(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0016】
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
【0017】
(メタクリル系樹脂)
本実施形態におけるメタクリル系樹脂は、メタクリル酸エステル単量体単位(A)、N−置換マレイミド単量体由来の構造単位(B−1)、及びラクトン環構造単位(B−2)からなる群より選ばれる少なくとも一種の環構造を主鎖に有する構造単位(B)を含み、任意選択的に、メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)も含む。
【0018】
以下、各単量体構造単位について説明する。
【0019】
−メタクリル酸エステル単量体由来の構造単位(A)−
まず、メタクリル酸エステル単量体由来の構造単位(A)について説明する。
メタクリル酸エステル単量体由来の構造単位(A)は、例えば、以下に示すメタクリル酸エステル類から選ばれる単量体から形成される。
メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロオクチル、メタクリル酸トリシクロデシル、メタクリル酸ジシクロオクチル、メタクリル酸トリシクロドデシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸1−フェニルエチル、メタクリル酸2−フェノキシエチル、メタクリル酸3−フェニルプロピル、メタクリル酸2,4,6−トリブロモフェニル等が挙げられる。
これらの単量体は、単独で用いる場合も2種以上を併用する場合もある。
上記メタクリル酸エステルのうち、得られるメタクリル系樹脂の透明性や耐候性が優れる点で、メタクリル酸メチル及びメタクリル酸ベンジルが好ましい。
メタクリル酸エステル単量体由来の構造単位(A)は、一種のみ含有していても、二種以上含有していてもよい。
【0020】
メタクリル酸エステル単量体由来の構造単位(A)の含有量としては、後述する環構造を主鎖に有する構造単位(B)によりメタクリル系樹脂に対して耐熱性を十分に付与する観点から、メタクリル系樹脂を100質量%として、好ましくは50〜97質量%、より好ましくは55〜97質量%、さらにより好ましくは55〜95質量%、さらにより好ましくは60〜93質量%、特に好ましくは60〜90質量%である。
【0021】
以下、主鎖に環構造を有する構造単位(B)について説明する。
【0022】
−N−置換マレイミド単量体由来の構造単位(B−1)−
次に、N−置換マレイミド単量体由来の構造単位(B−1)について説明する。
N−置換マレイミド単量体由来の構造単位(B−1)は、下記式(1)で表される単量体及び/又は下記式(2)で表される単量体から選ばれた少なくとも一つとしてよく、好ましくは、下記式(1)及び下記式(2)で表される単量体の両方から形成される。
【0023】
【化1】
式(1)中、R
1は、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基のいずれかを示し、R
2及びR
3は、それぞれ独立に、水素原子、炭素数1〜12のアルキル基、炭素数6〜14のアリール基のいずれかを示す。
また、R
2がアリール基の場合には、R
2は、置換基としてハロゲンを含んでいてもよい。
また、R
1は、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、ニトロ基、ベンジル基等の置換基で置換されていてもよい。
【0024】
【化2】
式(2)中、R
4は、水素原子、炭素数3〜12のシクロアルキル基、炭素数1〜12のアルキル基のいずれかを示し、R
5及びR
6は、それぞれ独立に、水素原子、炭素数1〜12のアルキル基、炭素数6〜14のアリール基のいずれかを示す。
【0025】
以下、具体的な例を示す。
式(1)で表される単量体としては、例えば、N−フェニルマレイミド、N−ベンジルマレイミド、N−(2−クロロフェニル)マレイミド、N−(4−クロロフェニル)マレイミド、N−(4−ブロモフェニル)マレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−(2−ニトロフェニル)マレイミド、N−(2、4、6−トリメチルフェニル)マレイミド、N−(4−ベンジルフェニル)マレイミド、N−(2、4、6−トリブロモフェニル)マレイミド、N−ナフチルマレイミド、N−アントラセニルマレイミド、3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1,3−ジフェニル−1H−ピロール−2,5−ジオン、1,3,4−トリフェニル−1H−ピロール−2,5−ジオン等が挙げられる。
これらの単量体のうち、得られるメタクリル系樹脂の耐熱性、及び複屈折等の光学的特性が優れる点から、N−フェニルマレイミド及びN−ベンジルマレイミドが好ましい。
これらの単量体は、単独で用いる場合も2種以上を併用して用いる場合もある。
【0026】
式(2)で表される単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−イソプロピルマレイミド、N−n−ブチルマレイミド、N−イソブチルマレイミド、N−s−ブチルマレイミド、N−t−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−ヘプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、1−シクロヘキシル−3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジフェニル−1H−ピロール−2,5−ジオン等が挙げられる。
これらの単量体のうち、メタクリル系樹脂の耐候性が優れる点から、N−メチルマレイミド、N−エチルマレイミド、N−イソプロピルマレイミド、N−シクロヘキシルマレイミドが好ましく、近年光学材料に求められている低吸湿性に優れることから、N−シクロヘキシルマレイミドが特に好ましい。
これらの単量体は、単独で用いる場合も2種以上を併用して用いることもできる。
【0027】
本実施形態のメタクリル系樹脂において、式(1)で表される単量体と式(2)で表される単量体とを併用して用いることが、高度に制御された複屈折特性を発現させ得る上で特に好ましい。
式(1)で表される単量体由来の構造単位の含有量(B1)の、式(2)で表される単量体由来の構造単位の含有量(B2)に対するモル割合(B1/B2)は、好ましくは0超15以下、より好ましくは0超10以下である。
モル割合B1/B2がこの範囲にあるとき、本実施形態のメタクリル系樹脂は透明性を維持し、黄変を伴わず、また耐環境性を損なうことなく、良好な耐熱性と良好な光弾性特性を発現する。
【0028】
N−置換マレイミド単量体由来の構造単位(B−1)の含有量としては、得られる組成物が本実施形態のガラス転移温度の範囲を満たすものであれば特に限定されないが、メタクリル系樹脂を100質量%として、好ましくは5〜40質量%の範囲、より好ましくは5〜35質量%の範囲である。
この範囲内にあるとき、メタクリル系樹脂はより十分な耐熱性改良効果が得られ、また、耐候性、低吸水性、光学特性についてより好ましい改良効果が得られる。なお、N−置換マレイミド単量体由来の構造単位の含有量を40質量%以下とすることが、重合反応時に単量体成分の反応性が低下し未反応で残存する単量体量が多くなることによるメタクリル系樹脂の物性低下を防ぐのに有効である。
【0029】
−ラクトン環構造単位(B−2)−
主鎖にラクトン環構造単位を有するメタクリル系樹脂は、例えば、特開2001−151814号公報、特開2004−168882号公報、特開2005−146084号公報、特開2006−96960号公報、特開2006−171464号公報、特開2007−63541号公報、特開2007−297620号公報、特開2010−180305号公報等に記載されている方法により形成することができる。
【0030】
本実施形態のメタクリル系樹脂を構成するラクトン環構造単位は、樹脂重合後に形成されてよい。
本実施形態におけるラクトン環構造単位としては、環構造の安定性に優れることから6員環であることが好ましい。
6員環であるラクトン環構造単位としては、例えば、下記一般式(3)に示される構造が特に好ましい。
【化3】
上記一般式(3)において、R
10、R
11及びR
12は、互いに独立して、水素原子、又は炭素数1〜20の有機残基である。
有機残基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1〜20の飽和脂肪族炭化水素基(アルキル基等);エテニル基、プロペニル基等の炭素数2〜20の不飽和脂肪族炭化水素基(アルケニル基等);フェニル基、ナフチル基等の炭素数6〜20の芳香族炭化水素基(アリール基等);これら飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基における水素原子の一つ以上が、ヒドロキシ基、カルボキシル基、エーテル基、エステル基からなる群から選ばれる少なくとも1種の基により置換された基;等が挙げられる。
【0031】
ラクトン環構造は、例えば、ヒドロキシ基を有するアクリル酸系単量体と、メタクリル酸メチル等のメタクリル酸エステル単量体とを共重合して、分子鎖にヒドロキシ基とエステル基又はカルボキシル基とを導入した後、これらヒドロキシ基とエステル基又はカルボキシル基との間で、脱アルコール(エステル化)又は脱水縮合(以下、「環化縮合反応」ともいう)を生じさせることにより形成することができる。
【0032】
重合に用いるヒドロキシ基を有するアクリル酸系単量体としては、例えば、2−(ヒドロキシメチル)アクリル酸、2−(ヒドロキシエチル)アクリル酸、2−(ヒドロキシメチル)アクリル酸アルキル(例えば、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸n−ブチル、2−(ヒドロキシメチル)アクリル酸t−ブチル)、2−(ヒドロキシエチル)アクリル酸アルキル等が挙げられ、好ましくは、ヒドロキシアリル部位を有する単量体である2−(ヒドロキシメチル)アクリル酸や2−(ヒドロキシメチル)アクリル酸アルキルであり、特に好ましくは2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルである。
【0033】
主鎖にラクトン環構造単位を有するメタクリル系樹脂におけるラクトン環構造単位の含有量は、本実施形態のメタクリル系樹脂のガラス転移温度の範囲を満たすものであれば特に制限はないが、メタクリル系樹脂100質量%に対して、5〜40質量%であることが好ましく、より好ましくは5〜35質量%である。
ラクトン環構造単位の含有量がこの範囲にあると、成形加工性を維持しつつ、耐溶剤性向上や表面硬度向上等の環構造導入効果が発現できる。
なお、メタクリル系樹脂におけるラクトン環構造の含有率は、前述の特許文献記載の方法を用いて決定できる。
【0034】
主鎖に環構造を有する構造単位(B)の含有量は、本実施形態のメタクリル系樹脂の耐熱性や熱安定性、強度及び流動性の観点から、メタクリル系樹脂を100質量%として、3〜40質量%であることが好ましく、下限は、より好ましくは5質量%以上であり、さらに好ましくは7質量%以上、さらにより好ましくは8質量%以上であり、また、上限は、より好ましくは30質量%以下、さらに好ましくは28質量%以下、さらにより好ましくは25質量%以下、特に好ましくは20質量%以下、特にさらに好ましくは18質量%以下、最も好ましくは15質量%未満である。
【0035】
−メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)−
本実施形態のメタクリル系樹脂を構成し得る、メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)(以下、(C)単量体単位と記載する場合がある。)としては、芳香族ビニル系単量体単位(C−1)、アクリル酸エステル単量体単位(C−2)、シアン化ビニル系単量体単位(C−3)、これら以外の単量体単位(C−4)が挙げられる。
メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)は、1種のみを単独で用いてもよく、2種以上を組み合わせてもよい。
【0036】
前記(C)単量体単位は、本実施形態のメタクリル系樹脂に求められる特性に応じて、適宜材料を選択することができるが、熱安定性、流動性、機械特性、耐薬品性等の特性が特に必要な場合は、芳香族ビニル系単量体単位(C−1)、アクリル酸エステル単量体単位(C−2)、シアン化ビニル系単量体単位(C−3)からなる群より選ばれる少なくとも一種が好適である。
【0037】
[芳香族ビニル系単量体単位(C−1)]
本実施形態のメタクリル系樹脂を構成する芳香族ビニル系単量体単位(C−1)をなす単量体としては、特に限定されるものではないが、下記一般式(4)で表される芳香族ビニル系単量体が好ましい。
【0039】
前記一般式(4)中、R
1は、水素原子、又は炭素数が1〜6のアルキル基を表し、当該アルキル基は、例えば、水酸基で置換されていてもよい。
R
2は、水素原子、炭素数が1〜12のアルキル基、炭素数が1〜12のアルコキシ基、炭素数が6〜8のアリール基、炭素数が6〜8のアリーロキシ基からなる群より選択されるいずれかであり、R
2は、全て同じ基であっても、異なる基であってもよい。また、R
2同士で環構造を形成してもよい。
nは、0〜5の整数を表す。
【0040】
上記一般式(4)で表される単量体の具体例としては、特に限定されるものではないが、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、p−エチルスチレン、m−エチルスチレン、о−エチルスチレン、p−tert−ブチルスチレン、1−ビニルナフタレン、2−ビニルナフタレン、1,1−ジフェニルエチレン、イソプロペニルベンセン(α−メチルスチレン)、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン等が挙げられる。
上記の中でも、スチレン、イソプロペニルベンゼンが好ましく、流動性付与や、重合転化率の向上による未反応モノマー類の低減等の観点から、スチレンがより好ましい。
これらは、本実施形態のメタクリル系樹脂において、要求される特性に応じて適宜選択してよい。
【0041】
芳香族ビニル系単量体単位(C−1)を使用する場合の含有量は、耐熱性、残存モノマー種の低減、流動性のバランスを考慮すると、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、23質量%以下であることが好ましく、より好ましくは20質量%以下、さらに好ましくは18質量%以下、さらにより好ましくは15質量%以下、よりさらに好ましくは10質量%以下である。
【0042】
芳香族ビニル系単量体単位(C−1)を、上述したマレイミド系構造単位(B−1)と併用する場合、(B−1)構造単位の含有量に対する(C−1)単量体単位の含有量の割合(質量比)(すなわち、(C−1)含有量/(B−1)含有量)としては、フィルムを成型加工する際の加工流動性や、残存モノマー低減によるシルバーストリークス低減効果等の観点から、0.3〜5であることが好ましい。
ここで、良好な色調や耐熱性を保持する観点から、上限値は、5以下であることが好ましく、より好ましくは3以下、さらに好ましくは1以下である。また、残存モノマー低減の観点から、下限値は、0.3以上であることが好ましく、より好ましくは0.4以上である。
上述した芳香族ビニル系単量体(C−1)は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0043】
[アクリル酸エステル単量体単位(C−2)]
本実施形態のメタクリル系樹脂を構成するアクリル酸エステル単量体単位(C−2)をなす単量体としては、特に限定されるものではないが、下記一般式(5)で表されるアクリル酸エステル単量体が好ましい。
【0045】
前記一般式(5)中、R
1は、水素原子、又は炭素数が1〜12のアルコキシ基を表し、R
2は、炭素数が1〜18のアルキル基を表す。
【0046】
前記アクリル酸エステル単量体単位(C−2)を形成するための単量体としては、本実施形態のフィルム用のメタクリル系樹脂において、耐候性、耐熱性、流動性、熱安定性を高める観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル等が好ましく、より好ましくは、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルであり、入手しやすさの観点から、アクリル酸メチル、アクリル酸エチルがさらに好ましい。
上記アクリル酸エステル単量体単位(C−2)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
【0047】
アクリル酸エステル単量体単位(C−2)を使用する場合の含有量は、耐熱性及び熱安定性の観点から、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、5質量%以下であることが好ましく、より好ましくは3質量%以下である。
【0048】
[シアン化ビニル系単量体単位(C−3)]
本実施形態のメタクリル系樹脂を構成するシアン化ビニル系単量体単位(C−3)をなす単量体としては、特に限定されるものではないが、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、シアン化ビニリデン等が挙げられ、中でも、入手のしやすさ、耐薬品性付与の観点から、アクリロニトリルが好ましい。
上記シアン化ビニル系単量体単位(C−3)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
【0049】
シアン化ビニル系単量体単位(C−3)を使用する場合の含有量は、耐溶剤性、耐熱性保持の観点から、(A)単量体単位と(B)構造単位との合計量を100質量%とした場合に、15質量%以下であることが好ましく、より好ましくは12質量%以下、さらに好ましくは10質量%以下である。
【0050】
[(C−1)〜(C−3)以外の単量体単位(C−4)]
本実施形態のメタクリル系樹脂を構成する(C−1)〜(C−3)以外の単量体単位(C−4)をなす単量体としては、特に限定されるものではないが、例えば、アクリルアミド、メタクリルアミド等のアミド類;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル化合物;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸類、及びこれらの半エステル化物又は無水物;メタリルアルコール、アリルアルコール等の不飽和アルコール類;エチレン、プロピレン、4−メチル−1−ペンテン等のオレフィン類;酢酸ビニル、2−ヒドロキシメチル−1−ブテン、メチルビニルケトン、N−ビニルピロリドン、N−ビニルカルバゾール等の上述以外のビニル化合物又はビニリデン化合物等が挙げられる。
さらに、反応性二重結合を複数有する架橋性の化合物として、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸又はメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ジ(メタ)アクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの;ジビニルベンゼン等の多官能モノマー等が挙げられる。
【0051】
上述した(C)単量体単位を構成する単量体の中でも、アクリル酸メチル、アクリル酸エチル、スチレン、アクリロニトリルからなる群より選ばれる少なくとも一種が、入手のしやすさの観点から、好ましい。
【0052】
メタクリル酸エステル単量体と共重合可能なその他のビニル系単量体単位(C)の含有量は、(B)構造単位による耐熱性付与の効果を高める観点から、メタクリル系樹脂を100質量%として、0〜20質量%であり、0〜18質量%であることが好ましく、0〜15質量%であることがより好ましい。
特に、(C)単量体単位として反応性二重結合を複数有する架橋性の多官能(メタ)アクリレートを使用する場合は、(C)単量体単位の含有量は、重合体の流動性の観点から、0.5質量%以下であることが好ましく、より好ましくは0.3%質量以下、更に好ましくは0.2質量%以下である。
【0053】
特に、本実施形態では、メタクリル系樹脂の耐熱性、光学特性の観点から、(B)構造単位と(C)単量体単位との合計量を100質量%とした時に、(B)構造単位の含有量が、45〜100質量%である。このとき、(C)構造単位の含有量が0〜55質量%である。そして、(B)構造単位の含有量は、好ましくは50〜100質量%であり、より好ましくは50〜90質量%であり、さらに好ましくは50〜80質量%である。
【0054】
以下、本実施形態のメタクリル系樹脂の特性について記載する。
【0055】
本実施形態におけるメタクリル系樹脂のガラス転移温度(Tg)は、120℃超160℃以下である。
メタクリル系樹脂のガラス転移温度が120℃を超えていれば、近年のレンズ成形体、液晶ディスプレイ用フィルム成形体光学フィルムとして必要十分な耐熱性をより容易に得ることができる。ガラス転移温度(Tg)は、使用環境温度下での寸法安定性の観点から、より好ましくは125℃以上、さらに好ましくは130℃以上である。
一方、メタクリル樹脂のガラス転移温度(Tg)が160℃以下である場合には、極端な高温での溶融加工を避け、樹脂等の熱分解を抑制し、良好な製品を得ることができる。ガラス転移温度(Tg)は、上述の理由から、好ましくは150℃以下である。
なお、ガラス転移温度(Tg)は、JIS−K7121に準拠して測定することにより決定できる。具体的には、後述する実施例に記載する方法を用いて測定することができる。
【0056】
本実施形態におけるメタクリル系樹脂のメタノール可溶分の量の、メタノール可溶分の量とメタノール不溶分の量の合計量100質量%に対する割合は、5質量%以下であり、好ましくは4.5%以下であり、さらに好ましくは4質量%以下であり、よりさらに好ましくは3.5質量%以下であり、好ましくは3質量%以下であり、さらに好ましくは2.5質量%以下である。
可溶分の量の割合を5質量%以下とすることで、フィルム成形時のキャストロール汚れや、射出成形時のシルバーストリークス発生等の成形時のトラブルを抑制することができる。
なお、メタノール可溶分及びメタノール不溶分は、メタクリル系樹脂をクロロホルム溶液とした後に溶液をメタノール中に滴下することによって再沈殿を行い、濾液及び濾物を分別し、その後に各々を乾燥させることによって得られたものをいい、具体的には、後述の実施例記載の方法にて得ることができる。
【0057】
本実施形態におけるメタクリル系樹脂は、メタノール不溶分の20w/v%クロロホルム溶液について10cm光路長セルを用いて測定したイエローネスインデックス(YI)が0〜7であり、好ましくは0.5〜6、より好ましくは0.8〜5、さらに好ましくは1〜4である。
【0058】
また、本実施形態におけるメタクリル系樹脂は、上記のYIの測定における条件と同じ条件で測定した680nmにおける透過率が、90%以上であることが好ましく、91%以上であることがより好ましく、92%以上であることがさらに好ましい。
イエローネスインデックス(YI)や透過率がこの範囲にあることにより、光学用途として好適な成形品を得ることができる。
なお、イエローネスインデックス(YI)及び透過率は、後述の実施例記載の方法にて測定することができる。
【0059】
本実施形態におけるメタクリル系樹脂では、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメチルメタクリレート換算の重量平均分子量(Mw)が、好ましくは65,000〜300,000の範囲であり、より好ましくは100,000〜220,000の範囲であり、さらに好ましくは120,000〜180,000の範囲である。
重量平均分子量(Mw)が上記範囲にあると、機械的強度、及び流動性のバランスにも優れる。
また、分子量分布を表すパラメータとしての、Z平均分子量(Mz)、重量平均分子量(Mw)、数平均分子量(Mn)の間における比に関しては、本実施形態におけるメタクリル系樹脂では、流動性と機械強度とのバランスを考慮すると、Mw/Mnは、1.5〜3.0であることが好ましく、1.6〜2.5であることがより好ましく、1.6〜2.3であることがさらに好ましく;Mz/Mwは、1.3〜2.0であることが好ましく、1.3〜1.8であることがより好ましく、1.4〜1.7であることがさらに好ましい。
特に、Mz/Mwがこの範囲にあることで、色調に優れるメタクリル系樹脂とすることができる。
なお、メタクリル系樹脂のZ平均分子量、重量平均分子量、数平均分子量については、後述の実施例記載の方法にて測定することができる。
【0060】
本実施形態の主鎖に環構造を有する構造単位(X)を含むメタクリル系樹脂の光弾性係数C
Rの絶対値は、3.0×10
−12Pa
−1以下であることが好ましく、2.0×10
−12Pa
−1以下であることがより好ましく、1.0×10
−12Pa
−1以下であることがさらに好ましい。
光弾性係数に関しては種々の文献に記載があり(例えば、化学総説,No.39,1998(学会出版センター発行)参照)、下記式(i−a)及び(i−b)により定義されるものである。光弾性係数C
Rの値がゼロに近いほど、外力による複屈折変化が小さいことがわかる。
C
R=|Δn|/σ
R・・・(i−a)
|Δn|=|nx−ny|・・・(i−b)
(式中、C
Rは、光弾性係数、σ
Rは、伸張応力、|Δn|は、複屈折の絶対値、nxは、伸張方向の屈折率、nyは、面内で伸張方向と垂直な方向の屈折率、をそれぞれ示す。)
本実施形態のメタクリル系樹脂の光弾性係数C
Rの絶対値が3.0×10
−12Pa
−1以下であれば、フィルム化して液晶表示装置に用いても、位相差ムラが発生したり、表示画面周辺部のコントラストが低下したり、光漏れが発生したりすることを抑制ないし防止することができる。
メタクリル系樹脂の光弾性係数C
Rは、具体的には、後述の実施例記載の方法にて求めることができる。
【0061】
(メタクリル系樹脂の製造方法)
以下、本実施形態のメタクリル系樹脂の製造方法について記載する。
【0062】
本実施形態のメタクリル系樹脂の製造方法は、下記第一の態様及び第二の態様の製造方法が挙げられる。
第一の態様では、メタクリル酸エステル単量体を含む2種以上の単量体を、溶媒中で回分式あるいは半回分式で、ラジカル重合する方法において、ラジカル重合開始剤として、重合温度における半減期が1分以上60分未満であるものを用い、前記ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、前記単量体の重合を進行させ、かつ、重合転化率が85%を達した時点以降に添加される前記ラジカル重合開始剤の添加量を、前記ラジカル重合開始剤の全添加量を100質量%として、10〜25質量%とする。
なお、第一の態様では、ラジカル重合開始剤は、連続的に加えても断続的に加えてもよく、断続的に加える場合、添加していない時間については単位時間当たりの添加量を考えないものとする。
第二の態様では、メタクリル酸エステル単量体を含む2種以上の単量体成分を、溶媒中で回分式あるいは半回分式で、ラジカル重合する方法において、ラジカル重合開始剤として、重合温度における半減期が60分以上であるものを用い、前記重合開始剤の添加開始から30分以内に、前記ラジカル重合開始剤の全添加量の25質量%以上を添加し、かつ、前記重合開始剤の添加開始から30分以降に、前記単量体の全添加量の25質量%以上を添加する。
なお、重合中に温度が変動する場合には、重合転化率が95%に達するまでの重合温度の時間平均を重合温度とみなす。
【0063】
以下、主鎖に環構造を有する構造単位(B)として、N−置換マレイミド系構造単位(B−1)を含むメタクリル系樹脂の製造方法について詳述する。
【0064】
本実施形態における主鎖にN−置換マレイミド単量体由来の構造単位(B−1)を有するメタクリル系樹脂の製造方法としては、溶液重合法が用いられる。
本実施形態における製造方法では、重合形式として、回分(バッチ)式、半回分(セミバッチ)式を用いることができる。ここで、回分式とは、反応器へ原料を全量投入後に反応を開始・進行させ、終了後に生成物を回収するプロセスであり、また、半回分式とは、原料投入あるいは生成物回収のどちらか一方を反応進行中に同時に行うプロセスである。本実施形態における主鎖にN−置換マレイミド単量体由来の構造単位を有するメタクリル系樹脂の製造方法としては、反応開始後に一部の原料投入を行う形式の半回分式が好ましい。
本実施形態における製造方法では、ラジカル重合による単量体の重合が用いられる。
【0065】
用いる重合溶媒としては、重合により得られるマレイミド共重合体の溶解度を高め、ゲル化防止等の目的から反応液の粘度を適切に保てるものであれば、特に制限はない。
具体的な重合溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン等の芳香族炭化水素;メチルイソブチルケトン、ブチルセロソルブ、メチルエチルケトン、シクロヘキサノン等のケトン;ジメチルホルムアミド、2−メチルピロリドン等の極性溶媒を用いることができる。
また、重合時における重合生成物の溶解を阻害しない範囲で、メタノール、エタノール、イソプロパノール等のアルコールを重合溶媒として併用してもよい。
【0066】
重合時の溶媒量としては、重合が進行し、生産時に共重合体や使用モノマーの析出等が起こらず、容易に除去できる量であれば特に制限はないが、例えば、配合する単量体の総量を100質量部とした場合に、10〜200質量部とすることが好ましい。より好ましくは25〜200質量部、さらに好ましくは50〜200質量部、さらにより好ましくは50〜150質量部である。
【0067】
重合温度としては、重合が進行する温度であれば特に制限はないが、70〜180℃であることが好ましく、より好ましくは80〜160℃である。さらに好ましくは90〜150℃、さらにより好ましくは100〜150℃である。生産性の観点から70℃以上とすることが好ましく、重合時の副反応を抑制し、所望の分子量や品質の重合体を得るために180℃以下とすることが好ましい。
【0068】
また、重合時間については、必要な転化率にて、必要な重合度を得ることができる時間であれば特に限定はないが、生産性等の観点から、2〜15時間であることが好ましく、より好ましくは3〜12時間、さらに好ましくは4〜10時間である。
【0069】
本実施形態における主鎖にN−置換マレイミド単量体由来の構造単位を有するメタクリル系樹脂の重合終了時の重合転化率は、93〜99.9%であることが好ましく、95〜99.5%であることがより好ましく、97〜99%であることがさらに好ましい。
ここで、重合転化率とは、重合系内に添加した単量体の総質量から重合終了時に残存している単量体の総質量を差し引いた値の、重合系内に添加した単量体の総質量に対する割合である。
また、重合後の溶液に残存しているN−置換マレイミド単量体の量(N−置換マレイミド残存量)は、100〜7000質量ppm以下であることが好ましく、200〜5000質量ppm以下であることがより好ましく、300〜3000質量ppm以下であることがさらに好ましい。
重合転化率が高く、かつN−置換マレイミド残存量が少ないほど、溶媒回収系に回る単量体が少ないため、精製系への負荷が軽減され、また、原単位が上がり経済的であるものの、重合転化率を高くし過ぎたり、N−置換マレイミド残存量を低減し過ぎたりすると、着色性の低分子量成分量やメタノール可溶分の量が増加し、色調や成形加工性に悪影響を及ぼすおそれがある。
【0070】
重合反応時には、必要に応じて連鎖移動剤を添加して重合してもよい。
【0071】
連鎖移動剤としては、一般的なラジカル重合において用いる連鎖移動剤が使用でき、例えば、n−ブチルメルカプタン、n−オクチルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタン、チオグリコール酸2−エチルヘキシル等のメルカプタン化合物;四塩化炭素、塩化メチレン、ブロモホルム等のハロゲン化合物;α−メチルスチレンダイマー、α−テルピネン、ジペンテン、ターピノーレン等の不飽和炭化水素化合物;等が挙げられる。
これらは、単独で用いても2種以上を併用して用いてもよい。
これらの連鎖移動剤は、重合反応が進行中であれば、いずれの段階に添加してもよく、特に限定されるものではない。
連鎖移動剤の添加量としては、重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部である。
【0072】
溶液重合においては、重合溶液中の溶存酸素濃度を出来る限り低減させておくことが重要であり、例えば、溶存酸素濃度は、10ppm以下の濃度であることが好ましい。
溶存酸素濃度は、例えば、溶存酸素計 DOメーターB−505(飯島電子工業株式会社製)を用いて測定することができる。溶存酸素濃度を低下する方法としては、重合溶液中に不活性ガスをバブリングする方法、重合前に重合溶液を含む容器中を不活性ガスで0.2MPa程度まで加圧した後に放圧する操作を繰り返す方法、重合溶液を含む容器中に不活性ガスを通ずる方法等の方法を適宜選択することができる。
【0073】
重合反応時には、重合開始剤を添加する。
【0074】
重合開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシイソノナノエート、1,1−ジt−ブチルパーオキシシクロヘキサン等の有機過酸化物;2,2’−アゾビス(イソブチロニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレート等のアゾ化合物;等を挙げることができる。
これらは、単独で用いても2種以上を併用して用いてもよい。
これらの重合開始剤は、重合反応が進行中であれば、いずれの段階に添加してもよい。
重合開始剤の添加量としては、重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部である。
【0075】
本実施形態におけるN−置換マレイミド単量体由来の環構造単位を有するメタクリル系樹脂の重合時において、反応系内に存在する各コモノマー及び重合活性を有するラジカルの濃度を制御することによって、メタノール可溶分の量がメタノール可溶分の量とメタノール不溶分の量の合計量100質量%に対して5質量%以下であり、メタノール不溶分の20w/v%クロロホルム溶液について10cm光路長セルを用いて測定したイエローネスインデックス(YI)が0〜7であるメタクリル系樹脂を製造することできる。
【0076】
一般的な回分式のラジカル重合において重合終了時の転化率を高めようとした場合、重合終盤でオリゴマー成分量が増加し、成形加工性に悪影響を及ぼすものと考えられる。また、メタクリル酸エステル単量体とN−置換マレイミド単量体とを共重合する場合、一般にN−置換マレイミド単量体が残存しやすく、重合終盤にN−置換マレイミド含有量が多い低分子量の重合体を生成し、それ自身が着色性を示したり、加熱時に着色成分となる重合体を生成したりするものと考えられる。
本実施形態におけるN−置換マレイミド単量体由来の環構造単位を有するメタクリル系樹脂の重合においては、重合開始剤及び/又は単量体を重合途中に添加し、その添加量を制御することで、重合中の系内の単量体とラジカルとの濃度比の変動を小さくし、重合終盤での低分子量成分の生成を抑制し、着色性や成形加工性を改善することができる。
【0077】
第一の重合方法は、回分式あるいは半回分式で重合を行うにあたり、ラジカル重合開始剤として、当該重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるものである。
第二の重合方法は、回分式あるいは半回分式で重合を行うにあたり、ラジカル重合開始剤として、当該重合温度における半減期が60分以上であるものを用い、反応器内に、重合開始後所定時間以内にラジカル重合開始剤の一部を添加し、重合開始後所定時間以降に単量体の一部を添加して重合を進行させるものである。
【0078】
以下に各々の重合方法について説明する。
【0079】
第一の重合方法は、前述の通り、ラジカル重合開始剤として、当該重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるものである。
ここで、重合温度における半減期が1分以上60分未満であるラジカル重合開始剤とは、重合温度が1分間半減期温度以下であり、かつ、1時間半減期温度よりも高いラジカル重合開始剤と言い換えることができる。
【0080】
開始剤が重合温度において1分以上の半減期を有していれば、開始剤が重合反応器に添加され、内容液と十分に混合され、その後分解して重合を開始することができるため、好ましい。また、重合時間よりも著しく短い半減期を有する開始剤を、重合中に添加することによって、反応系内のラジカル濃度に対する残存モノマー濃度の割合の変動を小さく保ち、また、重合終盤の残存モノマー濃度が低下した段階でのラジカル濃度を低く保つことができ、これにより、重合中における低分子量成分の生成を抑制することができる。
【0081】
ラジカル重合開始剤の当該重合温度における半減期は、好ましくは3分以上60分未満、さらに好ましくは5分以上60分未満である。
【0082】
上記の1分間半減期温度及び1時間半減期温度とは、文献や過酸化物メーカーの技術資料等に記載があり、さらに分解反応の活性化エネルギーのデータも用いることで、その他の時間での半減期温度も計算することができる。
【0083】
いくつかのラジカル開始剤の半減期温度の例を表1に記す。
【0085】
第一の重合方法では、重合転化率が85%に達した時点以降に添加される開始剤の添加量を、重合期間中に添加されるラジカル重合開始剤の全添加量を100質量%として、10〜25質量%とすることが好ましく、10〜20質量%であることがより好ましい。
【0086】
さらに、第一の重合方法においては、重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるにあたり、重合転化率が85%に達した時点での開始剤の添加速度を、最大添加速度の1/10〜1/3とすることが好ましく、1/10〜1/4とすることがより好ましい。
下限以上であることが、十分な転化率を得る観点から好ましく、上限以下であることが、色調や加工性に悪影響を及ぼす重合体成分の生成を抑制する観点から好ましい。
【0087】
また、第一の重合方法において、単量体の一部を重合開始前に反応器内に仕込み、重合開始剤を添加して重合を開始した後に単量体の残部を供給することによって、低分子量成分の生成とともに超高分子量成分の生成も抑制されるため、分子量分布を狭幅化し、Mw/MnやMz/Mwを所望の範囲に調整することができる。また、重合終盤に残存するN−置換マレイミド単量体量を低減することもでき、色調を良好にすることができる。
【0088】
初期仕込の単量体の量と重合開始後に添加する単量体の量と比は、好ましくは1:9〜8:2であり、より好ましくは2:8〜7.5:2.5であり、さらに好ましくは3:7〜5:5である。
【0089】
第一の重合方法では、共重合時に先に重合する傾向にあるメタクリル酸エステル単量体の添加量を、初期仕込時に少なくし、追加添加時に多くすることで、重合終盤のN−置換マレイミド単量体の残存量を低減することができ、色調改良の観点で好ましい。
【0090】
また、重合中に、N−置換マレイミド単量体と交互共重合性の高いスチレン等の単量体を添加することによって、N−置換マレイミド単量体の残存量を低減することもできる。
【0091】
第二の重合方法は、前述の通り、ラジカル重合開始剤として、当該重合温度における半減期が60分以上であるものを用い、反応器内に、重合開始後所定時間以内にラジカル重合開始剤の一部を添加し、重合開始後所定時間以降に単量体の一部を添加して重合を進行させるものである。
【0092】
重合時間と比べて著しく短いとは言えない半減期を有するラジカル開始剤を用いる場合、重合終盤においてもラジカル濃度は比較的高めに維持される。
ここで、この重合終盤において単量体を追加添加することにより、重合期間中においてラジカル濃度に対する残存モノマー濃度の割合の変動を小さくできる。また、重合初期に、ラジカル開始剤の多くを添加することによって、重合終盤の残存モノマー濃度が低下した段階でのラジカル濃度を低く保つことができ、これにより、重合中における低分子量成分の生成を抑制することができる。
【0093】
第二の重合方法では、ラジカル開始剤は、重合開始剤の添加開始から30分以内に、その全添加量の25質量%以上を添加するものとし、好ましくは全添加量の33質量%以上添加し、さらに好ましくは50質量%以上を添加する。
また、単量体は、重合開始剤の添加開始から30分以降に、その全添加量の25質量%以上を添加するものとし、好ましくは全添加量の33質量%以上添加し、より好ましくは50質量%以上添加し、さらに好ましくは66質量%以上を添加する。
【0094】
さらに、第二の重合方法では、好ましくは重合開始剤の添加開始から4時間以内に、より好ましくは重合開始剤の添加開始から3時間以内に、さらに好ましくは重合開始剤の添加開始から2時間以内に、ラジカル開始剤の全添加量を添加し終える。
【0095】
主鎖に環構造を有する構造単位(B)として、N−置換マレイミド系構造単位(B−1)を含むメタクリル系樹脂の製造方法の第一の製造方法及び第二の製造方法では、ラジカル開始剤は2種以上を組み合わせて用いることができる。
2種以上のラジカル開始剤の全てにおいて、当該重合温度での半減期が1分以上60分未満である場合、当該重合温度での半減期が60分以上である場合には、それぞれ、第一の重合方法、第二の重合方法におけるラジカル開始剤の添加量や添加速度は、2種以上のラジカル開始剤の合計での添加量や添加速度としてよい。
当該重合温度での半減期が1分以上60分未満であるものと、当該重合温度での半減期が60分以上であるものとを組み合わせて用いる場合には、第二の重合方法を採用する、すなわち、重合開始剤の添加開始から30分以内に、ラジカル重合開始剤の全添加量の25質量%以上を添加し、かつ、重合開始剤の添加開始から30分以降に、単量体の全添加量の25質量%以上を添加する。
【0096】
溶液重合により得られる重合液から重合物を回収する方法としては、特に制限はないが、例えば、重合により得られた重合生成物が溶解しないような炭化水素系溶媒やアルコール系溶媒等の貧溶媒が過剰量存在する中に重合液を添加した後、ホモジナイザーによる処理(乳化分散)を行い、未反応単量体について、液−液抽出、固−液抽出する等の前処理を施すことで、重合液から分離する方法;あるいは、脱揮工程と呼ばれる工程を経由して重合溶媒や未反応の単量体を分離し、重合生成物を回収する方法;等が挙げられる。
【0097】
ここで、脱揮工程とは、重合溶媒、残存単量体、反応副生成物等の揮発分を、加熱・減圧条件下で、除去する工程をいう。
脱揮工程に用いる装置としては、例えば、管状熱交換器と脱揮槽とからなる脱揮装置;神鋼環境ソリューション社製ワイブレン及びエクセバ、日立製作所製コントラ及び傾斜翼コントラ等の薄膜蒸発機;脱揮性能を発揮するに十分な滞留時間と表面積とを有するベント付き押出機;等を挙げることができる。
これらの中からいずれか2つ以上の装置を組み合わせた脱揮装置を用いた脱揮工程等も利用することができる。
【0098】
脱揮装置での処理温度は、好ましくは150〜350℃、より好ましくは170〜300℃、さらに好ましくは200〜280℃である。下限温度以上とすることで残存揮発分を抑制でき、上限温度以下とすることで得られるアクリル系樹脂の着色や分解を抑制できる。
脱揮装置内における真空度としては、10〜500Torrの範囲、中でも、10〜300Torrの範囲で用いることが好ましい。この真空度を上限値以下とすることで、揮発分の残存量を抑制できる。また下限値以上の真空度が、工業的な実施の上で現実的である。
処理時間は、残存揮発分の量により適宜選択されるが、得られるアクリル系樹脂の着色や分解を抑えるためには短いほど好ましい。
【0099】
脱揮工程を経て回収された重合物は、造粒工程と呼ばれる工程にて、ペレット状に加工される。
【0100】
造粒工程では、溶融状態の樹脂を多孔ダイよりストランド状に押出し、コールドカット方式、空中ホットカット方式、水中ストランドカット方式、及びアンダーウオーターカット方式にて、ペレット状に加工する。
【0101】
なお、脱揮装置としてベント付押出機を採用した場合には、脱揮工程と造粒工程とを兼ねてもよい。
【0102】
以下、主鎖に環構造を有する構造単位(B)として、ラクトン環構造単位(B−2)を含むメタクリル系樹脂の製造方法について詳述する。
【0103】
本実施形態における主鎖にラクトン環構造単位(B−2)を有するメタクリル系樹脂の製造方法としては、環化反応を促進させる上で、溶媒を使用する溶液重合が好ましい。ここで、ラクトン環構造は、重合後に環化反応により形成させる方法が用いられてよい。
【0104】
用いる重合溶媒としては、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;メチルエチルケトン、メチルイソブチルケトン等のケトン類;等が挙げられる。
これらの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
【0105】
重合時の溶媒量としては、重合が進行し、ゲル化を抑制できる条件であれば特に制限はないが、例えば、配合する単量体の総量を100質量部とした場合に、50〜200質量部とすることが好ましく、より好ましくは100〜200質量部である。
【0106】
重合液のゲル化を充分に抑制し、重合後の環化反応を促進するためには、重合後に得られる反応混合物中における生成した重合体の濃度が50質量%以下になるように重合を行うことが好ましい。
また、重合溶媒を反応混合物に適宜添加して50質量%以下となるように制御することが好ましい。重合溶媒を反応混合物に適宜添加する方法としては、特に限定されるものではなく、例えば、連続的に重合溶媒を添加してもよいし、間欠的に重合溶媒を添加してもよい。添加する重合溶媒は、1種のみの単一溶媒であっても2種以上の混合溶媒であってもよい。
【0107】
重合温度としては、重合が進行する温度であれば特に制限はないが、生産性の観点から50〜200℃であることが好ましく、より好ましくは、80〜180℃である。
【0108】
重合時間としては、目的の転化率が満たされれば、特に制限されないが、生産性等の観点から、0.5〜10時間であることが好ましく、より好ましくは1〜8時間である。
【0109】
本実施形態における主鎖にラクトン環構造単位を有するメタクリル系樹脂の重合終了時の重合転化率は、前記N−置換マレイミド単量体由来の構造単位を有するメタクリル樹脂の調製方法に開示した重合転化率であってよい。
【0110】
重合反応時には、必要に応じて、連鎖移動剤を添加して重合してもよい。
【0111】
連鎖移動剤としては、一般的なラジカル重合において用いる連鎖移動剤が使用でき、例えば、前記N−置換マレイミド単量体由来の構造単位を有するメタクリル樹脂の調製方法に開示した連鎖移動剤等が利用できる。
これらは、単独で用いても2種以上を併用して用いてもよい。
これらの連鎖移動剤は重合反応が進行中であれば、いずれの段階に添加してもよく、特に限定されるものではない。
連鎖移動剤の添加量については、使用する重合条件において所望の重合度が得られる範囲であれば、特に限定されるものではないが、好ましくは重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部である。
【0112】
重合溶液中の溶存酸素濃度は、例えば、前記N−置換マレイミド単量体由来の構造単位を有するメタクリル樹脂の調製方法に開示した値であってよい。
【0113】
重合反応時には、重合開始剤を添加して重合する。
【0114】
重合開始剤としては、特に限定されるものではないが、例えば、前記N−置換マレイミド単量体由来の構造単位を有するメタクリル樹脂の調製方法に開示した重合開始剤等が利用できる。
これらの重合開始剤は、単独で用いても2種以上を併用してもよい。
重合開始剤の添加量は、単量体の組合せや反応条件等に応じて適宜設定すればよく、特に限定されるものではないが、重合に用いる単量体の総量を100質量部とした場合に、0.01〜1質量部としてよく、好ましくは0.05〜0.5質量部である。
【0115】
本実施形態におけるラクトン環構造単位を有するメタクリル系樹脂の重合時においては、重合開始剤と必要に応じて単量体を重合途中に添加し、その添加量を制御することで、重合中の系内の単量体の濃度とラジカルの濃度との比の変動を小さくし、重合終盤での低分子量成分の生成を抑制し、着色性や成形加工性を改善することができる。
【0116】
第一の重合方法は、回分式あるいは半回分式で重合を行うにあたり、ラジカル重合開始剤として、当該重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるものである。
第二の重合方法は、回分式あるいは半回分式で重合を行うにあたり、ラジカル重合開始剤として、当該重合温度における半減期が60分以上であるものを用い、反応器内に、重合開始後所定時間以内にラジカル重合開始剤の一部を添加し、重合開始後所定時間以降に単量体の一部を添加して重合を進行させるものである。
【0117】
以下に各々の重合方法について説明する。
【0118】
第一の重合方法は、前述の通り、ラジカル重合開始剤として、当該重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるものである。
ここで、重合温度における半減期が1分以上60分未満であるラジカル重合開始剤とは、重合温度が1分間半減期温度以下であり、かつ、1時間半減期温度よりも高いラジカル重合開始剤と言い換えることができる。
開始剤が重合温度において1分以上の半減期を有していれば、開始剤が重合反応器に添加され、内容液と十分に混合され、その後分解して重合を開始することができるため、好ましい。また、重合時間よりも著しく短い半減期を有する開始剤を、重合中に添加することによって、反応系内のラジカル濃度に対する残存モノマー濃度の割合の変動を小さく保ち、また、重合終盤の残存モノマー濃度が低下した段階でのラジカル濃度を低く保つことができ、これにより、重合中における低分子量成分の生成を抑制することができる。
【0119】
ラジカル重合開始剤の当該重合温度における半減期は、好ましくは3分以上60分未満、さらに好ましくは5分以上60分未満である。
【0120】
半減期温度の意味や計算方法、ラジカル開始剤の半減期温度の例については、前記N−置換マレイミド単量体由来の構造単位を有するメタクリル樹脂の調製方法に開示した通りである。
【0121】
第一の重合方法では、重合転化率が85%に達した時点以降に添加される開始剤の添加量を、重合期間中に添加されるラジカル重合開始剤の全添加量を100質量%として、10〜25質量%とすることが好ましく、10〜20質量%であることがより好ましい。
【0122】
さらに、第一の重合方法においては、重合温度における半減期が1分以上60分未満であるものを用い、ラジカル重合開始剤を、その単位時間当たりの添加量を漸減させながら、反応器内に添加して、単量体の重合を進行させるにあたり、重合転化率が85%に達した時点での開始剤の添加速度を、最大添加速度の1/10〜1/3とすることが好ましく、1/10〜1/4とすることがより好ましい。
下限以上であることが、十分な転化率を得る観点から好ましく、上限以下であることが、色調や加工性に悪影響を及ぼす重合体成分の生成を抑制する観点から好ましい。
【0123】
また、第一の重合方法において、単量体の一部を重合開始前に反応器内に仕込み、重合開始剤を添加して重合を開始した後に単量体の残部を供給することによって、低分子量成分の生成とともに超高分子量成分の生成も抑制されるため、分子量分布を狭幅化し、Mw/MnやMz/Mwを所望の範囲に調整することができる。また、ヒドロキシ基を有するアクリル酸系単量体が分子中に均一に、かつ、なるべく連続せずに、導入されることで、分子内環化率を高め、ゲル化を抑制し、さらに色調悪化を抑制することができるため、これを考慮して、重合開始後に単量体を追添することは好ましい。
【0124】
初期仕込の単量体の量と重合開始後に添加する単量体の量と比は、好ましくは1:9〜8:2であり、より好ましくは2:8〜7.5:2.5であり、さらに好ましくは3:7〜5:5である。
【0125】
第二の重合方法は、前述の通り、ラジカル重合開始剤として、当該重合温度における半減期が60分以上であるものを用い、反応器内に、重合開始後所定時間以内にラジカル重合開始剤の一部を添加し、重合開始後所定時間以降に単量体の一部を添加して重合を進行させるものである。
【0126】
重合時間と比べて著しく短いとは言えない半減期を有するラジカル開始剤を用いる場合、重合終盤においてもラジカル濃度は比較的高めに維持される。
ここで、この重合終盤において単量体を追加添加することにより、重合期間中においてラジカル濃度に対する残存モノマー濃度の割合の変動を小さくできる。また、重合初期に、ラジカル開始剤の多くを添加することによって、重合終盤の残存モノマー濃度が低下した段階でのラジカル濃度を低く保つことができ、これにより、重合中における低分子量成分の生成を抑制することができる。
【0127】
第二の重合方法では、ラジカル開始剤は、重合開始剤の添加開始から30分以内に、その全添加量の25質量%以上を添加するものとし、好ましくは全添加量の33質量%以上添加し、さらに好ましくは50質量%以上を添加する。
また、単量体は、重合開始剤の添加開始から30分以降に、その全添加量の25質量%以上を添加するものとし、好ましくは全添加量の33質量%以上添加し、より好ましくは50質量%以上添加し、さらに好ましくは66質量%以上を添加する。
【0128】
さらに、第二の重合方法では、好ましくは重合開始剤の添加開始から4時間以内に、より好ましくは重合開始剤の添加開始から3時間以内に、さらに好ましくは重合開始剤の添加開始から2時間以内に、ラジカル開始剤の全添加量を添加し終える。
【0129】
主鎖に環構造を有する構造単位(B)として、ラクトン環構造単位(B−2)を含むメタクリル系樹脂の製造方法の第一の製造方法及び第二の製造方法では、ラジカル開始剤は2種以上を組み合わせて用いることができる。
2種以上のラジカル開始剤の全てにおいて、当該重合温度での半減期が1分以上60分未満である場合、当該重合温度での半減期が60分以上である場合には、それぞれ、第一の重合方法、第二の重合方法におけるラジカル開始剤の添加量や添加速度は、2種以上のラジカル開始剤の合計での添加量や添加速度としてよい。
当該重合温度での半減期が1分以上60分未満であるものと、当該重合温度での半減期が60分以上であるものとを組み合わせて用いる場合には、第二の重合方法を採用する、すなわち、重合開始剤の添加開始から30分以内に、ラジカル重合開始剤の全添加量の25質量%以上を添加し、かつ、重合開始剤の添加開始から30分以降に、単量体の全添加量の25質量%以上を添加する。
【0130】
本実施形態におけるラクトン環構造単位を有するメタクリル系樹脂は、上記重合反応終了後、環化反応を行うことにより得ることができる。そのため、重合反応液から重合溶媒を除去することなく、溶媒を含んだ状態で、ラクトン環化反応に供することが好ましい。
重合により得られた共重合体は、加熱処理されることにより、共重合体の分子鎖中に存在するヒドロキシル基(水酸基)とエステル基との間での環化縮合反応を起こし、ラクトン環構造を形成する。
【0131】
ラクトン環構造形成の加熱処理の際、環化縮合によって副生し得るアルコールを除去するための真空装置あるいは脱揮装置を備えた反応装置、脱揮装置を備えた押出機等を用いることもできる。
【0132】
ラクトン環構造形成の際、必要に応じて、環化縮合反応を促進するために、環化縮合触媒を用いて加熱処理してもよい。
環化縮合触媒の具体的な例としては、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル等の亜リン酸モノアルキルエステル、ジアルキルエステル又はトリエステル;リン酸メチル、リン酸エチル、リン酸2−エチルヘキシル、リン酸オクチル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸ジメチル、リン酸ジエチル、リン酸ジ−2−エチルヘキシル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル等のリン酸モノアルキルエステル、ジアルキルエステル又はトリアルキルエステル;等が挙げられる。
これらは、単独で用いても2種以上を併用してもよい。
環化縮合触媒の使用量としては、特に限定されるものではないが、例えば、メタクリル系樹脂100質量部に対して、好ましくは0.01〜3質量部であり、より好ましくは0.05〜1質量部である。
使用量が0.01質量部未満であると、環化縮合反応の反応率が充分に向上しないおそれがある。逆に、触媒の使用量が3質量部を超えると、得られた重合体が着色することや、重合体が架橋して、溶融成形が困難になるおそれがある。
【0133】
環化縮合触媒の添加時期としては、特に限定されるものではなく、例えば、環化縮合反応初期に添加してもよいし、反応途中に添加してもよいし、その両方で添加してもよい。
【0134】
溶媒の存在下に環化縮合反応を行う際に、同時に脱揮を行うことも好ましく用いられる。
環化縮合反応と脱揮工程とを同時に行う場合に用いる装置については、特に限定されるものではないが、熱交換器と脱揮槽からなる脱揮装置やベント付き押出機、また、脱揮装置と押出機を直列に配置したものが好ましく、ベント付き二軸押出機がより好ましい。
【0135】
用いるベント付き二軸押出機としては、複数のベント口を有するベント付き押出機が好ましい。
ベント付き押出機を用いる場合の反応処理温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。反応処理温度が150℃未満であると、環化縮合反応が不充分となって残存揮発分が多くなることがある。逆に、反応処理温度が350℃を超えると、得られた重合体の着色や分解が起こることがある。
ベント付き押出機を用いる場合の真空度としては、好ましくは10〜500Torr、より好ましくは10〜300Torrである。真空度が500Torrを超えると、揮発分が残存しやすいことがある。逆に、真空度が10Torr未満であると、工業的な実施が困難になることがある。
【0136】
上記の環化縮合反応を行う際に、残存する環化縮合触媒を失活させる目的で、造粒時に有機酸のアルカリ土類金属及び/又は両性金属塩を添加することも好ましい。
有機酸のアルカリ土類金属及び/又は両性金属塩としては、例えば、カルシウムアセチルアセテート、ステアリン酸カルシウム、酢酸亜鉛、オクチル酸亜鉛、2−エチルヘキシル酸亜鉛等を用いることができる。
【0137】
環化縮合反応工程を経た後、メタクリル系樹脂は、多孔ダイを附帯した押出機からストランド状に溶融し押出し、コールドカット方式、空中ホットカット方式、水中ストランドカット方式、及びアンダーウオーターカット方式にてペレット状に加工する。
【0138】
なお、前述のラクトン環構造単位を形成するためのラクトン化は、樹脂の製造後樹脂組成物の製造(後述)前に行ってもよく、樹脂組成物の製造中に、樹脂と樹脂以外の成分との溶融混練と併せて、行ってもよい。
【0139】
本実施形態におけるメタクリル系樹脂は、N−置換マレイミド単量体由来の構造単位、ラクトン環構造単位からなる群より選ばれる少なくとも一種の環構造単位を有することが好ましく、その中でも、特に、他の熱可塑性樹脂をブレンドすること無く、光弾性係数等の光学特性を高度に制御しやすい点から、N−置換マレイミド単量体由来の構造単位を有することが特に好ましい。
【0140】
−他の熱可塑性樹脂−
本実施形態のメタクリル系樹脂に対し、本発明の目的を損なわず、複屈折の調整や可とう性向上の目的で、他の熱可塑性樹脂を配合することもできる。
他の熱可塑性樹脂としては、例えば、ポリブチルアクリレート等のポリアクリレート類;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレンーブチルアクリレート共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体等のスチレン系ポリマー;さらには、例えば、特開昭59−202213号公報、特開昭63−27516号公報、特開昭51−129449号公報、特開昭52−56150号公報等に記載の、3〜4層構造のアクリル系ゴム粒子;特公昭60−17406号公報、特開平8−245854公報に開示されているゴム質重合体;国際公開第2014−002491号に記載の、多段重合で得られるメタクリル系ゴム含有グラフ卜共重合体粒子;等が挙げられる。
この中でも、良好な光学特性と機械的特性とを得る観点からは、スチレン−アクリロニトリル共重合体や、主鎖に環構造を有する構造単位(X)を含むメタクリル系樹脂と相溶し得る組成からなるグラフト部をその表面層に有するゴム含有グラフト共重合体粒子が好ましい。
前述のアクリル系ゴム粒子、メタクリル系ゴム含有グラフ卜共重合体粒子、及びゴム質重合体の平均粒子径としては、本実施形態の組成物より得られるフィルムの衝撃強度及び光学特性等を高める観点から、0.03〜1μmであることが好ましく、より好ましくは0.05〜0.5μmである。
【0141】
他の熱可塑性樹脂の含有量としては、メタクリル系樹脂を100質量部とした場合に、好ましくは0〜50質量部、より好ましくは0〜25質量である。
【0142】
−添加剤−
本実施形態に係るメタクリル系樹脂には、本発明の効果を著しく損なわない範囲内で、種々の添加剤を含有していてもよい。
添加剤としては、特に制限はないが、例えば、無機充填剤;酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤・離型剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤;ヒンダードフェノール系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤;ベンゾトリアゾール系紫外線吸収剤;難燃剤;帯電防止剤;有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤;着色剤;亜リン酸エステル類、ホスホナイト類、リン酸エステル類等の有機リン化合物;その他添加剤;あるいはこれらの混合物等が挙げられる。
【実施例】
【0143】
以下、実施例及び比較例を挙げて本発明の内容を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
【0144】
<1.重合転化率の測定>
実施例及び比較例における重合液の一部を採取し、この重合液試料中に残存する単量体量を、試料をクロロホルムに溶解させて、5質量%溶液を調整し、内部標準物質としてn−デカンを添加し、ガスクロマトグラフィー(島津製作所製 GC−2010)を用いて、試料中に残存する単量体濃度を測定し、重合溶液中に残存する単量体の総質量(a)を求めた。そして、この総質量(a)と、試料を採取した時点までに添加した単量体が重合溶液中に全量残存したと仮定した場合の総質量(b)と、重合工程終了までに添加する単量体の総質量(c)から、計算式(b−a)/c×100により、重合転化率(%)を算出した。
【0145】
<2.構造単位の解析>
後述の各製造例において特に断りのない限り、
1H−NMR測定及び
13C−NMR測定により、後述の製造例で製造したメタクリル系樹脂の構造単位を同定し、その存在量を算出した。
1H−NMR測定及び
13C−NMR測定の測定条件は、以下の通りである。
・測定機器:ブルーカー社製 DPX−400
・測定溶媒:CDCl
3又はDMSO−d
6
・測定温度:40℃
なお、メタクリル系樹脂の環構造がラクトン環構造である場合には、特開2001−151814号公報、特開2007−297620号公報に記載の方法にて確認した。
【0146】
<3.分子量及び分子量分布の測定>
後述の製造例で製造したメタクリル系樹脂のZ平均分子量(Mz)、重量平均分子量(Mw)、及び数平均分子量(Mn)は、下記の装置、及び条件で測定した。
・測定装置:東ソー株式会社製、ゲルパーミエーションクロマトグラフィー(HLC−8320GPC)
・測定条件:
カラム:TSKguardcolumn SuperH−H 1本、TSKgel SuperHM−M 2本、 TSKgel SuperH2500 1本、を順に直列接続して使用した。カラム温度:40℃
展開溶媒:テトラヒドロフラン、流速:0.6mL/分、内部標準として、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を、0.1g/L添加した。
検出器:RI(示差屈折)検出器、検出感度:3.0mV/分
サンプル:0.02gのメタクリル系樹脂又はメタクリル系樹脂のテトラヒドロフラン20mL溶液。注入量:10μL
検量線用標準サンプル:単分散の重量ピーク分子量が既知で分子量が異なる、以下の10種のポリメタクリル酸メチル(PolymerLaboratories製;PMMACalibration Kit M−M−10)を用いた。
重量ピーク分子量(Mp)
標準試料1 1,916,000
標準試料2 625,500
標準試料3 298,900
標準試料4 138,600
標準試料5 60,150
標準試料6 27,600
標準試料7 10,290
標準試料8 5,000
標準試料9 2,810
標準試料10 850
上記の条件で、メタクリル系樹脂の溶出時間に対する、RI検出強度を測定した。
上記、検量線用標準サンプルの測定により得られた検量線を基に、メタクリル系樹脂及びメタクリル系樹脂のZ平均分子量(Mz)、重量平均分子量(Mw)、及び数平均分子量(Mn)を求めた。
【0147】
<4.ガラス転移温度>
JIS−K7121に準拠して、メタクリル系樹脂のガラス転移温度(Tg)(℃)を測定した。
まず、標準状態(23℃、65%RH)で状態調節(23℃で1週間放置)した試料から、試験片として4点(4箇所)、それぞれ約10mgを切り出した。
次に、示差走査熱量計(パーキンエルマージャパン(株)製 Diamond DSC)を窒素ガス流量25mL/分の条件下で用いて、ここで、10℃/分で室温(23℃)から200℃まで昇温(1次昇温)し、200℃で5分間保持して、試料を完全に融解させた後、10℃/分で200℃から40℃まで降温し、40℃で5分間保持し、さらに、上記昇温条件で再び昇温(2次昇温)する間に描かれるDSC曲線のうち、2次昇温時の階段状変化部分曲線と各ベースライン延長線から縦軸方向に等距離にある直線との交点(中間点ガラス転移温度)をガラス転移温度(Tg)(℃)として測定した。1試料当たり4点の測定を行い、4点の算術平均(小数点以下四捨五入)を測定値とした。
【0148】
<5.光弾性係数C
Rの測定>
実施例及び比較例にて得られたメタクリル系樹脂を、真空圧縮成形機を用いてプレスフィルムとすることで、測定用試料とした。
具体的な試料調製条件としては、真空圧縮成形機(神藤金属工業所製、SFV−30型)を用い、260℃、減圧下(約10kPa)、10分間予熱した後、樹脂を、260℃、約10MPaで5分間圧縮し、減圧及びプレス圧を解除した後、冷却用圧縮成形機に移して冷却固化させた。得られたプレスフィルムを、23℃、湿度60%に調整した恒温恒湿室内で24時間以上養生を行った上で、測定用試験片(厚み約150μm、幅6mm)を切り出した。
Polymer Engineering and Science 1999, 39,2349−2357に詳細な記載のある複屈折測定装置を用いて、光弾性係数C
R(Pa
−1)を測定した。
フィルム状の試験片を、同様に恒温恒湿室に設置したフィルムの引張り装置(井元製作所製)にチャック間50mmになるように配置した。次いで、複屈折測定装置(大塚電子製、RETS−100)のレーザー光経路がフィルムの中心部に位置するように装置を配置し、歪速度50%/分(チャック間:50mm、チャック移動速度:5mm/分)で伸張応力をかけながら、試験片の複屈折を測定した。
測定より得られた複屈折の絶対値(|Δn|)と伸張応力(σ
R)の関係から、最小二乗近似によりその直線の傾きを求め、光弾性係数(C
R)(Pa
−1)を計算した。計算には、伸張応力が2.5MPa≦σ
R≦10MPaの間のデータを用いた。
C
R=|Δn|/σ
R
ここで、複屈折の絶対値(|Δn|)は、以下に示す値である。
|Δn|=|nx−ny|
(nx:伸張方向の屈折率、ny:面内で伸張方向と垂直な方向の屈折率)
【0149】
<6.メタノール可溶分の量及びメタノール不溶分の量の測定>
実施例及び比較例にて得られたメタクリル系樹脂5gをクロロホルム100mLに溶解させた後、溶液を滴下漏斗に入れ、撹拌子を用いて撹拌している1Lのメタノール中に約1時間かけて滴下して、再沈殿を行った。全量滴下後、1時間静置した後に、メンブランフィルター(アドバンテック東洋株式会社製 T050A090C)をフィルターとして用いて、吸引濾過を行った。
濾物は60℃で16時間真空乾燥してメタノール不溶分とした。また、濾液はロータリーエバポレーターを、バス温度を40℃として、真空度を初期設定の390Torrから徐々に下げて最終的に30Torrとして、用いて溶媒を除去した後、ナス形フラスコに残存している可溶分を回収し、メタノール可溶分とした。
メタノール不溶分の質量及びメタノール可溶分の質量の各々を秤量し、メタノール可溶分の量の、メタノール可溶分の量とメタノール不溶分の量の合計量(100質量%)に対する割合(質量%)(メタノール可溶分率)を算出した。
【0150】
<7.イエローネスインデックス(YI)及び680nm透過率の測定>
前述の実施例及び比較例にて得られたメタクリル系樹脂のメタノール不溶分を20w/v%クロロホルム溶液(すなわち、10gの試料をクロロホルムに溶解し50mLの溶液とするような割合で作製した溶液)とし、測定試料とした。紫外可視分光光度計(株式会社島津製作所製、UV−2500PC)を用い、測定波長380〜780nm、スリット幅2nm、10cm光路長セルで視野角10°、補助イルミナントCを使用、基準物体:クロロホルムとして、透過率測定を行った。
JIS K 7373に従い、XYZ表色系を用いて、下記式
YI=100(1.2769X−1.0592Z)/Y
により、YI(イエローネスインデックス)を算出した。
また、上記YIの測定における条件と同じ条件で、波長680nmにおける透過率(%)も記録した。
【0151】
<8.メタクリル系樹脂のフィルム製膜評価>
後述の実施例及び比較例により得られたメタクリル系樹脂を、90℃、24時間、除湿空気による乾燥させ、水分量を300質量ppm以下に低減させた上で、以下に示す方法によりフィルム製膜を行った。
押出機先端部に300mm幅のTダイを設置した15mmφ二軸押出機(テクノベル社製)を用い、フィルムを調製した。その際の製膜条件としては、押出機先端部設定温度260℃、Tダイ温度設定255℃、吐出量1kg/時、冷却ロール設定温度:ガラス転移温度−10℃とし、膜厚80μmのフィルムを得た。この条件にて6時間連続運転した後、評価用フィルムを1m長さで採取した。
そして、製膜開始前に十分に清掃したロールを用い、6時間後のロール表面の汚れを目視で観察し、製膜前とほとんど変わらず、ごく一部がかすかに汚れているものを「○」、ロール表面が全面的にかすかに汚れているものを「△」、ロール表面が全面的に汚れており、再度清掃が必要なものを「×」とした。
【0152】
[原料]
後述する実施例及び比較例において使用した原料について下記に示す。
[[単量体]]
・メチルメタクリレート:旭化成ケミカルズ社製
・N−フェニルマレイミド(phMI):株式会社日本触媒製
・N−シクロヘキシルマレイミド(chMI):株式会社日本触媒製
・スチレン:旭化成ケミカルズ社製
・2−(ヒドロキシメチル)アクリル酸メチル(MHMA):Combi Bloks社製
[[重合開始剤]]
・1,1−ジ(t−ブチルパーオキシ)シクロヘキサン:日油株式会社製「パーヘキサC」
・1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン:日油株式会社製「パーヘキサHC」
・t−ブチルパーオキシイソプロピルモノカーボネート:日油株式会社製「パーブチルI」
・t−アミルパーオキシイソノナノエート:アルケマ吉富株式会社製「ルぺロックス570」
・t−ブチルパーオキシ−2−エチルヘキサノエート:日油株式会社製「パーブチルO」
[[連鎖移動剤]]
・n−オクチルメルカプタン:花王株式会社製
・n−ドデシルメルカプタン:花王株式会社製
【0153】
[実施例1]N−置換マレイミド構造単位を有するメタクリル系樹脂(A)の製造
メチルメタクリレート(以下MMAと記す)146.0kg、N−フェニルマレイミド14.6kg(以下phMIと記す)、N−シクロヘキシルマレイミド(以下chMIと記す)22.0kg、連鎖移動剤であるn−オクチルメルカプタンを0.174kg、メタキシレン147.0kg(以下mXyと記す)を計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
次いで、MMA271.2kg、phMI27.1kg、chMI40.9kg、mXy273.0kgを計量して、タンク1に加え撹拌し、追添用混合単量体溶液を得た。
さらに、タンク2にMMA58.0kgを計量した。
反応器の内容液については30L/分の速度で窒素によるバブリングを1時間実施し、タンク1、タンク2のそれぞれについては10L/分の速度で窒素によるバブリングを30分間実施し、溶存酸素を除去した。
その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を124℃に上昇させ、50rpmで撹拌しながら、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.348kgをmXy4.652kgに溶解させた重合開始剤溶液を、2kg/時間の速度で添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で124±2℃で制御した。重合開始から30分後、開始剤溶液の添加速度を1kg/時間に低下させ、さらにタンク1から306.1kg/時間で2時間の間追添用混合単量体溶液を添加した。
次いで重合開始から2時間45分後にタンク2からMMAを116kg/時間の速度で30分間かけて全量添加した。
さらに開始剤溶液は重合開始3.5時間後に0.5kg/時間、4.5時間後に0.25kg/時間、6時間後に0.125kg/時間にそれぞれ添加速度を低下させ、重合開始7時間後に添加を停止した。
重合開始から10時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いた1,1−ジ(t−ブチルパーオキシ)シクロヘキサンの1時間半減期温度は111℃、1分間半減期温度は154℃であり、重合温度の124℃における半減期は16分である。
重合開始4時間後、6時間後、8時間後と10時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、4時間後が84.8%、6時間後が93.3%、8時間後が95.7%、10時間後が96.0%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。
得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。
この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(A)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI各単量体由来の構造単位は、それぞれ、81.3質量%、7.9質量%、10.8質量%であった。また、重量平均分子量は141,000、Mz/Mwは1.54、Mw/Mnは1.94であった。その他の物性は表2に示す。
【0154】
[実施例2]N−置換マレイミド構造単位を有するメタクリル系樹脂(B)の製造
MMA176.2kg、phMI6.0kg、chMI10.3kg、連鎖移動剤であるn−オクチルメルカプタンを0.168kg、mXy153.7kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
次いで、MMA327.1kg、phMI11.2kg、chMI19.2kg、mXy285.3kgを計量して、タンク1に加え撹拌し、追添用混合単量体溶液を得た。
さらに、タンク2にスチレン11.0kgを計量した。反応器の内容液については30L/分の速度で窒素によるバブリングを1時間実施し、タンク1、タンク2のそれぞれについては10L/分の速度で窒素によるバブリングを30分間実施し、溶存酸素を除去した。
その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を124℃に上昇させ、50rpmで撹拌しながら、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン0.337kgをmXy4.663kgに溶解させた重合開始剤溶液を、2kg/時間の速度で添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で124±2℃で制御した。重合開始から30分後、開始剤溶液の添加速度を1kg/時間に低下させ、さらにタンク1から2.5時間の間、257.1kg/時間で追添用混合単量体溶液を添加した。
次いで重合開始から3時間30分後にタンク2からスチレンを44kg/時間の速度で15分間かけて全量添加した。
さらに開始剤溶液は重合開始3.5時間後に0.5kg/時間、4.5時間後に0.25kg/時間、6時間後に0.125kg/時間にそれぞれ添加速度を低下させ、重合開始7時間後に添加を停止した。
重合開始から10時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いた,1−ジ(t−ヘキシルパーオキシ)シクロヘキサンの1時間半減期温度は107℃、1分間半減期温度は149℃であり、重合温度の124℃における半減期は11分である。
重合開始4時間後、6時間後、8時間後と10時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、4時間後が84.5%、6時間後が92.2%、8時間後が95.2%、10時間後が95.5%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。
この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(B)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI、スチレン各単量体由来の構造単位は、それぞれ、89.8質量%、3.5質量%、5.1質量%、1.6質量%であった。また、重量平均分子量は133,000、Mz/Mwは1.58、Mw/Mnは2.07であった。その他の物性は表2に示す。
【0155】
[実施例3]N−置換マレイミド構造単位を有するメタクリル系樹脂(C)の製造
MMA500kg、phMI39.6kg、chMI10.4kg、連鎖移動剤であるn−オクチルメルカプタンを0.275kg、mXy450kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
反応器の内溶液に30L/分の速度で窒素によるバブリングを1時間実施し、溶存酸素を除去した。その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を120℃に上昇させ、50rpmで撹拌しながら、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン0.175kgをmXy3.000kgに溶解させた重合開始剤溶液を、1.5kg/時間の速度で添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で120±2℃で制御した。重合開始から30分後、開始剤溶液の添加速度を0.75kg/時間に低下させ、次いで重合開始2時間後に0.5kg/時間、3時間後に0.2kg/時間にそれぞれ添加速度を低下させ、重合開始7時間後に添加を停止した。
重合開始から10時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いた1,1−ジ(t−ブチルパーオキシ)シクロヘキサンの1時間半減期温度は111℃、1分間半減期温度は154℃であり、重合温度の120℃における半減期は24分である。
重合開始5時間後、8時間後と10時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、5時間後が85.0%、8時間後が93.3%、10時間後が94.0%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。
得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。
この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(C)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI各単量体由来の構造単位は、それぞれ、91.1質量%、7.3質量%、1.6質量%であった。また、重量平均分子量は151,000、Mz/Mwは1.75、Mw/Mnは2.29であった。その他の物性は表2に示す。
【0156】
[実施例4]N−置換マレイミド構造単位を有するメタクリル系樹脂(D)の製造
MMA112.5kg、phMI12.5kg、連鎖移動剤であるn−オクチルメルカプタンを0.50kg、トルエン125kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。次いで、MMA337.5kg、phMI37.5kg、トルエン375kgを計量して、タンク1に加え撹拌し、追添用混合単量体溶液を得た。
反応器の内容液については30L/分の速度で窒素によるバブリングを1時間実施し、タンク1の内容液については10L/分の速度で窒素によるバブリングを30分間実施し、溶存酸素を除去した。
その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を110℃に上昇させ、50rpmで撹拌しながら、t−ブチルパーオキシイソプロピルモノカーボネート0.5kgをトルエン1kgに溶解させた重合開始剤溶液を添加することで重合を開始した。さらに、t−ブチルパーオキシイソプロピルモノカーボネート0.75kgをトルエン1.5kgに溶解させた重合開始剤溶液を等速で1時間添加した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で110±2℃で制御した。重合開始から12時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いたt−ブチルパーオキシイソプロピルモノカーボネートの1時間半減期温度は118℃であり、重合温度の110℃における半減期は153分である。重合開始5.5時間後、7時間後、10時間後と12時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、5.5時間後が84.2%、7時間後が90.0%、10時間後が95%、12時間後が97.3%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。
得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(D)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI各単量体由来の構造単位は、それぞれ、90.1質量%、9.9%質量%であった。また、重量平均分子量は145,000、Mz/Mwは1.65、Mw/Mnは2.16であった。その他の物性は表2に示す。
【0157】
[実施例5]:ラクトン環構造単位を有するメタクリル系樹脂(E)の製造
予め内部を窒素にて置換した、攪拌装置、温度センサー、冷却管、窒素ガス導入管を備えたオートクレーブに、メタクリル酸メチル20質量部、2−(ヒドロキシメチル)アクリル酸メチル5質量部、トルエン25質量部、有機リン化合物としてトリス(2,4−ジ−t−ブチルフェニル)ホスファイト0.025質量部を仕込んだ。
その後、窒素ガスを導入しながら、100℃まで昇温し、重合開始剤として、t−アミルパーオキシイソノナノエート0.05質量部を添加すると同時に、t−アミルパーオキシイソノナノエート0.075質量部を含むトルエン溶液の滴下を開始し、これを1.5時間かけて滴下しながら、還流下、約105〜110℃で溶液重合を行い、さらに重合を5.5時間継続した。また、重合開始30分後から2時間かけてメタクリル酸メチル20質量部、2−(ヒドロキシメチル)アクリル酸メチル5質量部、トルエン25質量部を定速で添加した。
得られた重合体溶液に、環化触媒として有機リン化合物であるリン酸ステアリル/リン酸ジステアリル混合物0.05質量部を添加し、還流下、約90〜102℃で2時間、環化縮合反応を行った。
なお、開始剤として用いたt−アミルパーオキシイソノナノエートの1時間半減期温度は114℃であり、重合温度の110℃における半減期は101分、105℃における半減期は180分である。重合開始4時間後、7.5時間後にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、4時間後が84.6%、7.5時間後が94.8%であった。重合開始0時間から7.5時間までの重合温度の時間平均は、105℃であった。
次に得られた重合体溶液を、多管式熱交換機からなる加熱機にて240℃に加熱すること、脱揮用に複数のベント口と下流に複数のサイドフィード口とを装備した二軸押出機に導入することにより、脱揮を行いつつ環化反応を進行させた。
二軸押出機では、樹脂換算で15kg/時となるように、得られた共重合体溶液を供給し、バレル温度250℃、回転数100rpm、真空度10〜300Torrの条件とした。
二軸押出機で溶融混練を行った樹脂組成物を、ストランドダイから押出し、水冷後ペレット化し、樹脂組成物を得た。
得られた樹脂組成物の組成を確認したところ、ラクトン環構造単位の含有量は32.8質量%であった。ラクトン環構造単位の含有量については、特開2007−297620号公報に記載の方法に従い求めた。また、得られた樹脂組成物の重量平均分子量は124,000、Mz/Mwは1.62、Mw/Mnは2.13であった。その他の物性は表2に示す。
【0158】
[比較例1]N−置換マレイミド構造単位を有するメタクリル系樹脂(F)の製造
MMA445.5kg、phMI44.0kg、chMI60.5kg、連鎖移動剤であるn−オクチルメルカプタンを0.55kg、mXy450kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
反応器の内溶液に30L/分の速度で窒素によるバブリングを1時間実施し、溶存酸素を除去した。その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を130℃に上昇させ、50rpmで撹拌しながら、t−ブチルパーオキシ−2−エチルヘキサノエート1.10kgをmXy4.9kgに溶解させた重合開始剤溶液を、1kg/時間の速度で6時間添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で130±2℃で制御した。重合開始から8時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。なお、開始剤として用いたt−ブチルパーオキシ−2−エチルヘキサノエートの1時間半減期温度は92℃、1分間半減期温度は134℃であり、重合温度の130℃における半減期は1.4分である。重合開始3.3時間後、6時間後、8時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、3.3時間後が84.9%、6時間後が96.7%、8時間後が96.8%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(F)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI、chMI各単量体由来の構造単位は、それぞれ、81.3質量%、7.7%質量%、11質量%であった。また、重量平均分子量は143,000、Mz/Mwは1.85、Mw/Mnは2.75であった。その他の物性は表2に示す。
【0159】
[比較例2]N−置換マレイミド構造単位を有するメタクリル系樹脂(G)の製造
MMA450.0kg、phMI50.0kg、連鎖移動剤であるn−ドデシルメルカプタンを0.50kg、トルエン500kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
反応器の内溶液に30L/分の速度で窒素によるバブリングを1時間実施し、溶存酸素を除去した。その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を110℃に上昇させ、50rpmで撹拌しながら、t−ブチルパーオキシイソプロピルモノカーボネート1.50kgをトルエン4.5kgに溶解させた重合開始剤溶液を反応器内に添加することで重合を開始した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で110±2℃で制御した。重合開始から12時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いたt−ブチルパーオキシイソプロピルモノカーボネートの1時間半減期温度は118℃あり、重合温度の110℃における半減期は153分である。
重合開始4時間後、8時間後、12時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、4時間後が90.4%、6時間後が96.5%、8時間後が98.0%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。
得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(G)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、phMI各単量体由来の構造単位は、それぞれ、90.3質量%、9.7%質量%であった。また、重量平均分子量は155,000、Mz/Mwは1.82、Mw/Mnは2.63であった。その他の物性は表2に示す。
【0160】
[比較例3]N−置換マレイミド構造単位を有するメタクリル系樹脂(H)の製造
MMA140.0kg、chMI100.0kg、トルエン250kgを計量し、ジャケットによる温度調節装置と撹拌翼を具備した1.25m
3反応器に加え撹拌し、混合単量体溶液を得た。
次いで、MMA82.5kg、chMI25.0kg、スチレン35.0kg、トルエン200.0kgを計量して、タンク1に加え撹拌し、追添用混合単量体溶液を得た。
さらに、MMA82.5kg、スチレン35.0kg、トルエン50.0kgを計量して、タンク2に加え撹拌し、追添用混合単量体溶液を得た。
反応器の内容液については30L/分の速度で窒素によるバブリングを1時間実施し、タンク1、タンク2のそれぞれについて内溶液に10L/分の速度で窒素によるバブリングを30分間実施し、溶存酸素を除去した。
その後ジャケット内にスチームを吹き込んで反応器内の溶液温度を110℃に上昇させ、50rpmで撹拌しながら、t−ブチルパーオキシイソプロピルモノカーボネート0.20kgをトルエン0.8kgに溶解させた重合開始剤溶液を反応器内に添加することで重合を開始するとともに、t−ブチルパーオキシイソプロピルモノカーボネート2.30kgをトルエン4.70kgに溶解させた重合開始剤溶液を2kg/時間の速度で3.5時間添加した。
また、重合開始後3.5時間の間、タンク1の内容液を一定速度で添加し、さらにその後3.5時間の間、タンク2の内容液を一定速度で添加した。
なお、重合中は反応器内の溶液温度をジャケットによる温度調節で110±2℃で制御した。重合開始から10時間経過した後、主鎖に環構造を有するメタクリル系樹脂を含む重合溶液を得た。
なお、開始剤として用いたt−ブチルパーオキシイソプロピルモノカーボネートの1時間半減期温度は118℃あり、重合温度の110℃における半減期は153分である。
重合開始7時間後、10時間後(重合終了時)にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、7時間後が90.1%、10時間後が97.3%であった。
この重合溶液を予め170℃に加熱された管状熱交換器と気化槽からなる濃縮装置に供給し、溶液中に含まれる重合体の濃度を70質量%まで高めた。
得られた重合溶液は、伝熱面積が0.2m
2である薄膜蒸発機に供給し、脱揮を行った。この際の装置内温度は280℃、供給量30L/hr、回転数400rpm、真空度30Torrで実施し、脱揮後の重合物はギアポンプで昇圧し、ストランドダイから押し出され、水冷後、ペレット化してN−置換マレイミド構造単位を有するメタクリル系樹脂(H)を得た。
得られたペレット状の重合物の組成を確認したところ、MMA、chMI、スチレン各単量体由来の構造単位は、それぞれ、60.3質量%、25.5質量%、14.2質量%であった。また、重量平均分子量は102,000、Mz/Mwは1.90、Mw/Mnは2.84であった。その他の物性は表2に示す。
【0161】
[比較例4]:ラクトン環構造単位を有するメタクリル系樹脂(I)の製造
予め内部を窒素にて置換した、攪拌装置、温度センサー、冷却管、窒素ガス導入管を備えたオートクレーブに、メタクリル酸メチル40質量部、2−(ヒドロキシメチル)アクリル酸メチル10質量部、トルエン50質量部、有機リン化合物としてトリス(2,4−ジ−t−ブチルフェニル)ホスファイト0.025質量部を仕込んだ。
その後、窒素ガスを導入しながら、100℃まで昇温し、重合開始剤として、t−アミルパーオキシイソノナノエート0.05質量部を添加すると同時に、t−アミルパーオキシイソノナノエート0.1質量部を含むトルエン溶液の滴下を開始し、これを2時間かけて滴下しながら、還流下、約105〜110℃で溶液重合を行い、さらに4時間重合を継続した。
得られた重合体溶液に、環化触媒として有機リン化合物であるリン酸ステアリル/リン酸ジステアリル混合物0.05質量部を添加し、還流下、約90〜102℃で2時間、環化縮合反応を行った。
なお、開始剤として用いたt−アミルパーオキシイソノナノエートの1時間半減期温度は114℃であり、重合温度の110℃における半減期は101分、105℃における半減期は180分である。
重合開始4時間後、6時間後にそれぞれポリマー溶液のサンプリングを行い、残存している単量体濃度から重合転化率の解析を行ったところ、4時間後が89.8%、6時間後が95.2%であった。
次に得られた重合体溶液を、多管式熱交換機からなる加熱機にて240℃に加熱すること、脱揮用に複数のベント口と下流に複数のサイドフィード口とを装備した二軸押出機に導入することにより、脱揮を行いつつ環化反応を進行させた。
二軸押出機では、樹脂換算で15kg/時となるように、得られた共重合体溶液を供給し、バレル温度250℃、回転数100rpm、真空度10〜300Torrの条件とした。
二軸押出機で溶融混練を行った樹脂組成物を、ストランドダイから押出し、水冷後ペレット化し、樹脂組成物を得た。
得られた樹脂組成物の組成を確認したところ、ラクトン環構造単位の含有量は31.5質量%であった。ラクトン環構造単位の含有量については、特開2007−297620号公報に記載の方法に従い求めた。また、得られた樹脂組成物の重量平均分子量は121,000、Mz/Mwは1.78、Mw/Mnは2.52であった。その他の物性は表2に示す。
【0162】
【表2】