当てることと
をさらに含む、請求項8または請求項9に記載の方法。
コンピュータプログラムが記憶されたコンピュータ読み取り可能な記憶媒体であって、前記コンピュータプログラムは、データ処理ユニットにロード可能であり、前記コンピュータプログラムは、前記データ処理ユニットによって実行されると、請求項8〜12のいずれかに記載の方法のステップを前記データ処理ユニットに実行させるように適合されている、コンピュータ読み取り可能な記憶媒体。
【発明を実施するための形態】
【0006】
ネットワーク使用可能センサデバイスは、物理的環境から収集される観察および測定データを捕捉して通信することを可能にする。本明細書で議論される場 合、センサは、物理的性質を検出または測定し、記録し、示し、またはそれに応答する、デバイスとして定義され得る。例えば、センサは、光、運動、温度、磁場、重力、湿度、湿気、振動、圧力、電場、音、および環境の他の側面を検出し得る。感覚データは、データを有意義にすることに役立つように、環境または測 定データの観察、ならびに時間、場所、および他の記述属性を含み得る。例えば、15度の温度値は、空間(例えば、Guildford市中心部)、時間(例えば、2013年3月21日、グリニッジ標準時午前8時15分)、および単位(例えば、摂氏)属性を用いて記述される場合、より有意義であり得る。感覚 データはまた、品質またはデバイス関連属性(例えば、精度、正確度)を記述する、他の詳細なメタデータを含み得る。
【0007】
かなりの数の既存のネットワーク使用可能センサデバイスおよびセンサネットワークは、リソースが制約される(すなわち、多くの場合、限定された電力、帯域幅、メモリ、および処理リソースを有する)ため、センサはまた、データを集計または要約して通信オーバーロードを低減させるように、ネットワーク内デー タ処理をサポートすべきである。意味(semantic)注釈が、より強力な中間ノード(例えば、ゲートウェイノード)上で行われると見なされる場合、依然として、膨大な量のストリーミングデータがあり得、メタデータのサイズは、元のデータより有意に大きい。そのような場合において、表現力、詳細のレベ ル、およびメタデータ記述のサイズ間の平衡が考慮されるべきである。意味記述は、感覚データに対してマシン解釈可能かつ相互運用可能なデータを提供し得る。モノのインターネット(IoT)感覚データのための本明細書で説明される意味モデルは、依然として軽量でありながら、感覚データの主要な属性を表現し 得る。例えば、本明細書で開示される意味命名モデルが、感覚データのいくつかの一次属性を可能にする一方で、属性の数は、ネットワークにわたって伝送される必要がある情報の量を低減させるために制限される。
【0008】
現在のモノのインターネット(IoT)データ命名は、ユニフォームリソース識別子(URI)またはユニフォームリソースロケータ(URL)ベースの方式である従来のコンテンツ命名方式に従う(例えば、ETSIマシンツーマシン(M2M)リソース識別子)。センサからの感覚データは、ゲートウェイによって 名前を付けられ(データがゲートウェイに記憶されるリソース構造から導出され)、これは、データの元のソースがデータの名前を決定しないことを意味する。感覚データの公開および消費のための効率的なエンドツーエンドソリューションを提供すること、および分散型感覚データクエリを可能にする発見機構を提供す ることにおいて、感覚データのための命名方式の不足がある。
【0009】
本明細書では、依然として感覚データの他の記述メタデータへの連携を提供しながら、感覚データの主要な属性(例えば、時間、場所、タイプ、および値)を捕捉する組み込みセマンティクス(semantics)を有する命名方式(組み込み意味(semantic)命名)が開示される。意味モデルは、感覚デー タのための命名方式であり、感覚データを識別するとともに、追加の意味情報を名前に組み込むことができる。命名方式は、感知されたデータに名前をつけることにおいてデータソース(すなわち、センサ)を関与させるが、さらに、センサに追加されるオーバーヘッドおよび複雑性と名前の表現力との間で平衡を保つ。 命名方式は、名前の中にデータの追加の意味情報を提供することによって、分散型感覚データ公開および発見を促進する。命名方式は、データ集計を可能にし得、データ集計は、集計を行う方法を命令するためのいかなる追加の情報も伴わずに自動的に行われ得る。命名方式をさらに強化し得る、名前におけるフィールドの形式も開示される。感覚データの名前の公開、感覚データの集計、お よび感覚データのクエリのためのプロシージャも開示される。
【0010】
表1に示されるように、感覚データ(または一般にIoTデータ)のためのモデルは、観察および測定値を記述する一方、体積、多様性、変化の速度、時間、および場所依存性を考慮する。考慮されるべきである別の側面は、どのようにしてデータが使用され、問い合わせられるであろうかである。概して、感覚データ のクエリは、場所(例えば、場所タグ、緯度および経度の値)、タイプ(例えば、温度、湿度、または光)、時間(例えば、タイムスタンプ、データの鮮度)、値(例えば、観察および測定値、値データタイプ、および測定の単位を含む)、または他のメタデータ(例えば、情報関連属性のソースまたは品質を提供する記 述へのリンク等のメタデータへのリンク)等の属性を含む。
【0012】
図1は、リンクされたデータのアプローチに従う、感覚データモデル100の意味記述を図示する。このモデルでは、感覚データは、時間属性101と、場所属性103と、タイプ属性105と、値属性107と、他のメタデータへのリンク109とを含む。感覚データは、一般的に使用されているオントロジーおよび 語彙で定義される既存の概念にリンクされ得る。そして、詳細なメタデータおよびソース関連属性が、他のソースへのリンクとして提供され得る。モデル100は、そのような感覚データを記述するためのスキーマを提供する。
【0013】
ジオハッシュタギングが、例えば、場所属性を記述するために使用され得る。ジオハッシュは、地理的な場所の10進緯度および経度値の文字列ハッシュを作成するために、Base−N符号化およびビットインターリービングを使用する機構である。これは、階層構造を使用し、物理的空間をグリッドに分割する。ジ オハッシングは、ジオタギングに使用され得る対称技法である。ジオハッシングの特徴は、(いくつかの例外を伴って)近くの場所が、それらの文字列表現において類似プレフィックスを有するであろうことである。
実施例では、緯度および経度地理座標の12バイトハッシュ文字列表現を作成するように、Base32符号化およびビットインターリービングを使用する、ジオハッシングアルゴリズムが採用される。例えば、 「51.235401」という緯度値および「0.574600」という経度値を有するGuildfordの場所は、「gcpe6zjeffgp」として表される。
【0014】
図2は、マップ110上にマークされた大学構内の4つの場所を示す。表2は、マップ110上の異なる場所のジオハッシュ場所タグを示す。表2で観察することができるように、非常に近い場所は、類似プレフィックスを有する。プレフィッックスは、場所間の距離が近くなるほど、より類似する。例えば、位置 111、位置112、位置113、および位置114は、最初の6桁を共有する。位置112および位置113は、それらの近さにより、最初の8桁を共有する(他の場所と比較して追加の2桁)。感覚データの名前の中のジオハッシュタグは、例えば、文字列類似性方法の使用により、データを問い合わせること、発見 することにおいて場所ベースの検索を提供し得る。場所プレフィックスは、データが非常に近い異なる場所から統合または蓄積される場合に、集計プレフィックスを作成するために使用され得る。例えば、全ての感覚データの間で共有される最長プレフィックス文字列が、データのための集計場所プレフィックスタグを表 すために使用され得る。
【0016】
感覚データモデルのタイプ属性に対して、概念が、地球および環境用語(SWEET)オントロジーのためのNASAのセマンティックウェブから採用され得る。SWEETは、8つの最上位概念/オントロジー、すなわち、表現、プロセス、現象、領域、状態、事柄、人間の活動、および数量から成る。各々は、次の レベルの概念を有する。それらの全ては、感覚データモデルのタイプ属性に対する値であり得る。種々の
実施例では、タイプ属性は、共通語彙に基づく既存の概念にリンクされ得る。別の
実施例では、感覚データのタイプを記述するためのより具体的なオントロジーが採用され得る。
【0017】
上記のように、
図1に示される属性は、感覚データのためのセマンティクスモデル100を形成する。ソース関連データ(すなわち、どのようにしてデータが測定されるか、特定のデバイスの使用、または情報の質)等の追加の特徴が、プロバイダデバイス自体、ゲートウェイ等の他のソース上で利用可能な情報にリン クされ得るように、モジュール形式で追加され得る。
図1は、他のメタデータ属性109へのリンクを示す。例えば、情報属性の質または測定範囲性質等を記述するために、新しい意味記述モジュールが追加されることができ、それは、コア記述にリンクされることができる。追加の特徴の追加は、組み込み意味命名を使 用してストリーミングセンサデータを記述するための融通性のあるソリューションを提供し、モデルがデータのコア属性を捕捉し、追加の情報がリンクされたデータとして提供され得る。
【0018】
本発明の側面によると、感覚データは、場所、時間(ストリームに対して、これは、ストリームの現在のウィンドウ内の測定の開始時間であり得る)、およびタイプ等の
図1の意味モデル100の属性を含む情報を使用して、名前を付けられ得る。
図3に示されるように、例えば、感覚データの識別(ID)(すなわ ち、組み込み意味名)124を表すように、文字列が作成され得る。
図3は、一
実施例による、例示的なID構造120を図示する。ID構造120は、場所情報のジオハッシュタグ121を含む場所フィールド121と、タイプ情報(例えば、温度、湿度、または光)のメッセージダイジェストアルゴリズム 5(MD5)を含むタイプフィールド122と、時間情報のMD5を含む時間フィールド123とを備え得る。MD5は、暗号ハッシュ関数である。場所フィールド121、タイプフィールド122、および時間フィールド123の中の値は、感覚データの名前として使用されるID124を作成するように組み立てられ 得る。本実施例では、ID124は、リソース記述フレームワーク(RDF)の文脈で使用される。RDFは、ウェブ上のリソースを記述するためのフレームワークである。
【0019】
同一のタイプの複数のセンサが、多くの場合、重複した感覚示度値を取得して、信頼性のレベル(例えば、デバイス故障)、測定の一貫性等を達成するよう に、同一の場所で展開される。本明細書で議論される意味モデルは、同一のタイプの複数のセンサが同一の場所にあり、同時に感覚データを提供する場合、感覚データに名前を付けることの問題に対処する。
実施例では、デバイス識別子が、
図4に示されるように、感覚データの組み込み意味命名とともに使用され得 る。
図4は、
図3に類似するが、DeviceIDフィールド126がID構造128の中に追加される。このフィールドは、組み込み意味名のための形式として使用される。DeviceIDフィールド126で使用されるデバイス識別子は、バーコードまたはRFIDタグ、MACアドレス、移動電話加入者ISDN 番号(MSISDN)等であり得る。
図4のDeviceIDフィールド126(または任意の他のフィールド)の長さは、デバイス識別子を収容するために任意のバイト数(例えば、12バイト)に設定され得る。ID構造120およびID構造128は、本明細書で議論される属性を反映する感覚データの組み込み意 味名を作成する方法である。
【0020】
図5は、感覚データの組み込み意味命名のための例示的な方法130を図示する。ステップ131では、感覚データがセンサによって感知された時間が決定される。ステップ133では、感覚データのタイプが決定される。タイプは、感覚データのソースに依存する。例えば、温度を感知するセンサから生じたデータ は、温度タイプを有し得、湿度を感知するセンサから生じたデータは、湿度タイプを有し得る。ステップ135では、感覚データを生成するセンサの場所のジオハッシュタグが決定される。ステップ137では、感覚データのタイプ、センサの場所のジオハッシュタグ、および感覚データが感知された時間に基づいて、感 覚データの組み込み意味名が構築される。例えば、組み込み意味名は、
図3に関して議論されるような例示的構造に従って構築され得る。
図4でさらに図示されるように、別の
実施例では、組み込み意味名はまた、感覚データのタイプ、センサの場所のジオハッシュタグ、および感覚データが感知された時間とともに、 センサのデバイス識別子を含み得る。
実施例では、感覚データの名前は、そのソース(例えば、センサ)によって生成され得る。ブロック139では、構築された名前が他のコンピュータデバイスに公開され得る。例えば、センサは、関連感覚データとともに、または関連感覚データとは別に、組み込み意味名をゲート ウェイに提供し得る。
実施例では、名前作成は、ゲートウェイによって、または専門の命名サーバによって行われ得る。
【0021】
方法130に関して、リソース制約されたデバイスに対して、センサによって感覚データの名前を構築することは、比較的有意な量の電力および他のリソースを消費し得る。加えて、センサが感覚データの名前をゲートウェイに公開する場合、公開は、有意な量のネットワーク帯域幅を消費し、名前を転送する際に有意 なオーバーヘッドを中間ノードに課し得る。これは特に、中間ノードがリソース制約されたデバイスでもあるときに問題であり得る。いくつかの
実施例では、中間ノードは、発信元からゲートウェイへ感覚データを転送する、中継ノードであり得る。例えば、センサネットワーク内で、中間ノードは、発信元センサとゲートウェイとの間のセンサであり得る。
【0022】
図6は、感覚データに名前を付け、データを公開するための例示的なフロー140を図示する。ステップ143では、デバイス登録要求がセンサ141から ゲートウェイ142へ送信され得る。登録要求において、センサ141は、例えば、その場所、デバイス識別子、およびそのサポートされたタイプをゲートウェイ142に知らせ得る。場所は、ジオハッシュ、経度および緯度、都市の場所、特定の物理的アドレス等の形態であり得る。場所情報がジオハッシュの形態では ない場合、ゲートウェイ142は、受信した場所をジオハッシュタグの形式(または別の所望の場所形式)に変換することに関与し得る。センサ141は、1つの場所から別の場所へ移動し得、かつ場所の変化を示すためにゲートウェイ142に再登録し得る。センサ141による場所の変化の登録は、設定された時間 に、設定された期間に(例えば、10秒の時間間隔で)、または特定の所定場所に到達したときに起こり得、これは、場所を頻繁に変更するデバイスにとって好ましくあり得る。ゲートウェイ142によってMD5形式で記憶され得る、センサ141が行う感知のタイプもまた、ステップ143での登録要求に含まれ得 る。センサ141は、1つより多くのタイプの感知(例えば、温度および湿度)をサポートし得る。ゲートウェイ142は、ラベルをセンサ141によって行われる各タイプの感知に割り当て得る(例えば、温度が1というラベルを有する一方で、湿度は2というラベルを有する)。
【0023】
ステップ144では、ゲートウェイ142が、センサ141から受信されるであろう感覚データのストリームを記憶するためのエントリーを構築する。表3 は、受信され、ステップ144でゲートウェイによって構築されるセンサエントリーに記憶され得る、あるセンサ情報の実施例を示す。示されるように、本実施例では、センサ情報は、とりわけ、センサのデバイス識別子、センサの場所、およびセンサがサポートする感知のタイプを含み得る。ステップ145では、ゲー トウェイ142が、デバイス登録に応答したメッセージをセンサ141に送信し、メッセージは、センサ141によってサポートされる1つより多くのタイプがある場合、タイプのラベルを含む。タイプラベル(例えば、表3内の1または2)は、公開されるデータのタイプを示す。タイプの対応するMD5が、デバイス 情報から読み出される。ステップ146では、センサ141が、感覚データ値(例えば、温度)、感覚データが感知された時(例えば、正午)、センサの場所(例えば、経度および緯度)、センサのデバイス識別子(例えば、MACアドレス)、およびタイプラベル(例えば、1)を含み得る、感覚データをゲートウェ イ142に公開する。ステップ147では、ゲートウェイ142が、
図1、
図3、および
図4で図示され、上記で説明される、例示的命名技法/構造および感覚データモデルに従って、公開されたデータの組み込み意味名を生成することができる。
【0025】
議論されるように、本明細書で開示される感覚データモデルおよび命名プロシージャを用いると、場所、ソース、タイプ、および時間等の感覚データのセマンティクスが、その名前に組み込まれ得る。したがって、ゲートウェイが感覚データの名前を他のエンティティ(例えば、別のゲートウェイまたはサーバ)に公開 すると、名前に組み込まれたデータのセマンティクスは、元のデータ公開元(例えば、ゲートウェイ142)から読み出される必要がない。
【0026】
図7は、アプリケーション154が感覚データを読み出し、次いで、関連セマンティクスを受信する、感覚データクエリフローを図示する。ステップ155では、センサ151が(例えば、
図6に関して本明細書で議論されるように)感覚データを公開する。ステップ156では、ゲートウェイ152が、感覚データの 組み込み意味名をサーバ153に送信する。ステップ157では、アプリケーション154が、データを要求するメッセージをサーバ153に送信する。ステップ159では、サーバ153が、センサ151によって感知される感覚データの値を読み出すために、要求をゲートウェイ152に転送する。ステップ160で は、ゲートウェイ152が、感覚データの値をアプリケーション154に転送するサーバ153に感覚データの値を提供する。161で受信される感覚データが、アプリケーション154が所望する属性と対応する組み込み意味命名を有する場合には、さらなるセマンティクス情報が必要とされない。しかし、アプリ ケーション154が、感覚データを理解して使用するために、組み込み意味命名によって提供されない、さらなる情報を必要とする場合、アプリケーション154は、感覚データのセマンティクスを要求し得る。随意的なステップ162では、アプリケーション154が、要求される感覚データのセマンティクス(例 えば、場所、タイプ、時間、およびソース)を要求する。ステップ164では、サーバ153が、感覚データのセマンティクスを転送する。実装に基づいて、アプリケーションは、サーバ153、ゲートウェイ152、センサ151、または別のデバイスからセマンティクス情報を読み出し得る。本明細書で議論されるよ うに、セマンティクス情報は、どのようにして異なる形式のデータを解釈するかに関してアプリケーションを支援し得る。
【0027】
本願の別の側面によると、感覚データの組み込みセマンティクスを用いた、開示された命名方式は、データ集計を促進する。具体的には、データ集計は、どのようにして集計を行うかを命令するためにいかなる追加の情報も伴わずに、上記で説明される様式で、感覚データのために作成される名前の中のフィールド(例 えば、センサの場所、タイプ、または時間)を使用することによって、自動的に行うことができる。集計は、データ生成側(例えば、センサ)で、データ生成側とデータ収集側との間の同一のジオハッシュ場所を伴う中間ノード、およびデータ収集側(例えば、ゲートウェイ)で起こり得る。センサの属性(例えば、場 所、デバイス識別子、およびサポートされたタイプ)は、頻繁に変化しないこともある。センサにおけるデータ集計は、有意な期間(例えば、数分、数時間、数日、または数ヶ月)にわたって行われ得、これは、センサが、感知する度に感覚データを公開する必要がないこともあることを意味する。センサは、ある期間に わたって感知されるデータを集計し得る(例えば、30分の期間で全ての感覚データという平均)。この場合、集計されたデータの意味名に組み込まれる時間属性は、集計されたデータの期間であり得る。
【0028】
感覚データの組み込みセマンティクスを用いた、開示された命名方式はまた、感覚データのクラスタリングを促進するために使用され得る。K平均法(ベクトル量子化の方法)等のクラスタリング機構が、感覚データを異なるレポジトリにクラスタ化するために使用され得る。クラスタリングモデルに基づく予測方法の 使用は、データの各部分を維持するレポジトリの識別を可能にし得る。例えば、各レポジトリは、場所、デバイス、タイプ、または時間等の感覚データの1つのタイプのクラスタリングを維持し得る。
【0029】
データ集計を促進するために、開示された意味命名方式をどのようにして使用することができるかという概念をさらに例証するため、ならびに記憶された感覚データの発見およびクエリをどのようにして行うことができるかを例証するために、
図8は、本明細書で説明される感覚データに名前を付けるための意味モデル を実装する、システム170の一
実施例のブロック図を提供する。
図8では、場所175は、センサ171、センサ172、およびセンサ173を含む、複数の通信可能に接続されたセンサを含む。センサ172およびセンサ173は、センサ171とゲートウェイ174との間の中間ノードである。ゲートウェイ174は、ネットワーク176を介し て、領域175および発見サーバ178に通信可能に接続される。
【0030】
ゲートウェイ174(または別のコンピュータデバイス)は、センサ171、センサ172、およびセンサ173からの感覚データの収集側として、感覚データを集計し、名前の中の異なるフィールド(例えば、場所、デバイス識別子、タイプ等)にわたって集計されたデータの意味名を統合し得る。ゲートウェイ 174または別のコンピュータデバイスは、感覚データを集計するための規則またはポリシーを事前に定義し得る。例えば、ゲートウェイ172は、Manhattan、Brooklyn、およびQueensにおけるセンサ示度値を平均化するポリシーを有し得る。Manhattan、 Brooklyn、およびQueensの平均感覚示度値は、「New York City」という場所識別子、またはいくつかのセンサジオハッシュの最初のいくつかの共通文字(例えば、「gpced」)を有する単一の代表的ジオハッシュを有し得る。別の実施例では、10月、11月、および12月の示度値が 平均化され、冬の単一の代表的時間識別子を有し得る。
【0031】
実施例では、センサ171、センサ172、およびセンサ173は、温度タイプをサポートし得る。センサ171は、特定の時間「t1」に、意味命名を伴う感覚データのゲートウェイ174に対する公開を開始し得る。センサ172は、センサ171と同一のジオハッシュ場所を有する(センサ171(例えば、最 初のデータ生成側)とゲートウェイ174(例えば、データ収集側)との間の中間ノードである)。センサ172は、受信した感覚データを、場所175に位置するデバイスに対する(時間t1またはその付近でセンサ172によって感知される)感知された感覚データと集計し得る。この感覚データの集計は、センサ 172が、ゲートウェイ174に向かうことになっている、前のホップ(例えば、センサ171)から感覚データを受信するときにトリガされ得る。集計された感覚データは、意味名において、センサ171によって公開される、最初に公開された感覚データと同一のデバイス識別子(例えば、DeviceIDフィール ド126で使用される識別子)を割り当てられ得る。別の実施例では、デバイス識別子は、感覚データ集計を行った、または感覚データを転送した最後のセンサ(中間ノード)のみを反映し得る。別の実施例では、デバイス識別子は、感覚データ集計に参加した、または感覚データを転送したセンサの識別子の組み合わせ を反映し得る。さらに別の実施例では、異なるセンサからの複数の感覚データが、同一値、類似値、平均値等を有し得るため、異なるセンサからの複数の感覚データは、1つの一意の命名を伴う1つのデータとして扱われ得る。
【0032】
再度、
図8を参照すると、ゲートウェイ174は、元の感覚データとともに、集計された感覚データを、発見機能性を有する発見サーバ178に公開し得る。集計されたデータは、低レベルコンテキスト情報として、生成され、ゲートウェイ174に記憶され得、それは、アプリケーションによって問い合わせられ、高 レベルコンテキスト情報を導出するために使用され得る。感覚データのクエリは、いくつかの属性から、また、いくつかのソースからの情報を組み合わせ得る。感覚データのストリームからの可能なクエリのタイプは、厳密クエリ、近似クエリ、範囲クエリ、または複合クエリとして識別され得る。厳密クエリは、タイ プ、場所、または時間属性等の既知のデータ属性を要求することを伴う。情報の質(QoI)または測定の単位等の他のメタデータ属性もまた、厳密クエリに含まれ得る。近接クエリは、近似場所からの、または情報の質の閾値を伴うデータを要求することを伴う。範囲クエリは、データに問い合わせを行うために使用さ れる時間範囲または場所範囲を要求することを伴う。複合クエリは、そのデータソースとして別のクエリを使用する、クエリである。複合クエリは、異なるソースからの、時として、異なるタイプを伴うデータの統合(および処理)によって提供されているクエリの結果を伴い得る。どのようにしてデータを統合または集計するかについての規則または方針が、複合クエリとともに提供され得る。例えば、データは、3月1日および2日の週末の間に感知される、タイプ温度および湿度を伴うCityXの場所に基づ いて、問い合わせられ得る。
【0033】
本明細書で開示される組み込み意味命名方式は、これらの種類のクエリが行われ、処理されることを可能にする。クエリは、感覚データの組み込み意味名の中のフィールドのうちの1つにマップされ得る。実施例では、範囲クエリに対して、時間または場所範囲ベースのクエリに対する応答は、発見サーバ178が感覚 データ名の中の時間および場所フィールドにクエリを直接マップすることを反映し得る。別の実施例では、複合クエリに対して、ソースおよびタイプベースのクエリに対する応答は、発見サーバ178が逆規則/ポリシーを直接適用し、それらを感覚データ名の中の場所、タイプ、時間、およびソースフィールドにマップ することを反映し得る。別の実施例では、近接クエリに対して、クエリは、場所を近似するために、感覚データ名の中のジオハッシュの初期プレフィックスを使用し得る。近接クエリに対する応答は、ジオハッシュフィールドへのジオハッシュのプレフィックスのマッピングに基づき得る。
【0034】
図8に示されるように、時間180、場所181、タイプ182、またはソース183(例えば、デバイス識別子)が、発見サーバ178によって処理されるクエリの発見識別子(発見ID)179を作成するために入力され得る。本
実施例では、意味名と比較される発見ID179を入力することによって、感覚 データが見出され得る。本質的に、発見ID179は、クエリのパラメータ(例えば、時間、場所、タイプ、またはソース)を反映するという点で、クエリである。発見サーバ178は、独立型コンピュータデバイス、またはゲートウェイ174あるいは別のサーバ内に常駐する論理エンティティであり得る。厳密クエリ に対して、発見ID179は、時間180、場所181、タイプ182、またはソース183であり得る。近接クエリに対して、発見ID179は、ジオハッシュのあるプレフィックスであり得る。範囲クエリに対して、発見ID179は、場所範囲または時間範囲から成り得る。複合クエリに対して、発見ID179 は、指定ポリシーを伴う時間180、場所181、タイプ182、またはソース183から成り得る。
【0035】
感覚データの組み込み意味名公開、集計、およびクエリのための開示されたプロシージャは、とりわけ、ハイパーテキスト転送プロトコル(HTTP)または制約アプリケーションプロトコル(CoAP)等の1つ以上の既存のプロトコルに結合され得る。そうするために、HTTPまたはCoAP等のプロコルは、要 求および応答を搬送するための下層転送プロトコルとして使用され得る。要求および応答は、HTTP/CoAPメッセージのペイロードに封入され得、または代替として、要求および応答内のある情報は、HTTP/CoAPヘッダおよび/またはオプション内のフィールドに結合され得る。
実施例では、組み込み意 味名公開、データ集計、およびデータクエリ要求および応答プロトコルプリミティブは、HTTPまたはCoAP要求および応答のペイロードで搬送される、Java(登録商標)Scriptオブジェクト表記(JSON)または拡張マークアップ言語(XML)記述として符号化され得る。本明細書で開示される
実施例はまた、先進メッセージ待ち行列プロトコル(AMQP)またはメッセージ待ち行列テレメトリトランスポート(MQTT)を伴い得る。
【0036】
図9は、上で開示される技法および機構による、感覚データクエリフロー200の一実施例を図示する。
図9のフロー200は、要求および応答がHTTPプロトコルに従って搬送される、データクエリを図示する。
図9を参照すると、ゲートウェイ203は、センサ201等のセンサによって感知されるデータを収集 する。ステップ210では、ゲートウェイ203が、HTTP POST要求メッセージを発見サーバ205に送信する。ステップ210でのHTTP POST要求メッセージは、本明細書で説明される意味命名方式が適用されている、感覚データのペイロードを含む。POSTは、HTTPプロトコルによってサポートされる方法であり、ウェブサーバが記憶するために要求メッセージの本体に封入されるデータを受け入れることを要求するように設計されている。
【0037】
ステップ214では、発見サーバ205が、場所、タイプ、時間、またはソースの属性に基づいて、任意の受信した感覚データのインデックスを作成し得、例えば、感覚データの各項目の意味名から読み出し、これは、感覚データの発見およびクエリを促進する。発見サーバ205によって受信される感覚データは、本 明細書で説明されるように、公開された元の感覚データおよび/またはゲートウェイ203からの公開された集計データであり得る。発見サーバ205はさらに、過去のクエリ要求または結果からの予測に基づいて、データを集計し得る。ステップ216では、HTTP GET要求メッセージが、クライアントデバイ ス207(例えば、ユーザ機器)によって発見サーバ205に送信され得る。GETは、HTTPプロトコルによってサポートされる方法であり、特定リソースからデータを要求するために設計されている。ステップ216で送信されるHTTP GET要求メッセージは、場所、タイプ、時間、またはソースパラメータ から成る発見IDを伴う発見要求を備え得る。ステップ218では、発見サーバ205が、発見IDの中のフィールドを記憶された感覚データの組み込み意味名のフィールドと比較することによって、ステップ216で受信される発見IDを感覚データと照合する。発見サーバ205は、感覚データ意味名フィールドの中 の特定のフィールド(バイト)を見る。発見サーバ205は、クエリが既存のフィールドに合致する場合、感覚データの追加のセマンティクス情報を必要としないこともある。合致する感覚データを見出すことにおける発見サーバ205のオーバーヘッド(例えば、必要とされる処理)は、組み込み意味命名により、有意 に少なくあり得る。ステップ220では、HTTP GET応答メッセージが、要求クライアントデバイス207に送信される。HTTP GET応答メッセージのペイロードは、ステップ216での要求に対応する、合致する感覚データ名を有する。
【0038】
ステップ222では、クライアントデバイス207が、将来の使用のために感覚データ名の発見結果を記憶する。ステップ224では、クライアントデバイス207が、記憶された感覚データ名に合致する、データを読み出すことを決定し得る。ステップ226では、クライアントデバイスが読み出すことを希望する感 覚データの名前を含むペイロードとともに、HTTP GET要求メッセージが、センサ201またはゲートウェイ203に送信され得る。いずれにしても、ステップ228では、ゲートウェイ203は、要求された感覚データがゲートウェイ203上に記憶されるかどうかを決定し得る。ステップ226で送信される HTTP GET要求は、ゲートウェイ203によって途中で捕獲され得、ゲートウェイ203は、組み込み意味名のみの代わりに、センサ201が合致するデータ値を公開したかどうかを決定するためにチェックし得る。ゲートウェイ203が合致するデータ値を有する場合、ゲートウェイ203は、ステップ230 で、適切な感覚データ値を含むHTTP GET応答メッセージで返信し得る。ゲートウェイ203は、要求された感覚データが任意の他のクライアントによって以前に読み出されていた場合、要求された感覚データ値のキャッシュされたコピーを保持し得る。
実施例では、ゲートウェイ203が公開されたデータ値の コピーを有さないとき、ステップ232で、ゲートウェイ203は、ステップ226で送信されるHTTP GET要求をセンサ201に転送し得る。ステップ234では、センサ201が、最初にステップ226で送信されたHTTP
GET要求に応答するように送信されるHTTP GET応答で、応答し得る。
【0039】
図10Aは、1つ以上の開示された
実施例が実装され得る、例示的マシンツーマシン(M2M)またはモノのインターネット(IoT)通信システム10の略図である。概して、M2M技術は、IoTのための構成要素を提供し、任意のM2Mデバイス、ゲートウェイ、またはサービスプラットフォームは、IoTの 構成要素ならびにIoTサービス層等であり得る。
【0040】
図10Aに示されるように、M2M/IoT通信システム10は、通信ネットワーク12を含む。通信ネットワーク12は、固定ネットワークまたは無線ネットワーク(例えば、WLAN、セルラー等)、あるいは異種ネットワークのネットワークであり得る。例えば、通信ネットワーク12は、音声、データ、ビデ オ、メッセージング、ブロードキャスト等のコンテンツを複数のユーザに提供する、複数のアクセスネットワークから成り得る。例えば、通信ネットワーク12は、符号分割多重アクセス(CDMA)、時分割多重アクセス(TDMA)、周波数分割多重アクセス(FDMA)、直交FDMA(OFDMA)、単一キャリ アFDMA(SC−FDMA)等の1つ以上のチャネルアクセス方法を採用し得る。さらに、通信ネットワーク12は、例えば、コアネットワーク、インターネット、センサネットワーク、工業制御ネットワーク、パーソナルエリアネットワーク、融合個人ネットワーク、衛星ネットワーク、ホームネットワーク、また は企業ネットワーク等の他のネットワークを備え得る。
【0041】
図10Aに示されるように、M2M/IoT通信システム10は、M2Mゲートウェイデバイス14と、M2M端末デバイス18とを含み得る。任意の数の M2Mゲートウェイデバイス14およびM2M端末デバイス18が、所望に応じてM2M/IoT通信システム10に含まれ得ることが理解されるであろう。M2Mゲートウェイデバイス14およびM2M端末デバイス18の各々は、通信ネットワーク12または直接無線リンクを介して、信号を伝送および受信するよ うに構成される。M2Mゲートウェイデバイス14は、無線M2Mデバイス(例えば、セルラーおよび非セルラー)ならびに固定ネットワークM2Mデバイス(例えば、PLC)が、通信ネットワーク12等のオペレータネットワークを通して、または直接無線リンクを通してのいずれかで、通信することを可能にす る。例えば、M2Mデバイス18は、データを収集し、通信ネットワーク12または直接無線リンクを介して、データをM2Mアプリケーション20またはM2Mデバイス18に送信し得る。M2Mデバイス18はまた、M2Mアプリケーション20またはM2Mデバイス18からデータを受信し得る。さらに、デー タおよび信号は、以下で説明されるように、M2Mサービスプラットフォーム22を介して、M2Mアプリケーション20に送信され、そこから受信され得る。M2Mデバイス18およびゲートウェイ14は、例えば、セルラー、WLAN、WPAN(例えば、Zigbee(登録商標)、6LoWPAN、 Bluetooth(登録商標))、直接無線リンク、および有線を含む、種々のネットワークを介して通信し得る。
【0042】
図示したM2Mサービスプラットフォーム22は、M2Mアプリケーション20、M2Mゲートウェイデバイス14、M2M端末デバイス18、および通信 ネットワーク12のためのサービスを提供する。M2Mサービスプラットフォーム22は、所望に応じて、任意の数のM2Mアプリケーション、M2Mゲートウェイデバイス14、M2M端末デバイス18、および通信ネットワーク12と通信し得ることが理解されるであろう。M2Mサービスプラットフォーム22 は、1つ以上のサーバ、コンピュータ等によって実装され得る。M2Mサービスプラットフォーム22は、M2M端末デバイス18およびM2Mゲートウェイデバイス14の管理および監視等のサービスを提供する。M2Mサービスプラットフォーム22はまた、データを収集し、異なるタイプのM2Mアプリケーション 20と適合性があるようにデータを変換し得る。M2Mサービスプラットフォーム22の機能は、例えば、ウェブサーバとして、セルラーコアネットワークで、クラウドで等、種々の方法で実装され得る。
【0043】
図10Bも参照すると、M2Mサービスプラットフォームは、典型的には、多様なアプリケーションおよび垂直線が活用することができる、サービス配信能力のコアセットを提供する、サービス層26(例えば、ネットワークサービス能力層(NSCL))を実装する。これらのサービス能力は、M2Mアプリケーショ ン20がデバイスと相互作用し、データ収集、データ分析、デバイス管理、セキュリティ、課金、サービス/デバイス発見等の機能を果たすことを可能にする。本質的に、これらのサービス能力は、これらの機能性を実装する負担をアプリケーションから取り除き、したがって、アプリケーション開発を単純化し、市場に出す費用および時間を削減する。 サービス層26はまた、M2Mアプリケーション20が、サービス層26が提供するサービスと関連して、種々のネットワーク12を通して通信することも可能にする。
【0044】
いくつかの
実施例では、M2Mアプリケーション20は、本明細書で議論されるように、組み込み意味命名を伴う感覚データを読み出して通信する、所望のアプリケーションを含み得る。M2Mアプリケーション20は、限定ではないが、輸送、保健および健康、コネクテッドホーム、エネルギー管理、アセット追 跡、ならびにセキュリティおよび監視等の種々の業界でのアプリケーションを含み得る。上記のように、本システムのデバイス、ゲートウェイ、および他のサーバにわたって作動するM2Mサービス層は、例えば、データ収集、デバイス管理、セキュリティ、課金、場所追跡/ジオフェンシング、デバイス/サービス発 見、およびレガシーシステム統合等の機能をサポートし、サービス等のこれらの機能をM2Mアプリケーション20に提供する。
【0045】
図10Cは、例えば、M2M端末デバイス18またはM2Mゲートウェイデバイス14等の例示的M2Mデバイス30の系統図である。
図10Cに示されるように、M2Mデバイス30は、プロセッサ32と、送受信機34と、伝送/受信要素36と、スピーカ/マイクロホン38と、キーパッド40と、ディスプレイ /タッチパッド42と、非取り外し可能メモリ44と、取り外し可能メモリ46と、電源48と、全地球測位システム(GPS)チップセット50と、他の周辺機器52とを含み得る。M2Mデバイス40は、
実施例と一致したままで、先述の要素の任意の副次的組み合わせを含み得ることが理解されるであろう。この デバイスは、感覚データの組み込み意味命名のための開示されたシステムおよび方法を使用する、デバイスであり得る。
【0046】
プロセッサ32は、汎用プロセッサ、特殊用途プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアと関連する1つ以上のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレ イ(FPGA)回路、任意の他のタイプの集積回路(IC)、状態機械等であり得る。プロセッサ32は、信号符号化、データ処理、電力制御、入出力処理、および/またはM2Mデバイス30が無線環境で動作することを可能にする任意の他の機能性を果たし得る。プロセッサ32は、伝送/受信要素36に連結され得 る、送受信機34に連結され得る。
図10Cは、プロセッサ32および送受信機34を別個の構成要素として描写するが、プロセッサ32および送受信機34は、電子パッケージまたはチップにともに組み込まれ得ることが理解されるであろう。プロセッサ32は、アプリケーション層プログラム(例えば、ブラウザ) および/または無線アクセス層(RAN)プログラムおよび/または通信を行い得る。プロセッサ32は、例えば、アクセス層および/またはアプリケーション層等で、認証、セキュリティキー一致、および/または暗号化動作等のセキュリティ動作を行い得る。
【0047】
伝送/受信要素36は、信号をM2Mサービスプラットフォーム22に伝送し、またはM2Mサービスプラットフォーム22から信号を受信するように構成され得る。例えば、
実施例では、伝送/受信要素36は、RF信号を伝送および/または受信するように構成されるアンテナであり得る。伝送/受信要素36 は、WLAN、WPAN、セルラー等の種々のネットワークおよびエアインターフェースをサポートし得る。
実施例では、伝送/受信要素36は、例えば、IR、UV、または可視光信号を伝送および/または受信するように構成されるエミッタ/検出器であり得る。さらに別の
実施例では、伝送/受信要素36 は、RFおよび光信号の両方を伝送および受信するように構成され得る。伝送/受信要素36は、無線または有線信号の任意の組み合わせを伝送および/または受信するように構成され得ることが理解されるであろう。
【0048】
加えて、伝送/受信要素36は、単一の要素として
図10Cで描写されているが、M2Mデバイス30は、任意の数の伝送/受信要素36を含み得る。より具体的には、M2Mデバイス30は、MIMO技術を採用し得る。したがって、
実施例では、M2Mデバイス30は、無線信号を伝送および受信するための2つ またはそれを上回る伝送/受信要素36(例えば、複数のアンテナ)を含み得る。
【0049】
送受信機34は、伝送/受信要素36によって伝送される信号を変調するように、および伝送/受信要素36によって受信される信号を変調するように構成され得る。上記のように、M2Mデバイス30は、マルチモード能力を有し得る。したがって、送受信機34は、M2Mデバイス30が、例えば、UTRAおよび IEEE802.11等の複数のRATを介して通信することを可能にするための複数の送受信機を含み得る。
【0050】
プロセッサ32は、非取り外し可能メモリ44および/または取り外し可能メモリ46等の任意のタイプの好適なメモリから情報にアクセスし、そこにデータを記憶し得る。非取り外し可能メモリ44は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、ハードディスク、または任意の他のタイプ のメモリ記憶デバイスを含み得る。取り外し可能メモリ46は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカード等を含み得る。他の
実施例では、プロセッサ32は、サーバまたはホームコンピュータ上等のM2Mデバイス30上に物理的に位置しないメモリから情 報にアクセスし、そこにデータを記憶し得る。プロセッサ32は、感覚データの組み込み意味命名に応答して、ディスプレイまたはインジケータ42上の照明パターン、画像、テキスト、または色を制御するように構成され得る。
本明細書で説明される
実施例は、成功しているか、または成功し ていないか、あるいは別様
に組み込み意味命名を伴うプロセスステップの状態を示す。
【0051】
プロセッサ32は、電源48から電力を受容し得、M2Mデバイス30内の他の構成要素への電力を分配および/または制御するように構成され得る。電源 48は、M2Mデバイス30に電力供給するための任意の好適なデバイスであり得る。例えば、電源48は、1つ以上の乾電池バッテリ(例えば、ニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、リチウムイオン(Li−ion)等)、太陽電池、燃料電池等を含み得る。
【0052】
プロセッサ32はまた、M2Mデバイス30の現在の場所に関する場所情報(例えば、経度および緯度)を提供するように構成される、GPSチップセット 50に連結され得る。M2Mデバイス30は、実施形態と一致したままで、任意の公的な場所決定方法を介して場所情報を獲得し得ることが理解されるであろう。
【0053】
プロセッサ32はさらに、追加の特徴、機能性、および/または有線あるいは無線接続を提供する、1つ以上のソフトウェアおよび/またはハードウェアモ ジュールを含み得る、他の周辺機器52に連結され得る。例えば、周辺機器52は、加速度計、e−コンパス、衛星送受信機、センサ、デジタルカメラ(写真またはビデオ用)、ユニバーサルシリアルバス(USB)ポート、振動デバイス、テレビ送受信機、ハンズフリーヘッドセット、Bluetooth(登録商標) モジュール、周波数変調(FM)ラジオユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザ等を含み得る。
【0054】
図10Dは、例えば、
図10Aおよび10BのM2Mサービスプラットフォーム22が実装され得る、例示的なコンピュータシステム90のブロック図である。コンピュータシステム90は、コンピュータまたはサーバを備え得、主に、ソフトウェアの形態であり得るコンピュータ読み取り可能な命令によって制御され得、どこでも、またはどのような手段を用いても、そのようなソフトウェアが記憶あるい はアクセスされる。そのようなコンピュータ読み取り可能な命令は、コンピュータシステム90を稼働させるように、中央処理装置(CPU)91内で実行され得る。多くの既知のワークステーション、サーバ、および周辺コンピュータでは、中央処理装置91は、マイクロプロセッサと呼ばれる単一チップCPUによっ て実装される。他の機械では、中央処理装置91は、複数のプロセッサを備え得る。コプロセッサ81は、追加の機能を果たすか、またはCPU91を支援する、主要CPU91とは明確に異なる、随意的なプロセッサである。CPU91および/またはコプロセッサ81は、組み込み意味名を伴う感覚データのクエリ 等の組み込み意味命名のための開示されたシステムおよび方法に関係付けられるデータを受信、生成、および処理し得る。
【0055】
動作中、CPU91は、命令をフェッチ、復号、および実行し、コンピュータの主要データ転送経路であるシステムバス80を介して、情報を他のリソース へ、およびそこから転送する。そのようなシステムバスは、コンピュータシステム90内の構成要素を接続し、データ交換のための媒体を定義する。システムバス80は、典型的には、データを送信するためのデータライン、アドレスを送信するためのアドレスライン、ならびに割り込みを送信するため、およびシステム バスを動作するための制御ラインを含む。そのようなシステムバス80の実施例は、PCI(周辺構成要素相互接続)バスである。
【0056】
システムバス80に連結されるメモリデバイスは、ランダムアクセスメモリ(RAM)82および読み取り専用メモリ(ROM)93を含む。そのようなメモリは、情報が記憶されて読み出しされることを可能にする回路を含む。ROM93は、概して、容易に修正することができない、記憶されたデータを含有する。 RAM82に記憶されたデータは、CPU91または他のハードウェアデバイスによって読み取られ、または変更されることができる。RAM82および/またはROM93へのアクセスは、メモリコントローラ92によって制御され得る。メモリコントローラ92は、命令が実行されると、仮想アドレスを物理的アドレ スに変換する、アドレス変換機能を提供し得る。メモリコントローラ92はまた、システム内のプロセスを分離し、ユーザプロセスからシステムプロセスを分離する、メモリ保護機能を提供し得る。したがって、第1のモードで作動するプログラムは、独自のプロセス仮想アドレス空間によってマップされるメモリのみに アクセスすることができ、プロセス間のメモリ共有が設定されていない限り、別のプロセスの仮想アドレス空間内のメモリにアクセスすることができない。
【0057】
加えて、コンピュータシステム90は、CPU91からプリンタ94、キーボード84、マウス95、およびディスクドライブ85等の周辺機器に命令を伝達する責任がある、周辺機器コントローラ83を含み得る。
【0058】
ディスプレイコントローラ96によって制御されるディスプレイ86は、コンピュータシステム90によって生成される視覚出力を表示するために使用され る。そのような視覚出力は、テキスト、グラフィックス、動画グラフィックス、およびビデオを含み得る。ディスプレイ86は、CRTベースのビデオディスプレイ、LCDベースのフラットパネルディスプレイ、ガスプラズマベースのフラットパネルディスプレイ、またはタッチパネルを伴って実装され得る。ディスプ レイコントローラ96は、ディスプレイ86に送信されるビデオ信号を生成するために必要とされる、電子構成要素を含む。ディスプレイ86は、組み込み意味名を使用して、ファイルまたはフォルダの中の感覚データを表示し得る。例えば、
図3、
図4等に示される形式でのフォルダの名前である。
【0059】
さらに、コンピュータシステム90は、
図10Aおよび10Bのネットワーク12等の外部通信ネットワークにコンピュータシステム90を接続するために使用され得る、ネットワークアダプタ97を含み得る。
【0060】
本明細書で説明されるシステム、方法、およびプロセスのうちのいずれかまたは全ては、命令が、コンピュータ、サーバ、M2M端末デバイス、M2Mゲートウェイデバイス等の機械によって実行されると、本明細書で説明されるシステム、方法、およびプロセスを行うおよび/または実装される、コンピュータ読み取 り可能な記憶媒体上に記憶されたコンピュータ実行可能命令(すなわち、プログラムコード)の形態で具現化され得ることが理解される。具体的には、上記で説明されるステップ、動作、または機能のうちのいずれかは、そのようなコンピュータ実行可能命令の形態で実装され得る。コンピュータ読み取り可能な記憶媒体 は、情報の記憶のための任意の方法または技術で実装される、揮発性および不揮発性、取り外し可能および非取り外し可能媒体の両方を含むが、そのようなコンピュータ読み取り可能な記憶媒体は、信号を含まない。コンピュータ読み取り可能な記憶媒体は、RAM、ROM、EEPROM、フラッシュメモリまたは他の メモリ技術、CDROM、デジタル多用途ディスク(DVD)または他の光学ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置または他の磁気記憶デバイス、あるいは所望の情報を記憶するために使用することができ、コンピュータによってアクセスすることができる任意の他の物理的媒体を含む が、それらに限定されない。
【0061】
図で図示されるような本開示の主題の好ましい
実施例を説明する際に、明確にするために、特定の用語が採用される。しかしながら、請求された主題は、そのように選択された特定の用語に限定されることを目的としておらず、各特定の要素は、類似目的を達成するように同様に動作する、全ての技術的均等物を含む ことを理解されたい。例えば、感覚データのための組み込み意味命名が開示されているが、本明細書の方法のシステムは、任意のデータとともに使用され得る。
【0062】
本明細書は、最良の様態を含む、本発明を開示するために、また、当業者が、任意のデバイスまたはシステムを作製して使用すること、および任意の組み込まれた方法を行うことを含む、本発明を実践することを可能にするために、実施例を使用する。本発明の特許性のある範囲は、請求項によって定義され、当業者に 想起される他の実施例を含み得る。そのような他の実施例は、請求項の文字通りの言葉とは異ならない構造要素を有する場合に、または請求項の文字通りの言葉とのごくわずかな差異を伴う同等の構造要素を含む場合に、請求項の範囲内であることを目的としている。