【実施例】
【0047】
実施例1:本発明の実施形態で有用な例証的な方法および材料
干渉計
生細胞干渉計は、以前に詳細に説明されている(1)。簡潔には、本システムは、典型的な光学分解能(20x対物レンズについては1.16μm)で、横特徴だけでなく、1ナノメートルの尺度を下回る反射物体の高さ寸法の観察も可能にする、20X 0.28NAマイケルソン干渉対物レンズを伴う、改良型Veeco NT9300光学プロファイラに基づく光学顕微鏡である。マイケルソン干渉計は、標本を包囲する流体によって誘発される光路差に合わせて調整するように、ビームスプリッタ、参照鏡、および補償流体セルから成る。位相偏移干渉法(PSI)(14)方法が、原位置で細胞体の位相画像を捕捉するために使用された。測定中に、圧電変換装置が、光路を少量減少させ、試験および参照ビームの間の位相偏移を引き起こす。本システムは、多くの異なる位相偏移において結果として生じる干渉パターンの放射照度を記録し、次いで、PSIアルゴリズムを使用して放射照度データを統合することによって、放射照度を位相波面データに変換する。現在実装されているように、自動焦点およびPSI測定周期は、12秒かかる。PSI測定自体は、1〜2秒かかり、カメラフレームレート(60fps)によって制限される。この実験では、400〜1,000個の細胞を含有する、一式の25の画像が、7分ごとに捕捉された。各一式の25の画像は、何百もの細胞を含有し、ここでは最初の5つの画像からのデータが提示され、したがって、各実行は、約80個の細胞を含む。選択された画像のそれぞれの中の全ての細胞が測定された。
【0048】
データ分析
Veeco NT9300に固有のソフトウェアは、位相画像から手動で選択される細胞の光学的厚さの自動測定を可能にする。光学的厚さは、Rossと一致する、変換定数α=1.8×10
−3m
3kg
−1を使用して、本文で説明されるように質量に変換される(9)。各細胞の境界が、ピクセル高のヒストグラムから判定される閾値を使用して、背景から物体を区切るアルゴリズムによって自動的に選択された(15)。光学的厚さへの未加工位相画像の変換は、一連の十分に確立された「位相アンラッピング」ルーチンを使用する(16)。時として、この位相から光学的厚さへの変換は、1つの波長(530nm)分小さく不正確であり、細胞を伴う連続領域に、真の値よりも1波長小さい、見掛けの光学的厚さを持たせる。この誤差は、光学的厚さの非物理的不連続性として容易に検出され、影響を受けたピクセルに光学的厚さの1つの波長を再び追加することによって補正される。このプロセスは、現在、完全には自動化されていない。
【0049】
測定誤差の定量化
細胞質量測定のための干渉顕微鏡法の精度は、電磁気理論で(17、18)、ならびに超遠心分離(3、4、10〜12、19〜21)、タンパク質溶液、ヒドロゲル、および透明膜の屈折率測定(22〜24)、x線密度測定(25)、および電子顕微鏡法(26〜30)を含む、種々の参照技法によって確固たるものとして確証される。LCIシステムの精度および安定性を特徴付けるために、いくつかのベンチマーク実験を行い、その詳細が
図8〜11で挙げられる。干渉光路の時間的安全性(1.2オングストローム、
図8a)の関数である、LCI質量測定の変動係数(CV)の下限は、約0.35%であると判定された。類似CVが、細胞を刺激した、部分的に溶解したポリスチレンビーズの連続測定について(CV<0.4%、
図8b)、および実際の生細胞の短期反復測定について(CV<1%、
図9)判定された。集団平均体積および標準偏差が製造業者によって提供され、通常はフローサイトメトリ(Flow Check, Polysciences Inc)で較正標準として使用される、6μm直径ポリスチレン球の集団(
図10a)を測定した。LCIによって判定された集団質量CV(6.8%)は、製造業者によって判定される(15%)よりもかなり小さかった。また、15週齢の雌C57BL/6マウスから新たに得られた赤血球(RBC)の集団も測定した(
図10b〜c)。(光化学および他の方法によって判定される)平均細胞質量の値の確立された範囲が存在するため、マウスRBCは、情報を与える独立標準としての機能を果たす。平均RBC細胞質量の我々のLCI判定値である、19.4pgは、15〜21pgにおける公表値の範囲と優れた一致にある(9〜12、31)。最終的に、比較のために、種々の哺乳類細胞型の集団の質量を測定した(
図10b、11)。これらは、
図9bのマウスRBCおよびポリスチレン球データとともに描画される。多時間生細胞実験における測定変動の尺度を推定するために、全ての単細胞質量対時間のデータ(約480個の細胞を表す)を、単純指数成長モデルに適合させ(mass(t)=m
0*C
t、式中、定数Cは単位元に近い)、残余誤差を、傾向と各時点における実際のデータとの間のパーセント差として計算した(
図12a)。残余は、ゼロの周囲で対称に分布し(
図12b)、25%から75%の四分位の範囲(IQR)は、0.0126(c2)から0.027(c3)まで変化する。平均IQRは、0.02であった。総合すると、これらの結果は、約0.5〜1.0%の測定再現性の下界、および2.0〜3.0%の外界を示す。生細胞の短期および長期測定の主な違いは、数時間の尺度にわたって生じる形状変化である。これは、(1)細胞境界の区切りにおける小さな誤差、(2)「丸みを帯びた」細胞の縁に存在する密集縞の光学的「平均化」、および(3)質量対光学的厚さの定数である、αの値の潜在的変化から、統合光学的厚さの追加変動を引き起こし得るが、以前の研究は、この誤差が比較的小さくなるであろうと示唆する(3)。(1)αは、結晶化タンパク質溶液の限界までさえも、濃度の変化による影響を受けない(9)、(2)αは、特定の場所で光と相互作用する質量を反映し(9〜12、31)、したがって、細胞が成長するにつれて、細胞が視野内でどれだけ多くの面積を占有するかによって影響されない、(3)αの値は、細胞で見出される広範囲の物質にわたって0.0018に近いままである(32)ことが確立される。
【0050】
細胞株および組織培養
H929ヒト多発性骨髄腫細胞を、10%の既定ウシ胎仔血清(HyClone)および抗生物質を補充したRPMI 1640成長培地の中で、5%CO
2中で37℃にて維持した。観察チャンバは、シリコンが流体表面の最上部の付近にあるように、プラスチック棚の上に配置された2x2cmシリコン基材を伴って、直径4.5cmおよび深さ1.5cmであった。均一な厚さのサンプルチャンバを作成するように、3つの600μmステンレス鋼ビーズ(Salem Specialty Ball Company,Canton,CT)の上に静置することによってシリコン表面から分離された、一片の光学ガラス(BK7ガラス、Quartz Plus,Inc.,Brookline,NH)によって、撮像セルが完成された。0.5mL/分の速度で蠕動灌流ポンプを使用して、5%CO
2空気で発泡させられた培地を、インキュベーションチャンバを通して連続的に流した。サンプルチャンバ上に入射する530nm波長のLED照明(Luxeon Star LED,Brantford,Ontario)は、1.2mm直径の照明スポットにわたって拡散した15μWの出力を有した。外部刺激に対する細胞応答が、この構成では7時間もの長さにわたって測定され、非摂動培養が最大12時間にわたって観察されたが、実験の持続時間の上限は判定されていない。
【0051】
薬物治療、細胞周期分析、および核酸単離
H929細胞を、1×10
6細胞/ウェルの密度で6ウェル培養皿の中に播種した。LCIの観察チャンバの中で細胞を平板培養する前に、DMSO中の1μLのツニカマイシン(T7765、Sigma−Aldrich)、またはDMSOのみのいずれかを、10mg/mlの濃度、DMSO/培地(1:1000希釈)で培地に添加した。実験システムが安定すること、すなわち、培養順化、温度安定化等を可能にするために、細胞が観察チャンバの中で平板培養された1時間後に、質量測定が始まった。細胞周期分析については、各時点からの細胞を収集し、ヨウ化プロピジウムを含有する低張性DNA染色緩衝液でインキュベートし、後に、フローサイトメトリによって分析した。Trizol試薬(Invitrogen)を使用して、各時点のRNAを抽出した。
【0052】
逆転写、RT−PCR、および定量的RT−PCR
Superscript III第1鎖cDNA合成キット(Invitrogen)を使用して、オリゴ(dT)プライマーを伴う3μgの全RNAからCDNAを合成した。25周期にわたって58℃の焼鈍温度でPlatinum Taq(Invitrogen)を使用して、XBP1スプライスおよび非スプライスアイソフォームのRT−PCRを行った。説明されるように、SYBRグリーンリアルタイムPCRキット(Diagenode)およびApplied Biosystems(Foster City,CA,USA)7700シーケンス検出器を使用して、CHOP(DDIT3)mRNAの定量的RT−PCRを行った(33)。正規化対照として、サンプルを36b4発現について分析した。プライマー配列が要求に応じて利用可能である。
【0053】
結果および考察
質量蓄積動力学は、同時に測定された約100個の細胞の集団全体について、長期的尺度(数時間)にわたって細胞ごとの基準で以前に報告されていない。LCI質量プロファイリングが、薬物反応等の外部細胞刺激に対する応答を急速に判定できるという仮説を試験するために、H929多発性骨髄腫細胞を、タンパク質糖化阻害剤である薬剤ツニカマイシン(TM)に暴露させ(34)、5時間にわたって質量を連続的に測定することによって、TM処置細胞の成長プロファイルを未処置対照細胞と比較した。
【0054】
H929細胞質量の初期分布は、200〜700pgの範囲で、ほぼ対数正規であると判定した。細胞の大部分が、200pg超および400pg未満の質量を有した一方で、ごくわずか(36%)は、500pgを上回る質量を伴って、平均よりもはるかに大きい。処置および未処置集団の両方が成長を示したが、質量蓄積速度は、処置細胞においてはるかに低かった(
図3)。両方の集団の成長プロファイルは、明確に不均一であり(
図3a〜b)、両方で、少数の細胞が、質量の活発な増加(+15%成長)を示したか、質量蓄積がほとんどまたは全くなかった(5%未満の成長)かのいずれかであった。処置集団の成長の抑制は、2時間以内に現れ、4時間までには容易に明白である(
図3c〜d)。したがって、細胞薬物反応の全集団検出および定量化が、治療の数時間以内に達成された。5時間での処置および未処置群内の成長速度の変動(
図3c〜d)は、同一点での処置および未処置培養間の変動の大きさに近似した。これらの実験は、別個の日に行われ、明確に異なる継代培養がマスタ原液から得られた。したがって、それらは、「技術的」ではなく「生物学的」複製であり、挙動の差異が、おそらく生物学的変動を反映する。測定誤差を3%未満の変動係数と推定するために、対照サンプルに技術的複製を使用した。それでもなお、我々は、各処置サンプルと各未処置サンプルとの間の正規化最終質量(最終/初期)の差異が、p<0.05で統計的に有意である(
図3c〜d)ことに留意する。これは、LCIが細胞の処置および未処置集団間の成長速度の差異を検出することが可能であるという証拠を提供する。
【0055】
単細胞レベルで、個々の細胞の成長速度は、処置および未処置細胞の両方について、実験誤差内で大部分が細胞質量とは無関係である(
図7)。例外は、処置集団Tm1であり、そのより大きい細胞小集団において、より遅い成長に向かった統計的に有意な線形傾向を示した。この差異の理由は不明確である。興味深いことに、任意の特定の質量分率内の成長速度の拡散は、測定誤差によって完全には説明することができず、この変動の生物学的起源も示唆する。質量データと対比した成長への線形最小二乗適合の残余のノルムと見なされる、この変動が、3.15.8%に及ぶ(
図12)一方で、我々は、質量測定誤差が3%未満の変動係数であると推定する(方法における誤差の考察を参照)。
【0056】
質量蓄積の動態を生化学的シグナル伝達と結び付けるために、PCRを用いて分子マーカーのプロファイルを作成し、処置集団に細胞周期分析を行った。処置および未処置集団間の成長速度の相違は、処置集団において、転写因子CHOPおよびXBP1のスプライス形態(「XBP1−s」)の上方調節と同期して生じる(
図4a〜b)。CHOPおよびXBP1−sは、タンパク質の折り畳みを補助する分子シャペロンの産生の増加、および誤って折り畳まれたタンパク質の分解の加速(いわゆる変性タンパク質応答(UPR)、およびER関連タンパク質分解(ERAD)経路)を通して、小胞体内のタンパク質の誤った折り畳みの影響を軽減することに関与する、多数の遺伝子を活性化する(35)。これは、既知のTM作用機構と一致する(34)。UPRおよびERAD分子経路の両方は、多発性骨髄腫を含む広範囲の疾患において、治療的介入のための新たな標的である。
【0057】
XBP1は、多発性骨髄腫細胞における細胞成長および分化のコンテキスト依存性の陽性または陰性調節因子である(34)。その双極性転写能の分子動力学は、十分に理解されていない。我々の実験との関連で、XBP1 mRNAスプライシングの誘導は、質量蓄積の減速と関連付けられるが、細胞収縮またはアポトーシスとは関連付けられない。この細胞質量の時間分解された非破壊的測定は、免疫組織化学またはqPCRを含む、従来の技法を通して分析される、相反する増殖誘発分子信号および抗増殖分子信号の解釈に大いに役立つ。細胞周期データは、細胞周期停止と一致する、G2/M相集団の急速な低減およびG1/G0集団の対応する増加を示す(
図4c)。この偏移は、5時間の治療の終了までにG1/G0の中の細胞の50%を残して、3時間のTM暴露後に顕著になる。これはまた、UPR経路の活性化が細胞周期停止につながるという観察とも一致する(35、36)。
【0058】
個々の分割を観察し、親および娘細胞の質量を直接測定することによって、分裂細胞の質量範囲を判定した。28の細胞分裂が、合計約600個の細胞から、全ての実験にわたって観察された。分裂の数は、未処置集団に有利に非対称であり、18:11であった。これは、その集団において観察されたより高い成長速度と一致する。細胞が分裂する質量は、緊密に調節され、処置および未処置集団の両方で類似した(
図5a)。分裂時の質量中央値は、515pg(+/−75pg)であって、2つの結果として生じた娘細胞はそれぞれ、250pg(+/−40pg)の質量中央値を有した。この結果は、質量値を介して、集団の中のどの個別細胞が、細胞周期の初期、中期、および後期段階にある可能性が高いかを推測することを可能にする。娘細胞の質量分率が、ほとんどの場合において約50/50であった一方で、少数の細胞分裂は高度に非対称であり、2つの娘細胞のうちの小さいほうが、親の細胞質量の45%未満を保持した(
図5b)。非対称細胞分裂を受ける2つの細胞の質量マップが、
図5cに示される。
【0059】
単細胞質量測定のための他の確立された方法および新興方法と比べて、LCIの明確な利点がある。非接着性細胞を必要とする、中空カンチレバーMEMS質量測定デバイス(5、6)とは異なり、LCIは、接着性または非接着性細胞と同等に適合性がある(
図6)。接着性細胞と連動する能力は、質量蓄積/分布と細胞・基材相互作用との間の関係を精査するため、およびヒト悪性腫瘍の大部分を形成する上皮または間質細胞型を評価するために、絶対的に重要である。LCIはまた、質量プロファイリングを、創薬で一般的に使用される全クラスの細胞移動、運動性、および組織侵襲性アッセイと結び付けるための優れたアプローチでもある。干渉顕微鏡は、標本への完全光学的アクセスを可能にし、高分解能の光学顕微鏡写真および蛍光像が容易に得られることを意味する。これは、同時評価のために、質量プロファイリング、および細胞生物学で使用される蛍光レポータアッセイの大規模装置の複合利用を可能にする。さらに、LCIは、細胞分裂の全体を通して、および細胞分裂に続いて、個々の細胞質量の定量化追跡および定量化を実証する。これは、例えば、幹細胞における質量区分化の広域プロファイリングを初めて直接的に可能にするであろう。
【0060】
LCIは、高スループットであり、経時的に同一の細胞の長期的測定を可能にする。それはまた、超並列でもあり、同時に何百もの長期的測定を可能にし、変動する条件による実験間誤差を低減させる。しかしながら、時として、位相から光学的厚さへの変換は、2πよりも大きい位相偏移の曖昧性により、1つの波長(530nm)分小さく不正確である。この状況は、細胞を伴う連続領域に、真の値よりも1波長小さい、見掛けの光学的厚さを持たせる。この誤差は、光学的厚さの非物理的不連続性として容易に検出され、影響を受けたピクセルに光学的厚さの1つの波長を再び追加することによって補正される。この補正プロセスは、現在、完全には自動化されていないが、この問題に対処する、かなり多数の研究が文献に存在する(16)。
【0061】
7時間もの長さにわたって外部刺激に対する細胞応答を測定し、最大12時間にわたって非摂動培養を観察した。原則として、細胞が、緊密に制御された培養条件下で何日も生存能力を持ったままであるため、測定は、はるかに長い持続時間にわたって継続することができる。LCIおよび代替的なアプローチ(5、7、8)に共通である、1つの制限は、細胞が観察チャンバに導入された後、または異なる温度あるいは密度を伴う培地が導入された後に、本システムが安定するために必要とされる時間である。本実験では、保守的に1時間の整定時間を許容したが、必要であれば、この整定時間を少なくとも2倍短縮することができる。
【0062】
要約すれば、高スループットLCI質量プロファイリングは、医学関連薬物反応等の環境摂動に対する単細胞集団ベースの応答を定量化するための高感度かつ精密な機構である。
【0063】
当技術分野で公知である種々の方法および材料、例えば、以下の参考文献で開示されるものは、本発明の実施形態を作製および/または使用するように適合することができる。
【0064】
括弧内で上記の本文中で識別される参考文献
【0065】
実施例2:質量プロファイリングによる単およびクラスタ乳癌細胞のリアルタイム薬物感受性の定量化
上記で論議されるように、生細胞質量プロファイリングは、経時的な細胞質量のピコグラム規模の変化を通して、治療薬に対する応答を急速に定量化するための有望な新しいアプローチである。質量プロファイリングにおける有意な障壁は、単離された単細胞よりも患者由来のサンプルまたは組織培養中でより一般的に存在する、多形細胞集合および集塊を、既存の方法が扱えないことである。ここで、HER2指向モノクローナル抗体である、トラスツズマブ(Herceptin)に対する単細胞およびコロニー形成ヒト乳癌細胞株の感受性の急速かつ正確な数量詞として、自動生細胞干渉法(aLCI)の証拠が提供される。相対感受性が、従来の増殖アッセイで可能であるよりも数十倍から数百倍速く判定された。クラスタサンプル評価および速度における、これらのaLCIの前進は、患者由来の固形腫瘍サンプルの治療反応試験に使用されてもよく、これらのサンプルは、生体外で短期間のみ生存可能であり、細胞凝集体および集合の形態である可能性が高い。
【0066】
2011年に米国では、230,480人の女性が乳癌と診断され、39,520人の女性が該疾患で死亡した(例えば、R.Siegel,et al.CA Cancer J Clin.2011,61,212−36を参照)。この一般的な悪性腫瘍の臨床経過および転帰は、腫瘍サブタイプ、臨床グレードおよび病期、ならびにエストロゲン(ER)、プロゲステロン(PR)、および増幅HER2細胞表面受容体の発現を含む、臨床評価の組み合わせによって通常は誘導される治療にもかかわらず、可変のままである(例えば、M.Ignatiadis,et al.Clin Cancer Res.2009,15,1848−52、M.Ignatiadis,et al.Nat Rev Clin Oncol.2012,9,12−4を参照)。残念ながら、ER、PR、および/または増幅HER2表面受容体を発現する乳癌は、これらの受容体結合経路を標的にする治療に常に応答するわけではなく、これらのバイオマーカーのみの発現の分析が、治療決定には不十分となる。例えば、増幅したHER2発現を伴う乳癌は、頻繁に、ヒト化モノクローナル抗体トラスツズマブ(Herceptin)に応答しない(例えば、JA.Wilken,et al.Primary trastuzumab resistance:new tricks for an old drug.In:Braaten D,editor.Toward Personalized Medicine for Cancer 2010.p.53−65を参照)。さらに、最初に応答する受容体陽性腫瘍は、経時的に標的治療に対して不応性となり得、それは、HER2増幅乳癌(例えば、R.Nahta,et al.Breast Cancer Research.2006,8を参照)および多くの他の種類の癌にも起こる。
【0067】
乳癌および他の癌における現在のバイオマーカーアプローチの共通特徴および不具合は、特定の患者のための特定の薬剤に対する腫瘍細胞応答を直接評価しない、それらの典型的には静的な時間的スナップショット代理性質である。優れたアプローチは、利用可能である場合、腫瘍がどのようにして一連の候補治療に応答するかをリアルタイム監視によって急速に判定し、次いで、その特定の患者の疾患にとって最も有効である薬剤(複数可)を選ぶことであり得る。生細胞のリアルタイム質量プロファイリングは、優れたアプローチを提供し得る、新しい再現可能な生物物理学的測定法である。生細胞質量プロファイリングは、主に、光学的方法(例えば、G.Popescu,et al.American Journal of Physiology−Cell Physiology.2008,295,C538−C44、B.Rappaz,et al.Optics Express.2005,13,9361−73、J.Reed,et al.Biophys J.2011,101,1025−31、J.Reed,et al.ACS Nano.2008,2,841−6を参照)または微細加工チップセンサ(例えば、M.Godin,et al.Applied Physics Letters.2007;91、K.Park,et al.Proc Natl Acad Sci USA.2010,107,20691−6を参照)を使用して達成され、成長阻害または細胞毒性薬に対する細胞応答の検出を含む、変化する外部環境に暴露される細胞集団における単細胞乾燥質量変化の急速な連続定量化を生じることができる(例えば、J.Reed,et al.Biophys J.2011,101,1025−31を参照)。残念ながら、技術的制限により、生細胞質量プロファイリングは、細菌、酵母、およびリンパ球等の空間的に単離された単細胞として存在する、細胞型に制約されている。これは、乳癌等における固形腫瘍治療反応試験のための質量プロファイリングの効果的な使用にとって、多大な障害である。一般に、解離した固形腫瘍サンプルは、機械的に分けられたときでさえも、純粋に単細胞としてよりもむしろ、小型および大型多細胞集合、シート、または球の組み合わせとして存在する。また、固形腫瘍を単細胞に分離するために必要とされる撹拌は、細胞を損傷し得、悪性表現型の維持に不可欠であり、薬剤反応性を評価するために必要とされ得る、細胞・細胞および細胞・基質相互作用を妨害する(例えば、BE.Miller,et al.Cancer Res.1981,41,4378−81、MS.Wicha,et al.Proc Natl Acad Sci USA.1982,79,3213−7を参照)。
【0068】
自動生細胞干渉法(aLCI)と称される、本明細書で開示されるような質量プロファイリングアプローチを使用して、この阻害障壁が克服されてきた。aLCIを用いて、単細胞および大型コロニーまたはクラスタの両方として培養下で成長する、乳癌の治療反応動力学のプロファイルを作成してきた。これらの組織化されたコロニーは、サイズが最大で50個の細胞であり、さらに大きいコロニーも、実際には測定され得る。6時間の経過にわたってトラスツズマブに暴露された4つの乳癌細胞株からの細胞集団またはコロニーの成長動態を定量化してきた。本研究では、どの乳癌株が、増幅HER2表面受容体を発現したか、またはどのようなレベルで発現したかという予備知識なしで、aLCIを行った。非常に高い精度で単細胞/単コロニー質量蓄積を定量化することによって、トラスツズマブ感受性および耐性腫瘍を急速に区別した。顕著に、aLCIは、細胞増殖アッセイ等の従来の技法を使用して可能であるよりも約1桁(a log−order)迅速に感受性および耐性細胞およびコロニーを識別した。この速度および感受性の向上は、不応性HER2増幅乳癌応答と対比した感受性の評価を可能にする。それはまた、診療所への応用も可能にし、そこではしばしば、脆弱な患者由来細胞が、短期間のみ生存可能であり、サンプルが、全てではないが多くの固形腫瘍型について、単細胞および凝集塊の不均一な混合物の形態である可能性が高い。
【0069】
20ug/mlの臨床グレードトラスツズマブの同時インキュベーションとともにaLCIを使用して、4つのヒト乳癌細胞株の質量応答プロファイリングをリアルタイムで行った。各細胞型について、培地のみを含有する対照ウェル、およびトラスツズマブを含有する処置ウェルを同時に測定した。株のうちの2つである、BT−474およびSK−BR−3は、高レベル表面受容体発現を伴う増幅HER2を有し、5〜7日間増殖アッセイによって評価されるように、生体外でトラスツズマブに対して特異的に感受性がある一方で、他の2つの株である、MCF−7およびMDA−MB−231は、通常レベルでHER2受容体を発現し、トラスツズマブ耐性である(例えば、NA.O'Brien,et al.Molecular Cancer Therapeutics.2010,9,1489−502を参照)。重要なことに、これらの細胞株は、非常に異なる形態で成長する。MDA−MB−231およびSK−BR−3株が、単細胞として、または疎性分散クラスタの中で成長する一方で、MCF−7およびBT−474株は、密集した多細胞コロニーとして成長する(
図13)。単一のMCF−7細胞(質量約5x10
2pg)と大型コロニー(約22x10
3pg)との間の相対的尺度は、質量の44倍差を対象とする(
図14)。
【0070】
何百もの個々の細胞およびコロニーの質量を、7時間にわたって連続的に定量化した。処置および対照群における全集団応答を特徴付けるように、30分間隔での各細胞株の平均質量蓄積速度を描画した(
図15a)。HER2正常表現株の処置および対照サンプルである、MCF−7およびMDA−MB−231は、経時的に同一の質量の増加を示した。対照的に、HER2増幅高発現株の処置および対照サンプルである、BT−474およびSK−BR−3の成長速度は、治療の約4時間で分散し始めた。トラスツズマブ感受性株である、SK−BR−3およびBT−474が、成長速度の高度有意差(p<0.001)を示した一方で、非感受性株である、MCF−7およびMDA−MB−231は、有意差を示さなかった(
図15b)。BT−474株は、SK−BR−3株よりもトラスツズマブに応答し、6時間後に、それぞれ、1.70+/−0.39および1.24+/−0.10の対照対処置質量倍率変化を伴った(平均+/−標準誤差、
図16)。2つの感受性株のうち、SK−BR−3が、主に単離された単細胞として存在する一方で、BT−474は、小型コロニーの中で成長し、コロニー形成が、トラスツズマブ感受性または耐性のために予測的ではない、または必要とされないことを示す。また、トラスツズマブに対するaLCI測定応答を、従来の複数日の細胞計数成長阻害アッセイで判定されたものと比較した。4つ全ての場合において、6時間にわたってaLCIによって測定されたトラスツズマブ感度は、3〜7日にわたって細胞計数によって測定されたものと一致した(
図16)。
【0071】
これらの結果は、aLCIを介した生細胞質量定量化が、調べられている細胞の物理的構成および関連にかかわらず、乳癌におけるトラスツズマブに対する生物学的応答を急速かつ敏感に検出できることを示す。MEMS微小共振器等の他の最近開発された生細胞質量プロファイリング方法は、微小共振器の構成に応じて、高精度で単細胞の質量を瞬時に測定することができる(例えば、M.Godin,et al.Applied Physics Letters.2007;91、K.Park,et al.Proc Natl Acad Sci USA.2010,107,20691−6を参照)。そのアプローチの欠点は、十分な感受性を達成するために、共振器の活性面積が、ミクロン単位以下でなければならないことであり、ほとんどの固形腫瘍型に起こるように、単細胞およびより大型の多細胞コロニーの混合物の連続測定を不可能ではないが非常に困難にする。
【0072】
一般に、aLCIを含む、定量的位相光学顕微鏡法アプローチは、MEMSベースのアプローチと同等の質量測定精度および正確度を保有し(例えば、G.Popescu,et al.American Journal of Physiology−Cell Physiology.2008,295,C538−C44、J.Reed,et al.Biophys J.2011,101,1025−31を参照)、細胞集団および集塊の研究へのそれらの適用は、基礎的な物理的制限によってよりもむしろ、高スループット位相撮像と関連付けられる実用的困難によって制限されている。未加工位相画像を質量情報に変換することは、特に、照明波長と比較して大きい複雑な内部構造および光学的厚さを伴う細胞および物体のクラスタの場合に、計算的に挑戦的であり得る(例えば、D.Ghiglia,et al.Two−Dimensional Phase Unwrapping:Theory,Algorithms,and Software:John Wiley&Sons;1998を参照)。凝集細胞集塊、シート、および球の治療反応の分析および定量化の増加した速度は、固形腫瘍治療における薬剤選択および予後にとって、刺激的な新しい機会を提供する。
【0073】
材料および方法
細胞株および培養
BT−474、SK−BR−3、MDA−MB−231、およびMCF−7乳癌細胞株を、American Type Culture Collection(Rockville,MD)から入手した。全ての株を、10%ウシ胎仔血清(Omega;Tarzana,CA)、ならびに1%ペニシリン、ストレプトマイシン、およびL−グルタミンを補充したRPMI 1640(Cellgro;Manassas,VA)成長培地の中で維持した。
【0074】
薬剤治療
臨床グレードトラスツズマブ(Herceptin)(Genentech;South San Francisco,CA)を20ug/mlで使用した。
【0075】
増殖アッセイ
5×10
4個の細胞を、12ウェルプレートの中へ播種し、治療を開始する前に2日間にわたって付着および成長させた。20ug/mlのHerceptinを用いた治療の第0、3、5、および7日に、細胞をトリプシン処理し、数を数えた。倍率変化を計算するために、倍増時間を対照および薬剤処置サンプルについて判定し(DT=t
*(log(2)/log(N
t/N
0)))、倍率変化をDT
drug/DT
ctrlと見なした。DT=倍増時間、t=時間、N
t=時間tでの細胞の数または質量、N
0=時間t=0での細胞の数または質量。
【0076】
共焦点撮像
細胞を、チャンバ状カバーガラス上へ播種し、一晩付着させた。細胞を、pH7.4の1xPBS中の3.7%ホルムアルデヒドで固定し、0.1%Triton−X中で透過処理した。次いで、サンプルをAlexa 568−Phalloidinアクチン染料(Invitrogen; Grand Island, NY)およびDAPIとともにインキュベートした。Zen 2010ソフトウェアを使用したZeiss LSM 780 CCDカメラを用いて、共焦点画像を撮影した。
【0077】
干渉計
生細胞干渉計が以前に説明されている(例えば、J.Reed,et al.Biophys J.2011,101,1025−31、J.Reed,et al.ACS Nano.2008,2,841−6、J.Reed,et al.Nanotechnology.2008,19を参照)。本システムは、20X 0.28NAマイケルソン干渉対物レンズを伴う、改良型Bruker NT9300光学プロファイラ(Bruker;Tucson,AZ)から成る。マイケルソン干渉計は、サンプルを包囲する流体によって誘発される光路差に対処するように、ビームスプリッタ、参照鏡、および補償流体セルから成る。位相偏移干渉法(PSI)方法が、細胞サンプルの位相画像を捕捉するために使用された。多重サンプル撮像を可能にするために、aLCIは、各サンプルウェルにおけるカバーガラス光路長のわずかな差に合わせて干渉計参照鏡を調整するために、小型モータを採用する。
【0078】
データ分析
Matlab(Mathworks Inc.,Natick,MA)で書かれた、カスタム多重ステッププログラムを使用して、画像分析を行った。第1のステップは、Bruker Visionソフトウェア(Bruker Nano Inc.,Tuscon,AZ)によって採用されたGoldstein位相アンラッピングアルゴリズムによる処理後に残留した、位相誤差(定量的位相撮像に固有の曖昧性による整数波長誤差)を除去する、位相アンラッピングステップであった。このアルゴリズムは、整数波長ジャンプ、および背景レベルを下回る非物理的偏位を除去するために、各ピクセルから離れた複数のランダムウォークを使用する。第2のステップは、局所適応メジアンフィルタおよび流域変換の組み合わせを使用して、各画像を細胞またはコロニー物体に区分することである。最終的に、IDL粒子追跡コードに基づく、Daniel BlairおよびEric DufresneによるMatlabのために適合された粒子追跡コードを使用して、画像分割によって識別された物体を追跡した(例えば、JC.Crocker,et al.Journal of Colloid and Interface Science.1996,179,298−310を参照)。