特許第6144570号(P6144570)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 昭和電工株式会社の特許一覧

特許6144570磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置
<>
  • 特許6144570-磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 図000004
  • 特許6144570-磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 図000005
  • 特許6144570-磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 図000006
  • 特許6144570-磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6144570
(24)【登録日】2017年5月19日
(45)【発行日】2017年6月7日
(54)【発明の名称】磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置
(51)【国際特許分類】
   G11B 5/851 20060101AFI20170529BHJP
   G11B 5/738 20060101ALI20170529BHJP
   G11B 5/65 20060101ALI20170529BHJP
【FI】
   G11B5/851
   G11B5/738
   G11B5/65
【請求項の数】7
【全頁数】19
(21)【出願番号】特願2013-162332(P2013-162332)
(22)【出願日】2013年8月5日
(65)【公開番号】特開2015-32336(P2015-32336A)
(43)【公開日】2015年2月16日
【審査請求日】2016年5月12日
(73)【特許権者】
【識別番号】000002004
【氏名又は名称】昭和電工株式会社
(72)【発明者】
【氏名】井上 健
(72)【発明者】
【氏名】清水 謙治
(72)【発明者】
【氏名】黒川 剛平
(72)【発明者】
【氏名】大橋 栄久
【審査官】 川中 龍太
(56)【参考文献】
【文献】 特開2011−123976(JP,A)
【文献】 特開2004−178753(JP,A)
【文献】 特開2005−216362(JP,A)
【文献】 特開2009−099242(JP,A)
【文献】 特開2006−048904(JP,A)
【文献】 特開2014−160528(JP,A)
【文献】 特開2012−033247(JP,A)
【文献】 特開2011−192319(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/62 − 5/82
G11B 5/84 − 5/858
(57)【特許請求の範囲】
【請求項1】
非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層の配向性を制御する配向制御層を形成する工程と、前記垂直磁性層を形成する工程とを、少なくとも備える磁気記録媒体の製造方法であって、前記配向制御層を形成する工程は、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造層をスパッタリング法で形成する工程を備え、前記垂直磁性層を形成する工程は、磁性粒子と、融点1000℃以下の酸化物とを含むグラニュラー構造層をスパッタリング法により、3Pa以下のスパッタリングガス圧で成膜する工程を備え、前記磁性粒子はCo、Cr、Ptを含むhcp構造であって、前記配向制御層を構成する結晶粒子を含んで厚み方向に連続した柱状晶を形成するように結晶成長させることを特徴とする磁気記録媒体の製造方法。
【請求項2】
前記垂直磁性層が複数のグラニュラー構造層を含み、前記複数のグラニュラー構造層の全てが、磁性粒子と、融点1000℃以下の酸化物とを含む層であることを特徴とする請求項1に記載の磁気記録媒体の製造方法。
【請求項3】
前記磁性粒子と、融点1000℃以下の酸化物とを含む複数のグラニュラー構造層において、各グラニュラー構造層に含まれる融点1000℃以下の酸化物の体積%を、上層ほど高めることを特徴とする請求項1または2に記載の磁気記録媒体の製造方法。
【請求項4】
前記融点1000℃以下の酸化物が、酸化ホウ素であることを特徴とする請求項1〜3の何れか1項に記載の磁気記録媒体の製造方法。
【請求項5】
前記Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造層を、5Pa以下のスパッタリングガス圧で成膜することを特徴とする請求項1〜4の何れか1項に記載の磁気記録媒体の製造方法。
【請求項6】
非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層の配向性を制御する配向制御層と、前記垂直磁性層を、少なくとも備える磁気記録媒体であって、前記配向制御層は、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物を含むグラニュラー構造層を備え、前記垂直磁性層は、磁性粒子と、融点1000℃以下の酸化物を含むグラニュラー構造層を備え、前記磁性粒子は前記配向制御層を構成する結晶粒子を含んで厚み方向に連続した柱状晶であり、前記磁気記録媒体の表面は原子間力顕微鏡で測定した表面粗さ(Ra)が2オングストローム以下であることを特徴とする磁気記録媒体。
【請求項7】
請求項に記載の磁気記録媒体と、前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置に関するものである。
【背景技術】
【0002】
磁気記録再生装置の一種であるハードディスク装置(HDD)は、現在その記録密度が年率50%以上増えており、今後も増加傾向が続くと言われている。それに伴って高記録密度化に適した磁気ヘッド及び磁気記録媒体の開発が進められている。
【0003】
現在市販されている磁気記録再生装置には、磁気記録媒体として、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体が搭載されている。垂直磁気記録媒体は、高記録密度化した際にも記録ビット間の境界領域における反磁界の影響が小さく、鮮明なビット境界が形成されるため、ノイズの増加が抑えられる。しかも、垂直磁気記録媒体は、高記録密度化に伴う記録ビット体積の減少が少なくて済むため、熱揺らぎ特性優れている。
【0004】
また、磁気記録媒体の更なる高記録密度化という要望に応えるべく、垂直磁性層に対する書き込み能力に優れた単磁極ヘッドを用いることが検討されている。具体的には、記録層である垂直磁性層と非磁性基板との間に、裏打ち層と称される軟磁性材料からなる層を設けることにより、単磁極ヘッドと磁気記録媒体との間の磁束の出入りの効率を向上させた磁気記録媒体が提案されている。
【0005】
また、垂直磁気記録媒体の記録再生特性、熱揺らぎ特性を向上させるために、配向制御層を用い、多層の磁性層を形成して、それぞれの磁性層の結晶粒子を連続した柱状晶とし、これにより磁性層の垂直配向性を高めることが提案されている(例えば、特許文献1参照)。
【0006】
また、特許文献2には、基板上に予め結晶配向促進層を設け、スパッタガス圧力を10Pa以上として結晶配向促進層を介して、垂直磁気異方性薄膜をスパッタ堆積する方法が記載されている。
【0007】
また、配向制御層としてRuを用いることが提案されている(例えば、特許文献3参照)。Ruは、柱状晶の頂部にドーム状の凸部が形成されるものであることが知られている。このため、Ruからなる凸部状の配向制御層上に磁性層等の結晶粒子を成長させて、成長した結晶粒子の分離構造を促進し、結晶粒子を孤立化させることで、磁性粒子を柱状に成長させる効果が得られる。
【0008】
また、基板上に、低圧アルゴン雰囲気(0.6Pa)で成膜されたルテニウム含有層と、高圧アルゴン雰囲気(10Pa)で成膜されたルテニウム含有層と、垂直磁性層とが順に形成された磁気記録媒体が知られている(特許文献4参照)。低スパッタ圧で形成したRu層の上に、高スパッタ圧でRu層を形成することにより、Ru層の配向性を高めることができ、その上に成長する垂直磁性層の配向性を高めるとともに磁性粒子を微細化できる。
【0009】
また、特許文献5には、低ガス圧で形成したRu層の上に、高ガス圧でRu層を形成し、高ガス圧で形成したRu層にCoと酸素を含有することで、高ガス圧で形成したRu層の結晶粒子を微細化することが記載されている。
また、特許文献5には、グラニュラー層に含まれる酸化物としてBが例示されている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2004−310910号公報
【特許文献2】特開平7−244831号公報
【特許文献3】特開2007−272990号公報
【特許文献4】特開2002−197630号公報
【特許文献5】特開2009−238299号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、磁気記録媒体の記録密度を高めるために、低ガス圧でスパッタリングして形成したRu層の上に、高ガス圧でスパッタリングして形成したRu層を形成する2段成膜を行って、微細な結晶粒子を有する配向制御層を形成し、配向制御層の上に形成される垂直磁性層の柱状構造の磁性粒子を微細化する場合、以下に示す課題があった。
【0012】
すなわち、高ガス圧でスパッタリングを行うと、スパッタ粒子の平均自由行程が短くなり、エネルギーが低下することと、成長結晶内にガス分子が混入し易くなることとによって、形成されるRu層の結晶性および膜密度が低下する。このため、高ガス圧でスパッタリングを行って、硬度の高いRu層を形成することは困難であった。
【0013】
硬度の高いRu層を形成するために、高ガス圧でのスパッタリングを行わないことも考えられる。しかし、高ガス圧でのスパッタリングを行わないと、配向制御層を構成する柱状結晶の頂部にドーム状の凸部が形成されにくくなる。したがって、配向制御層の上に成長される垂直磁性層の結晶粒子を分離して、垂直磁性層の磁性粒子を微細化する効果が得られにくくなる。
【0014】
このため、従来、2段成膜を用いて配向制御層を形成する場合には、配向制御層を構成する柱状結晶の頂部にドーム状の凸部を形成するために、Ru層の硬度を犠牲にして、高ガス圧でのスパッタリングを行っていた。その結果、2段成膜を用いて形成された配向制御層を備える磁気記録媒体は、表面の硬度が不十分であり、磁気記録媒体の表面に傷が付きやすく、十分な信頼性が得られなかった。
【0015】
また、配向制御層のドーム状の凸部に起因する凸形状は、垂直磁性層の表面に引き継がれ、垂直磁性層の表面に形成される保護層に引き継がれる。高ガス圧でのスパッタリングによって形成されたRu層は、表面の凹凸が大きいものとなる。このため、高ガス圧でのスパッタリングによって形成されたRu層を有する配向制御層を備える磁気記録媒体は、表面の粗度が高いものとなる。磁気記録媒体の表面の粗度が高いと、磁気ヘッドの浮上高さを今まで以上に低減し、高記録密度化に対応可能なものとする際の障害となる。
【0016】
以上のことにより、従来の技術では、垂直磁性層の柱状構造の磁性粒子を微細化することにより記録密度を高めることができ、しかも、高硬度で表面粗度が低い配向制御層を形成することにより、表面の傷付き耐性に優れ、より高い信頼性が得られるとともに、より一層の高記録密度化に対応可能な磁気記録媒体を製造できる製造方法が要求されている。
【0017】
本発明は、上記事情に鑑みて提案されたものであり、高い信頼性が得られ、更なる高記録密度化を可能とした磁気記録媒体の製造方法を提供することを課題とする。
【0018】
また、本発明は、本発明の磁気記録媒体の製造方法を用いて製造された高い信頼性を有し、記録密度の高い磁気記録媒体を備える磁気記録再生装置を提供することを目的とする。
【課題を解決するための手段】
【0019】
本発明者は、上記課題を解決するために、スパッタリング法により、配向制御層を形成するための条件について、鋭意検討を行った。その結果、配向制御層を、Ru又はRuを主成分とする材料からなるグラニュラー構造を有するものとし、グラニュラー構造を形成する材料として、融点が1000℃以下の酸化物を含むもの用いることで、以下に示すように、配向制御層の柱状構造を微細化でき、しかも、磁気記録媒体の表面を原子間力顕微鏡(Atomic Force Microscope;AFM)で測定した場合の表面粗さ(Ra)が3オングストローム以下となる表面粗度の低い配向制御層が得られることを見出した。
【0020】
すなわち、本発明者が検討した結果、スパッタリング法により、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造を有するグラニュラー層を形成した場合、融点1000℃以下の酸化物がRuの周囲を取り囲みやすいものであるため、Ru粒子の偏析構造が得られやすいことが分かった。このため、上記のグラニュラー層を好ましくは5Pa以下の低いスパッタリング圧でスパッタリング法により形成しても、Ru又はRuを主成分とする粒子の偏析構造が促進されて、結晶粒子が分離されたものとなりやすく、微細な結晶粒が得られることを見出した。
【0021】
またその上に形成する垂直磁性層についても融点が1000℃以下の酸化物を含むグラニュラー構造とすることで、磁気記録媒体の表面粗さ(Ra)を2オングストローム以下にまで低減できることを見出した。すなわち、スパッタリング法により、磁性粒子と、その粒子の周りを囲む融点1000℃以下の酸化物によるグラニュラー層を形成した場合、融点1000℃以下の酸化物が磁性粒子の周囲を取り囲みやすいものであるため、磁性粒子の偏析構造が得られやすいことが分かった。このため、上記のグラニュラー構造の磁性層(以下、グラニュラー構造層と記載する場合がある。)を好ましくは3Pa以下の低いガス圧でスパッタリング法により形成しても、磁性粒子の偏析構造が促進されて、磁性粒子が分離されたものとなりやすく、微細な磁性粒子、およびこれを含む平坦性の高い垂直磁性層が得られることを見出した。
【0022】
本発明は、以下の手段を提供する。
(1)非磁性基板の上に、直上の層の配向性を制御する配向制御層を形成する工程と、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層を形成する工程とを、少なくとも備える磁気記録媒体の製造方法であって、前記配向制御層を形成する工程は、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造層をスパッタリング法で形成する工程を備え、前記垂直磁性層を形成する工程は、磁性粒子と、融点1000℃以下の酸化物とを含むグラニュラー構造層をスパッタリング法で形成する工程を備え、前記磁性粒子は前記配向制御層を構成する結晶粒子を含んで厚み方向に連続した柱状晶を形成するように結晶成長させることを特徴とする磁気記録媒体の製造方法。
【0023】
(2)前記垂直磁性層が複数のグラニュラー構造層を含み、前記複数のグラニュラー構造層の全てが、磁性粒子と、融点1000℃以下の酸化物とを含む層であることを特徴とする(1)に記載の磁気記録媒体の製造方法。
【0024】
(3)前記磁性粒子と、融点1000℃以下の酸化物とを含む複数のグラニュラー構造層において、各グラニュラー構造層に含まれる融点1000℃以下の酸化物の体積%を、上層ほど高めることを特徴とする(1)または(2)に記載の磁気記録媒体の製造方法。
(4)前記融点1000℃以下の酸化物が、酸化ホウ素であることを特徴とする(1)〜(3)の何れか1項に記載の磁気記録媒体の製造方法。
【0025】
(5)前記Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造層を、5Pa以下のスパッタリングガス圧で成膜することを特徴とする(1)〜(4)の何れか1項に記載の磁気記録媒体の製造方法。
【0026】
(6)前記磁性粒子と、融点1000℃以下の酸化物とを含むグラニュラー構造層を、3Pa以下のスパッタリングガス圧で成膜することを特徴とする(1)〜(5)の何れか1項に記載の磁気記録媒体の製造方法。
【0027】
(7)非磁性基板の上に、直上の層の配向性を制御する配向制御層と、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層を、少なくとも備える磁気記録媒体であって、前記配向制御層は、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物を含むグラニュラー構造層を備え、前記垂直磁性層は、磁性粒子と、融点1000℃以下の酸化物を含むグラニュラー構造層を備え、前記磁性粒子は前記配向制御層を構成する結晶粒子を含んで厚み方向に連続した柱状晶であり、前記磁気記録媒体の表面は原子間力顕微鏡で測定した表面粗さ(Ra)が2オングストローム以下であることを特徴とする磁気記録媒体。
(8)(7)に記載の磁気記録媒体と、前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
【発明の効果】
【0028】
本発明の磁気記録媒体の製造方法は、配向制御層および配向制御層の上に成長される垂直磁性層の柱状構造の磁性粒子を微細化することができ、高密度記録に適した、信号/ノイズ比(SNR)が得られる磁気記録媒体が得られる。
【0029】
また、本発明の磁気記録媒体の製造方法は、低いスパッタリング圧でグラニュラー層を形成し、硬度の高い配向制御層、垂直磁性層を得ることができる。したがって、本発明の磁気記録媒体の製造方法によれば、表面の傷付き耐性に優れ、高い信頼性の得られる磁気記録媒体を製造できる。
【0030】
加えて、本発明の磁気記録媒体の製造方法では、低いスパッタリング圧でグラニュラー層を形成することにより、粗さの低減された配向制御層、垂直磁性層を得ることができる。したがって、表面を原子間力顕微鏡で測定した表面粗さ(Ra)が2オングストローム以下である平滑な表面を有する磁気記録媒体を製造できる。
【0031】
よって、本発明の磁気記録媒体の製造方法により製造された磁気記録媒体と、前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えた磁気記録再生装置は、更なる高記録密度化を可能とした信頼性の優れたものとなる。
【図面の簡単な説明】
【0032】
図1図1は、本発明を適用して製造される磁気記録媒体の一例を示したものである。
図2図2は、配向制御層と垂直磁性層との積層構造を説明するための拡大模式図であり、各層の柱状晶が基板面に対して垂直に成長した状態を示す断面図である。
図3図3は、垂直磁性層を構成する磁性層と非磁性層との積層構造を拡大して示した断面図である。
図4図4は、本発明を適用した磁気記録再生装置の一例を示すものである。
【発明を実施するための形態】
【0033】
以下、本発明の1つの実施形態における、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置について、図面を参照して詳細に説明する。なお、以下の説明で用いる図面は、本発明をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
【0034】
(磁気記録媒体)
以下、本発明の磁気記録媒体の一例として、図1に示す磁気記録媒体を例に挙げて説明する。
図1は、本発明の磁気記録媒体の製造方法を適用して製造される磁気記録媒体の一例を示したものである。図1に示す磁気記録媒体は、非磁性基板1の上に、軟磁性下地層2と、直上の層の配向性を制御する配向制御層3と、非磁性下地層8と、磁化容易軸が非磁性基板1に対して主に垂直に配向した垂直磁性層4と、保護層5と、潤滑層6とが順次積層された構造を有している。
【0035】
本願発明の磁気記録媒体は、表面を原子間力顕微鏡(AFM)で測定した表面粗さ(Ra)が2オングストローム以下のものであり、この表面粗さは平滑であるほど好ましい。本実施形態の磁気記録媒体は、表面の表面粗さ(Ra)が、2オングストローム以下であるため、磁気ヘッドと垂直磁性層との距離を低減でき、高密度記録に適した信号/ノイズ比(SNR)が得られる。なお、本願発明では磁気記録媒体の表面粗さを原子間力顕微鏡で測定するが、磁気記録媒体の最表面の潤滑層を除去して測定しても良い。
【0036】
「非磁性基板」
非磁性基板1としては、アルミニウムやアルミニウム合金などの金属材料からなる金属基板を用いてもよいし、ガラスや、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。また、非磁性基板1としては、これら金属基板や非金属基板の表面に、例えばメッキ法やスパッタ法などを用いて、NiP層又はNiP合金層が形成されたものを用いてもよい。
【0037】
ガラス基板としては、例えば、アモルファスガラスや結晶化ガラスなどを用いることができる。アモルファスガラスとしては、例えば、汎用のソーダライムガラスや、アルミノシリケートガラスなどを用いることができる。結晶化ガラスとしては、例えば、リチウム系結晶化ガラスなどを用いることができる。
【0038】
セラミック基板としては、例えば、汎用の酸化アルミニウムや、窒化アルミニウム、窒化珪素などを主成分とする焼結体、又はこれらの繊維強化物などを用いることができる。
【0039】
非磁性基板1は、平均表面粗さ(Ra)が2nm(20Å)以下、好ましくは1nm以下のものであることが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。
【0040】
また、非磁性基板1は、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下)であることが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。なお、微少うねり(Wa)は、例えば、表面荒粗さ測定装置P−12(KLM−Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。
【0041】
また、非磁性基板1としては、端面のチャンファー部の面取り部と側面部との少なくとも一方の表面平均粗さ(Ra)が10nm以下(より好ましくは9.5nm以下)のものを用いることが、磁気ヘッドの飛行安定性にとって好ましい。
【0042】
非磁性基板1は、Co又はFeが主成分となる軟磁性下地層2と接することで、表面の吸着ガスや、水分の影響、基板成分の拡散などにより、腐食が進行する可能性がある。非磁性基板1と軟磁性下地層2の間に密着層を設けることにより、これらを抑制できる。密着層の材料としては、例えば、Cr、Cr合金、Ti、Ti合金などを適宜選択できる。密着層の厚みは、2nm(30Å)以上であることが好ましい。
【0043】
「軟磁性下地層」
非磁性基板の上には、軟磁性下地層2が形成されている。軟磁性下地層2は、磁気ヘッドから発生する磁束の基板面に対する垂直方向成分を大きくするとともに、情報が記録される垂直磁性層4の磁化の方向をより強固に非磁性基板1と垂直な方向に固定するために設けられている。この作用は、特に記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。
【0044】
軟磁性下地層2としては、例えば、Feや、Ni、Coなどを含む軟磁性材料を用いることができる。具体的な軟磁性材料としては、例えば、CoFe系合金(CoFeTaZr、CoFeZrNbなど)、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlOなど)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど)、FeTa系合金(FeTa、FeTaC、FeTaNなど)、FeMg系合金(FeMgOなど)、FeZr系合金(FeZrNなど)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB系合金などを挙げることができる。
【0045】
軟磁性下地層2としては、Feを60at%(原子%)以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、又は微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いることができる。
【0046】
その他にも、軟磁性下地層2としては、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。アモルファス構造を有するCo合金としては、例えば、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金などを好適なものとして挙げることができる。
【0047】
軟磁性下地層2の保磁力Hcは、100(Oe)以下(好ましくは20(Oe)以下)とすることが好ましい。なお、1Oeは79A/mである。軟磁性下地層2の保磁力Hcが上記範囲を超えると、軟磁気特性が不十分となり、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。
【0048】
軟磁性下地層2の飽和磁束密度Bsは、0.6T以上(好ましくは1T以上)とすることが好ましい。軟磁性下地層2のBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。
【0049】
また、軟磁性下地層2の飽和磁束密度Bs(T)と軟磁性下地層2の層厚t(nm)との積Bs・t(T・nm)は、15(T・nm)以上(好ましくは25(T・nm)以上)であることが好ましい。軟磁性下地層2のBs・tが上記範囲未満であると、再生波形が歪みを持つようになり、OW(OverWrite)特性(記録特性)が悪化するため好ましくない。
【0050】
軟磁性下地層2は、2層の軟磁性膜から構成されていることが好ましく、2層の軟磁性膜の間にはRu膜が設けられていることが好ましい。Ru膜の膜厚を0.4〜1.0nm、又は1.6〜2.6nmの範囲で調整することで、2層の軟磁性膜をAFC(反強磁性結合)構造とすることができる。軟磁性下地層2が、このようなAFC構造を採用したものである場合、いわゆるスパイクノイズを抑制できる。
【0051】
軟磁性下地層2の最表面(配向制御層3側の面)は、磁性下地層2を構成する材料が、部分的又は完全に酸化されているものであることが好ましい。具体的には例えば、軟磁性下地層2の表面(配向制御層3側の面)及びその近傍に、軟磁性下地層2を構成する材料を部分的に酸化してなるもの、若しくは上記材料の酸化物を形成してなるものが配置されていることが好ましい。これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができ、磁気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善することができる。
【0052】
軟磁性下地層2と配向制御層3との間には、シード層が設けられていてもよい。シード層は、配向制御層3の結晶粒径を制御するものである。シード層に用いられる材料は、NiW合金を用いることができる。その他、シード層として、fcc構造を有する層等を用いることができ、具体的には、Ni、Cu、Rh、Pd、Ag、Ir、Pt、Au、Alを含む層が例示できる。
【0053】
「配向制御層」
軟磁性下地層2の上には、垂直磁性層4の配向性を制御する配向制御層3が形成されている。配向制御層3は、垂直磁性層4の結晶粒を微細化し、記録再生特性を改善するものである。
【0054】
配向制御層3は、垂直磁性層4の磁性粒子を微細化するために、図1に示すように、軟磁性下地層2の上に形成された低ガス圧層3aと、低ガス圧層3a上に形成された高ガス圧層(グラニュラー層)3bとからなるものであることが好ましい。
低ガス圧層3aは、配向制御層3の核発生密度を高めるためのものである。
【0055】
低ガス圧層3aは、Ru又はRuを主成分とする材料からなるものである。低ガス圧層3aを構成するRuを主成分とする材料としては、Ru系合金が挙げられる。
【0056】
本実施形態においては、低ガス圧層3aがRu又はRuを主成分とする材料からなるものであるので、低ガス圧層3aを構成する柱状晶の頂部にドーム状の凸部が形成される。よって、低ガス圧層3a上に、高ガス圧層3bおよび垂直磁性層4を順に形成することで、低ガス圧層3aのドーム状の凸部上に、高ガス圧層3bおよび垂直磁性層4の結晶粒子を成長させることができる。したがって、本実施形態の配向制御層3は、垂直磁性層4の結晶粒子の分離を促進し、結晶粒子を孤立化させて柱状に成長させることができる優れた配向性を有するものとなる。
【0057】
低ガス圧層3aは、層厚8nm〜12nmの範囲内のものであることが好ましい。低ガス圧層3aの層厚が8nm〜12nmの範囲内である場合、記録時における磁気ヘッドと軟磁性下地層2との距離が小さいものとなり、再生信号の分解能を低下させることなく記録再生特性を高めることができる。
【0058】
低ガス圧層3aの層厚が上記範囲未満であると、垂直磁性層4の配向性を高め、垂直磁性層4を構成する磁性粒子42を微細化する効果が不十分となり、良好なS/N比が得られない場合がある。また、低ガス圧層3aの層厚が上記範囲を超えると、記録時における磁気ヘッドと軟磁性下地層2との距離が大きくなり、磁気ヘッドと軟磁性下地層2との磁気結合が弱まり高密度記録に適さない記録特性(OW)となる恐れがある。
【0059】
高ガス圧層3bは、Ru又はRuを主成分とする材料と、融点1000℃以下の酸化物とを含むグラニュラー構造を有するものである。このような高ガス圧層3bは、従来はRu系合金を用いて、スパッタリングガス圧を8Pa以上として成膜していたが、本願発明では5Pa以下、より好ましくは1〜4Paの範囲内の低い圧力でスパッタリング法により形成しても、結晶粒子が分離されたものとなり、その上に成長される垂直磁性層4の柱状構造の磁性粒子を微細化できるものとなる。
【0060】
高ガス圧層3bに含まれる融点1000℃以下の酸化物としては、In、TeO、Sb、Bなどが挙げられ、特に融点が著しく低いため、B(酸化ホウ素)であることが好ましい。高ガス圧層3bに含まれる酸化物は、全体としての融点が1000℃以下であれば、2種類以上の酸化物からなる混合物であっても良く、例えば、In、TeO、Sb、Bなどの融点1000℃以下の酸化物と、SiO、TiO、Cr、Ta、Nbなどの融点1000℃超えの酸化物との混合物であっても良い。表1は、高ガス圧層の材料として使用される酸化物の融点を示したものである。
【0061】
【表1】
【0062】
また、高ガス圧層3bを構成するRuを主成分とする材料としては、Ru系合金が挙げられる。
【0063】
高ガス圧層3bは、融点1000℃以下の酸化物を合計で2体積%〜35体積%の範囲内、より好ましくは15体積%〜30体積%の範囲内で含むものであることが好ましい。高ガス圧層3bが融点1000℃以下の酸化物を合計で2体積%〜35体積%の範囲内、より好ましくは15体積%〜30体積%の範囲内で含むものである場合、より優れた配向性を有する配向制御層3となる。
【0064】
高ガス圧層3b中の融点1000℃以下の酸化物の含有量が上記範囲を超える場合、高ガス圧層3b中の金属粒子中に酸化物が残留し、金属粒子の結晶性及び配向性を損ねるほか、配向制御層3上に形成された垂直磁性層4の結晶性及び配向性を損ねるおそれがあるため好ましくない。また、高ガス圧層3b中の融点1000℃以下の酸化物の含有量が上記範囲未満である場合、高ガス圧層3b中に融点1000℃以下の酸化物を含有させることによる結晶粒子の分離効果が十分に得られない恐れがあるため好ましくない。
ここで、本実施形態の磁気記録媒体において、配向制御層3を構成する結晶粒子と垂直磁性層4を構成する磁性粒子との関係について図面を用いて説明する。
【0065】
図2は、配向制御層3と垂直磁性層4との積層構造を説明するための拡大模式図であり、各層の柱状晶が基板面に対して垂直に成長した状態を示す断面図である。なお、図2においては、配向制御層3を構成する低ガス圧層3aおよび高ガス圧層3bと垂直磁性層4以外の部材の記載を省略して示している。
【0066】
図2に示すように、低ガス圧層3a上には、低ガス圧層3aを構成する柱状晶S1の頂部をドーム状の凸とする凹凸面S1aが形成されている。低ガス圧層3aの凹凸面S1a上には、凹凸面S1aから厚み方向に高ガス圧層3bを構成する結晶粒子が柱状晶S2となって成長している。なお、高ガス圧層3bは、グラニュラー構造を有するものであるので、高ガス圧層3bを構成する柱状晶S2の周囲には酸化物15(例えば、酸化ホウ素。)が形成されている。そして、高ガス圧層3bを構成する柱状晶S2の上には、垂直磁性層4の結晶粒子が柱状晶S3となって厚み方向に成長し、またその柱状晶S3の周囲には酸化物15(例えば、酸化ホウ素。)が形成されている。
【0067】
このように、本実施形態の磁気記録媒体においては、低ガス圧層3aの柱状晶S1上に高ガス圧層3bの柱状晶S2と垂直磁性層4の柱状晶S3とが連続した柱状晶となってエピタキシャル成長する。なお、本実施形態においては、垂直磁性層4を多層化してもよく、この場合は、垂直磁性層4の各層を構成する結晶粒子は、配向制御層3から最上層の垂直磁性層4に至るまで連続した柱状晶となってエピタキシャル成長を繰り返す。したがって、本実施形態においては、低ガス圧層3aを構成する結晶粒子を微細化し、柱状晶S1を高密度化することで、柱状晶S1の頂部から厚み方向に柱状に成長する高ガス圧層3bの柱状晶S2および垂直磁性層4の柱状晶S3も高密度化される。
【0068】
「非磁性下地層」
本実施形態の磁気記録媒体においては、配向制御層3と垂直磁性層4の間に、非磁性下地層8が設けられている。なお、配向制御層3と垂直磁性層4の間には、非磁性下地層8が設けられていることが好ましいが、非磁性下地層8が設けられていなくてもよい。配向制御層3直上の垂直磁性層4の初期部には、結晶成長の乱れが生じやすく、これがノイズの原因となる。非磁性下地層8を設けることで、ノイズの発生を抑制できる。
【0069】
本実施形態の非磁性下地層8は、配向制御層3の低ガス圧層3aおよび高ガス圧層3bの柱状晶と連続した柱状晶として、エピタキシャル成長されたものである。
【0070】
非磁性下地層8の厚みは、0.2nm以上3nm以下であることが好ましい。非磁性下地層8の厚さが3nmを超えると、Hc及びHnの低下が生じるために好ましくない。
【0071】
非磁性下地層8は、Crと酸化物とを含んだ材料からなるものであることが好ましい。Crの含有量は、25at%(原子%)以上50at%以下とすることが好ましい。酸化物としては、例えばIn、Te、Sb、B、Cr、Si、Ta、Al、Ti、Mg、Coなどの酸化物を用いることが好ましく、その中でも特に、In、TeO、Sb、Bを、最も好ましくは、Bを用いることができる。酸化物の含有量としては、2体積%〜35体積%の範囲内、より好ましくは15体積%〜30体積%の範囲内とするのが好ましい。非磁性下地層8の中の酸化物の含有量として上記範囲が好ましいのは、非磁性下地層8を形成した際に非磁性粒子の周りに酸化物が析出し、非磁性粒子の孤立化及び微細化、また成長面の平坦化が可能となるためである。
【0072】
「垂直磁性層」
非磁性下地層8の上には、垂直磁性層4が形成されている。図1に示すように、垂直磁性層4は、非磁性基板1側から、下層の磁性層4aと、中層の磁性層4bと、上層の磁性層4cとの3層を含むものである。本実施形態の磁気記録媒体では、磁性層4aと磁性層4bとの間に下層の非磁性層7aを含み、磁性層4bと磁性層4cとの間に上層の非磁性層7bを含むことで、これら磁性層4a〜4cと非磁性層7a,7bとが交互に積層された構造を有している。
【0073】
各磁性層4a〜4c及び非磁性層7a,7bを構成する結晶粒子は、配向制御層3を構成する結晶粒子と共に、厚み方向に連続した柱状晶を形成している。垂直磁性層4(磁性層4a〜4cおよび非磁性層7a,7b)は、配向制御層3の低ガス圧層3aおよび高ガス圧層3bの柱状晶と連続した柱状晶として、非磁性下地層8上にエピタキシャル成長されたものである。
【0074】
非磁性層7a、7bとしては、特に限定されないが、例えば、Ru又はRu合金からなるものが挙げられ、Ru合金としては、例えば、RuCoがある。特に、非磁性層7a、7bの層厚を0.6nm以上1.2nm以下の範囲とすることで、磁性層4a,4b,4cをAFC結合(反強磁性交換結合)させることができる。また、本発明においては、各磁性層4a,4b,4cをFC結合(強磁性交換結合)で静磁結合させても良い。
【0075】
図3は、垂直磁性層を構成する磁性層と非磁性層との積層構造を拡大して示した断面図である。図3に示すように、垂直磁性層4(4a、4b、4c)を構成する磁性層4a、4bは、グラニュラー構造の磁性層であり、Co、Cr、Ptを含む磁性粒子(磁性を有した結晶粒子)42と、酸化物41とを含むものであることが好ましい。また、垂直磁性層4を構成する磁性層4cはグラニュラー構造ではない磁性層(非グラニュラ磁性層)である。
【0076】
本願発明では、垂直磁性層4を複数のグラニュラー構造層(4a、4b)を含む構成とし、この複数のグラニュラー構造層(4a、4b)の全てを、磁性粒子42と、融点1000℃以下の酸化物41とを含む層とするのが好ましい。これにより、配向制御層で得られた成長表面の平滑性がそのまま垂直磁性層に引き継がれて維持され、また、磁性粒子の偏析構造が促進されて、磁性粒子が分離されたものとなりやすく、微細な磁性粒子、およびこれを含む、配向制御層より平坦性の高い成長表面を有する垂直磁性層が得られる。
【0077】
酸化物41は、融点1000℃以下の酸化物であり、具体的には、In、TeO、Sb、Bなどが挙げられ、特に融点が著しく低いため、Bであることが好ましい。磁性層4a、4bに含まれる酸化物は、全体としての融点が1000℃以下であれば、2種類以上の酸化物からなる混合物であっても良く、例えば、In、TeO、Sb、Bなどの融点1000℃以下の酸化物と、SiO、TiO、Cr、Ta、Nbなどの融点1000℃超えの酸化物との混合物であっても良い。
【0078】
磁性粒子42は、磁性層4a、4b中に分散していることが好ましい。磁性粒子42は、磁性層4a,4b、更には磁性層4cを上下に貫いた柱状構造を形成していることが好ましい。このような構造を有することにより、磁性層4a、4b、4cの配向及び結晶性が良好なものとなり、結果として高密度記録に適した信号/ノイズ比(S/N比)が得られる。
【0079】
磁性層4a、4bに含まれる酸化物41の含有量は、2体積%〜35体積%の範囲内、より好ましくは15体積%〜30体積%の範囲内であることが好ましい。磁性層4a、4b中の酸化物41の含有量として上記範囲が好ましいのは、磁性層4a、4bを形成した際に磁性粒子42の周りに酸化物41が析出し、磁性粒子42の孤立化及び微細化、また成長面の平坦化が可能となるためである。
【0080】
一方、酸化物41の含有量が上記範囲を超えた場合には、酸化物41が磁性粒子42中に残留し、磁性粒子42の配向性及び結晶性を損ねたり、磁性粒子42の上下に酸化物41が析出して、磁性粒子42が磁性層4a〜4cを上下に貫いてなる柱状構造が形成されなくなったりする恐れが生じるため好ましくない。また、酸化物41の含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなる場合があるため好ましくない。
【0081】
また本願発明では、磁性層4a、4bに含まれる酸化物41の含有量を、上層ほど、すなわち、磁性層4aに対して磁性層4bにおける含有量を高めるのが好ましい。このような構成を採用することで、本願発明の磁性層表面の平坦化効果を上層ほど高めていくことが可能となる。
【0082】
磁性層4a、4b中のCrの含有量は、4at%以上19at%以下(さらに好ましくは6at%以上17at%以下)であることが好ましい。磁性層4a、4b中のCrの含有量を上記範囲とした場合、磁性粒子42の磁気異方性定数Kuを下げ過ぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られる。
【0083】
一方、磁性層4a、4b中のCrの含有量が上記範囲を超えた場合、磁性粒子42の磁気異方性定数Kuが小さくなるため、熱揺らぎ特性が悪化し、また、磁性粒子42の結晶性及び配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Crの含有量が上記範囲未満である場合には、磁性粒子42の磁気異方性定数Kuが高くなるため、垂直保磁力が高くなり過ぎて、データを記録する際に磁気ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。
【0084】
磁性層4a、4b中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量が8at%未満であると、高密度記録に適した熱揺らぎ特性を得るために垂直磁性層4に必要な磁気異方性定数Kuが得られないため好ましくない。Ptの含有量が20at%を超えると、磁性粒子42の内部に積層欠陥が生じ、その結果、磁気異方性定数Kuが低くなる。また、Ptの含有量が上記範囲を超えた場合、磁性粒子42中にfcc構造の層が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。したがって、高密度記録に適した熱揺らぎ特性及び記録再生特性を得るためには、磁性層4a中Ptの含有量を上記範囲とすることが好ましい。
【0085】
磁性層4a、4bの磁性粒子42には、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素が含まれていてもよい。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。
【0086】
また、磁性粒子42中に含まれるCo、Cr、Ptの他の上記元素の合計の含有量は、8at%以下であることが好ましい。上記元素の合計の含有量が8at%を超えると、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性及び熱揺らぎ特性が得られないため好ましくない。
【0087】
磁性層4a、4bに適した材料としては、例えば、80(Co14Cr18Pt)−20(B){Cr含有量14at%、Pt含有量18at%、残部Coからなる磁性粒子が80体積%、Bが20体積%。以下同じ。}、75(Co8Cr14Pt4Nb)−25(B)の他、(CoCrPtMo)−(B)、(CoCrPtW)−(B)、(CoCrPtB)−(B)、(CoCrPtTaNd)−(B)、(CoCrPtBCu)−(B)、(CoCrPtRu)−(B)などの組成物を挙げることができる。
【0088】
磁性層4a、4bは、磁性粒子と、融点1000℃以下の酸化物とを含むグラニュラー構造を有するものである。このような磁性層4a、4bは、スパッタリングガス圧を3Pa以下、より好ましくは0.5〜2Paの範囲内の低い圧力でスパッタリング法により形成しても、結晶粒子が分離されたものとなり、また磁性粒子は微細化し、その成長面も平坦化したものとなる。
【0089】
垂直磁性層4を構成する磁性層4cは、図3に示すように、Co、Crを含む磁性粒子(磁性を有した結晶粒子)42を含み、酸化物41を含まないものであることが好ましい。磁性層4c中の磁性粒子42は、磁性層4a中の磁性粒子42から柱状にエピタキシャル成長しているものであることが好ましい。この場合、磁性層4a〜4cの磁性粒子42が、各層において1対1に対応して、柱状にエピタキシャル成長することが好ましい。また、磁性層4bの磁性粒子42が磁性層4a中の磁性粒子42からエピタキシャル成長していることで、磁性層4cの磁性粒子42が微細化され、さらに結晶性及び配向性が向上したものとなる。
【0090】
磁性層4c中のCrの含有量は、10at%以上24at%以下であることが好ましい。Crの含有量を上記範囲とすることで、データの再生時における出力を十分確保でき、更に良好な熱揺らぎ特性を得ることができる。一方、Crの含有量が上記範囲を超える場合、磁性層4cの磁化が小さくなり過ぎるため好ましくない。また、Cr含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が十分に生じず、記録再生時のノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。
【0091】
また、磁性層4cを構成する磁性粒子42が、Co、Crの他にPtを含んだ材料である場合、磁性層4c中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量が上記範囲である場合、高記録密度に適した十分な保磁力を得ることができ、更に記録再生時における高い再生出力を維持し、結果として高密度記録に適した記録再生特性および熱揺らぎ特性が得られる。一方、磁性層4c中のPtの含有量が上記範囲を超えると、磁性層4c中にfcc構造の相が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。また、Ptの含有量が上記範囲未満である場合、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。
【0092】
磁性層4cを構成する磁性粒子42は、非グラニュラー構造の磁性層であり、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性及び熱揺らぎ特性を得ることができる。
【0093】
また、磁性層4cの磁性粒子42中に含まれるCo、Cr、Ptの他の上記元素の合計の含有量は、16at%以下であることが好ましい。上記元素の合計の含有量が16at%を超えると、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。
【0094】
磁性層4cに適した材料としては、特に、CoCrPt系、CoCrPtB系を挙げることできる。CoCrPtB系としては、CrとBとの合計の含有量が18at%以上28at%以下であるものが好ましい。
【0095】
磁性層4cに適した材料としては、例えば、CoCrPt系では、Co14〜24Cr8〜22Pt{Cr含有量14〜24at%、Pt含有量8〜22at%、残部Co}、CoCrPtB系では、Co10〜24Cr8〜22Pt0〜16B{Cr含有量10〜24at%、Pt含有量8〜22at%、B含有量0〜16at%、残部Co}が好ましい。
【0096】
磁性層4cに適したその他の系としては、CoCrPtTa系では、Co10〜24Cr8〜22Pt1〜5Ta{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、残部Co}、CoCrPtTaB系では、Co10〜24Cr8〜22Pt1〜5Ta1〜10B{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、B含有量1〜10at%、残部Co}の他にも、CoCrPtBNd系、CoCrPtTaNd系、CoCrPtNb系、CoCrPtBW系、CoCrPtMo系、CoCrPtCuRu系、CoCrPtRe系などの材料を挙げることができる。
【0097】
「保護層」
垂直磁性層4上には保護層5が形成される。保護層5は、垂直磁性層4の腐食を防ぐとともに、磁気ヘッドが磁気記録媒体に接触したときの媒体表面の損傷を防ぐためのものである。保護層5としては、従来公知の材料、公知の成膜方法を使用することができ、例えば硬質アモルファスカーボン、SiO、ZrOを含むものを使用することが可能である。保護層5の厚みは、1〜10nmとすることが、磁気ヘッドと磁気記録媒体との距離を小さくできるので高記録密度の点から好ましい。
【0098】
「潤滑層」
保護層5上には潤滑層6が形成される。潤滑層6には、例えば、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などの潤滑剤を用いることが好ましい。
【0099】
(磁気記録再生装置)
図4は、本発明を適用した磁気記録再生装置の一例を示すものである。
この磁気記録再生装置は、上述した製造方法により製造された図1に示す磁気記録媒体50と、磁気記録媒体50を回転駆動させる媒体駆動部51と、磁気記録媒体50に対する情報の記録再生を行う磁気ヘッド52と、この磁気ヘッド52を磁気記録媒体50に対して相対運動させるヘッド駆動部53と、記録再生信号処理系54とを備えている。
【0100】
記録再生信号処理系54は、外部から入力されたデータを処理して記録信号を磁気ヘッド52に送り、磁気ヘッド52からの再生信号を処理してデータを外部に送ることが可能となっている。磁気ヘッド52としては、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適した磁気ヘッドを用いることができる。
【0101】
図4に示す磁気記録再生装置は、本発明の磁気記録媒体の製造方法により製造された図1に示す磁気記録媒体50と、磁気記録媒体50に対する情報の記録再生を行う磁気ヘッド52とを備えるものであるので、更なる高記録密度化を可能とした信頼性の高い磁気記録媒体50を備えた優れたものとなる。
【実施例】
【0102】
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
【0103】
(実施例1)
以下に示す製造方法により、実施例1の磁気記録媒体を作製した。
まず、洗浄済みのガラス基板(コニカミノルタ社製、外形2.5インチ)を、DCマグネトロンスパッタ装置(アネルバ社製C−3040)の成膜チャンバ内に収容して、到達真空度1×10−5Paとなるまで成膜チャンバ内を排気した。
【0104】
その後、このガラス基板の上に、Crターゲットを用いて、スパッタリング法(ガス圧0.8Pa、ガスはArを用いた。)で、層厚10nmの密着層を成膜した。
【0105】
次に、密着層の上に、Co−20Fe−5Zr−5Ta{Fe含有量20at%、Zr含有量5at%、Ta含有量5at%、残部Co}のターゲットを用いて100℃以下の基板温度で、スパッタリング法(ガス圧0.8Pa)で、層厚25nmの軟磁性層を成膜し、この上にRu層を層厚0.7nmで成膜し、さらにCo−20Fe−5Zr−5Taからなる層厚25nmの軟磁性層を成膜し、これを軟磁性下地層とした。
【0106】
続いて、軟磁性下地層の上に、シード層として層厚10nmのNi5Wからなる膜を、スパッタリング法(ガス圧0.8Pa、ガスはArを用いた。)で成膜した。
次に、シード層の上に配向制御層として、低ガス圧層と高ガス圧層とを形成した。
まず、シード層の上に、低ガス圧層として層厚10nmのRuを、スパッタリング法(ガス圧0.8Pa、ガスはArを用いた。)で成膜した。
【0107】
次に、低ガス圧層の上に、層厚10nmの高ガス圧層として、Ru−17(B)(Bを17体積%含むグラニュラ構造のRu)、スパッタリング法(ガス圧3Pa、ガスはArを用いた。)により成膜した。
その後、配向制御層上に、垂直磁性層を形成した。
【0108】
まず、層厚9nmの、(Co7Cr22Pt)−20(B)(Cr含有量7at%、Pt含有量22at%、残部Coの磁性粒子80体積%と、Bを20体積%含むグラニュラ構造の磁性層)を、スパッタリング法(ガス圧1.5Pa、ガスはArを用いた。)により成膜した。
次に、RuCoからなる層厚0.3nmの非磁性層をスパッタリング法(ガス圧0.8Pa、ガスはArを用いた。)により成膜した。
【0109】
次に、層厚9nmの、(Co10Cr8Pt3Ru)−21(B)(Cr含有量10at%、Pt含有量8at%、Ru含有量3at%、残部Coの磁性粒子79体積%と、Bを21体積%含むグラニュラ構造の磁性層)を、スパッタリング法(ガス圧1.5Pa、ガスはArを用いた。)により成膜した。
次に、RuCoからなる層厚0.3nmの非磁性層をスパッタリング法(ガス圧0.8Pa、ガスはArを用いた。)により成膜した。
【0110】
次に、層厚9nmの、(Co10Cr13Pt10Ru)−23(B)(Cr含有量10at%、Pt含有量13at%、Ru含有量10at%、残部Coの磁性粒子67体積%と、Bを23体積%含むグラニュラ構造の磁性層)を、スパッタリング法(ガス圧1.5Pa、ガスはArを用いた。)により成膜した。
【0111】
次に、層厚7nmの、Co15Cr16Pt6Ru(Cr含有量15at%、Pt含有量16at%、Ru含有量6at%、残部Coからなる非グラニュラ構造の磁性層)を、スパッタリング法(ガス圧0.6Pa、ガスはArを用いた。)により成膜した。
【0112】
次に、イオンビーム法により層厚3.0nmのアモルファスカーボンからなる保護層を成膜し、次いで、ディッピング法によりパーフルオロポリエーテルからなる層厚2nmの潤滑層を成膜し、実施例1の磁気記録媒体を作製した。
【0113】
このような条件で製造した実施例1の磁気記録媒体について、最上層のグラニュラー構造の磁性層の結晶粒径を測定した。具体的には、実施例1の磁気記録媒体について、(Co10Cr13Pt10Ru)−23(B)からなるグラニュラー構造の磁性層を形成した後、基板をスパッタ装置内から取り出し、断面TEM観察により、中層のグラニュラー構造の磁性層の磁気的に結合した平均結晶粒径を測定した。
【0114】
また、実施例1の磁気記録媒体について、米国GUZIK社製のリードライトアナライザRWA1632及びスピンスタンドS1701MPを用いて、記録再生特性としてSNR(信号/ノイズ比(S/N比))の評価を行った。
【0115】
なお、磁気ヘッドには、書き込み側にシングルポール磁極を用い、読み出し側にTMR素子を用いたヘッドを使用した。信号/ノイズ比(S/N比)については、記録密度750kFCIとして測定した。記録特性(OW)については、先ず、750kFCIの信号を書き込み、次いで100kFCIの信号を上書し、周波数フィルターにより高周波成分を取り出し、その残留割合によりデータの書き込み能力を評価した。
また、実施例1の磁気記録媒体について、表面粗さを原子間力顕微鏡(AFM)で測定した。
【0116】
また、実施例1の磁気記録媒体について、磁気記録媒体の傷付き(スクラッチ)耐性を評価した。具体的には、クボタコンプス社製のSAFテスター及びCandela社製の光学式表面検査装置(OSA)を用い、ディスクの回転数5000rpm、気圧100Torr、室温という測定条件にて、SAFテスターでヘッドをロードさせたまま2000秒保持し、その後に、OSAにてスクラッチの本数をカウントした。以上の結果を表2に示す。
【0117】
(実施例2〜6、比較例1〜3)
実施例1と同様に磁気記録媒体を作製し、評価を行った。ただし、グラニュラ構造層は表2の組成とした。磁気記録媒体の評価結果を表2に示す。
【0118】

【表2】
【符号の説明】
【0119】
1…非磁性基板、2…軟磁性下地層、3…配向制御層、3a…低ガス圧層、3b…高ガス
圧層、4…垂直磁性層、4a…下層の磁性層、4b…中層の磁性層、4c…上層の磁性層
、5…保護層、6…潤滑層、7…非磁性層、7a…下層の非磁性層、7b…上層の非磁性
層、8…非磁性下地層、15…酸化物、S1、S2、S3…柱状晶、S1a…凹凸面、4
1…酸化物、42…磁性粒子、50…磁気記録媒体、51…媒体駆動部、52…磁気ヘッ
ド、53…ヘッド駆動部、54…記録再生信号処理系。
図1
図2
図3
図4