【課題を解決するための手段】
【0007】
(1)本発明の少なくとも一実施形態に係る風車翼は、
翼本体と、
前記翼本体の表面に取付けられたボルテックスジェネレータと、を備え、
前記ボルテックスジェネレータは、互いに異なる翼長方向位置において、前記翼本体の表面から突出してそれぞれ設けられた複数のフィンをそれぞれ含む複数のフィンセットを含み、
前記複数のフィンセットは、前記翼本体の翼長方向における前記翼本体の翼根の位置と前記翼本体の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記翼本体の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように配置される。
【0008】
なお、本明細書において、「翼長方向」とは、翼本体の翼根と翼先端とを結ぶ方向のことである。また、本明細書において、風車翼の「コード長」とは、ある翼長方向位置における翼本体の前縁と後縁とを結ぶ線(コード)の長さのことである。
【0009】
本発明者の鋭意検討の結果、風車翼の翼根側の領域において、風車翼の翼長方向に沿って風車翼の翼根に近づくほど、風車翼の表面で風の流れが剥離する位置が前縁側にずれ、かつ、翼長方向位置の変化に対する剥離位置の変化の度合いが大きくなることが明らかとなった。
このことは、以下の理由によると考えられる。すなわち、風車翼の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域では、風車翼の前縁側の形状は円柱で近似することができる。そして、この領域では、風車翼の翼長方向に沿って風車翼の翼根に近づくほど、周速が小さくなる結果、風の相対流入角度(周速ベクトルと相対流入速度ベクトルとがなす角)が大きくなる。このため、風車翼の翼根に近づくほど、風の相対入流角度の増大に応じて、風車翼の表面で風の流れが剥離する位置が前縁側にずれる。また、翼根に近づくほど翼長方向位置の変化に対する風の相対流入角度の変化量は大きいため、翼根に近づくにつれて、翼長方向位置の変化に対する剥離位置の変化の度合いが大きくなる。
この点、上記(1)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(1)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0010】
(2)幾つかの実施形態では、上記(1)の構成において、
前記複数のフィンセットは、前記翼根位置における前記翼本体の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式(A)を満たすように配置される。
【数1】
【0011】
本発明者の鋭意検討の結果、風車翼の翼長方向における翼根付近の領域では、翼面上で流れが剥離する位置は、後で詳述するように、翼本体の表面の平面展開図上にて下記式(B)で表される角度ψに対応する位置であり、下記式(B)より、翼面上における剥離の位置は、無次元半径位置μに応じて変化することが明らかとなった。
【数2】
この点、上記(2)の構成では、角度θが上記式(B)で表されるψ以下であるため、翼面上で流れが剥離する位置よりも前縁側にフィンが配置されるので、風車翼面上において流れの剥離をより効果的に遅延させることができる。また、上記(2)の構成では、角度θが3°以上であるので、比較的先端側においても、風車翼面上において流れの剥離を遅延させる効果を十分に得ることができる。
【0012】
(3)幾つかの実施形態では、上記(2)の構成において、前記複数のフィンセットは、前記角度θが、θ≦(0.0034/μ
2)×(180/π)[°]を満たすように配置される。
(4)幾つかの実施形態では、上記(2)又は(3))の構成において、前記複数のフィンセットは、前記角度θが、θ≧(0.0021/μ
2)×(180/π)[°]を満たすように配置される。
【0013】
典型的な風車翼では、角度θがθ≦(0.0034/μ
2)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過大になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。また、典型的な風車翼では、角度θがθ≧(0.0021/μ
2)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過小になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。
よって、上記(3)又は(4)の構成によれば、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0014】
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記複数のフィンセットは、前記風車翼を含む風車ロータの回転中心と前記翼本体の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように配置される。
【0015】
典型的な風車翼では、μが0.10≦μを満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、μがμ≦0.15を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(1)で説明した効果が得られる。
よって、上記(5)の構成によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。
【0016】
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、前記複数のフィンは、少なくとも、前記翼本体の翼厚tと、前記翼本体のコード長cとの比である翼厚比(t/c)が70%≦(t/c)≦85%を満たす前記翼長方向の領域において、角度θが前記翼根に近づくにつれて大きくなるように配置される。
【0017】
典型的な風車翼では、翼厚比(t/c)が(t/c)≦85%を満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、翼厚比(t/c)が70%≦(t/c)を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(1)で説明した効果が得られる。
よって、上記(6)の構成によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。
【0018】
(7)幾つかの実施形態では、上記(1)乃至(6)の構成において、前記フィンセットは、前記翼本体の表面に固定される基部と、前記基部上に立設される1本又は2本の前記フィンと、を有するVGユニットを含む。
【0019】
上記(7)の構成によれば、翼本体の表面に固定される基部と、基部上に立設される1本又は2本のフィンと、を有するVGユニットによりフィンセットが構成される。したがって、風車翼面上にVGユニットの単位でフィンを柔軟に配置して、上記(1)に記載したように複数のフィンを配列させることができ、これにより、風車翼面上において流れの剥離を効果的に遅延させることができ、風車の運転効率を向上させることができる。
【0020】
(8)幾つかの実施形態では、上記(1)乃至(7)の構成において、前記ボルテックスジェネレータは、前記翼本体の負圧面において、該負圧面に沿った風の流れの乱流域内に設置される。
【0021】
風車翼の負圧面における流れの剥離は、前縁近傍の層流域からその下流側の乱流域に向かって境界層が徐々に厚くなり、後縁に到達する前に流れが剥がれてしまうことで生じる。
この点、上記(8)の構成によれば、負圧面に沿った風の流れの乱流域内にボルテックスジェネレータを設置することで、負圧面からの流れの剥離を抑制することができる。
【0022】
(9)本発明の少なくとも一実施形態に係る風車ロータは、
上記(1)乃至(8)の何れかに記載の風車翼と、
前記風車翼が取り付けられるハブと、
を備える。
【0023】
上記(9)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(9)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0024】
(10)本発明の少なくとも一実施形態に係る風力発電装置は、上記(9)に記載の風車ロータを備える。
【0025】
上記(10)の構成では、ボルテックスジェネレータを構成する複数のフィンセットは、翼本体の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが翼本体の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(10)の構成によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0026】
(11)本発明の少なくとも一実施形態に係るボルテックスジェネレータの取付方法は、
風車翼の表面へのボルテックスジェネレータの取付方法であって、
前記ボルテックスジェネレータは複数のフィンをそれぞれ含む複数のフィンセットを含み、
前記複数のフィンが互いに異なる翼長方向位置において前記風車翼の表面から突出するように、かつ、前記複数のフィンセットが、前記風車翼の翼長方向における前記風車翼の翼根の位置と前記風車翼の最大コード長位置との間の少なくとも一部の領域において、前記翼長方向において隣り合う2つの前記フィンセットを結ぶ直線と前記翼根の中心軸とが前記風車翼の表面の平面展開図上にてなす角度θが前記翼根に近づくにつれて大きくなるように、前記複数のフィンセットを前記風車翼に取付ける取付ステップを備える。
【0027】
上記(11)の方法では、ボルテックスジェネレータを構成する複数のフィンセットは、風車翼の翼長方向における翼根の位置と最大コード長位置との間の少なくとも一部の領域において、翼長方向において隣り合う2つのフィンセットを結ぶ直線と翼根の中心軸とが風車翼の表面の平面展開図上にてなす角度θが翼根に近づくにつれて大きくなるように配置される。よって、上記(11)の方法によれば、翼長方向位置の変化に応じて変化する流れの剥離位置に対応してフィンが設けられるので、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0028】
(12)幾つかの実施形態では、上記(11)の方法において、
前記取付ステップでは、前記翼根位置における前記風車翼の外径をdとし、前記風車翼が取り付けられる風車の設計周速比をλとし、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、前記翼根の前記位置と前記最大コード長位置との間の少なくとも一部の領域において、前記角度θが下記式(A)を満たすように、前記複数のフィンを配置して前記風車翼に取付ける。
【数3】
【0029】
上記(12)の方法では、角度θが上記式(B)で表されるψ以下であるため、翼面上で流れが剥離する位置よりも前縁側にフィンが配置されるので、風車翼面上において流れの剥離をより効果的に遅延させることができる。また、上記(12)の方法では、角度θが3°以上であるので、比較的先端側においても、風車翼面上において流れの剥離を遅延させる効果を十分に得ることができる。
【0030】
(13)幾つかの実施形態では、上記(12)の方法において、
前記取付ステップでは、前記角度θが、θ≦(0.0034/μ
2)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付ける。
【0031】
(14)幾つかの実施形態では、上記(12)又は(13)の方法において、
前記取付ステップでは、前記角度θが、θ≧(0.0021/μ
2)×(180/π)[°]を満たすように前記複数のフィンセットを配置して前記風車翼に取付ける。
【0032】
典型的な風車翼では、角度θがθ≦(0.0034/μ
2)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過大になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。また、典型的な風車翼では、角度θがθ≧(0.0021/μ
2)×(180/π)[°]を満たせば、翼長方向位置の変化に対する剥離位置の変化量に照らして角度θが過小になることが防止され、翼根における広い翼長方向範囲において、剥離遅延効果を享受できる。
よって、上記(13)又は(14)の方法によれば、風車翼面上において流れの剥離を効果的に遅延させることができる。これにより、風車の運転効率を向上させることができる。
【0033】
(15)幾つかの実施形態では、上記(11)乃至(14)の何れかの方法において、
前記取付ステップでは、前記風車翼を含む風車ロータの回転中心と前記風車翼の先端との間の距離をRとし、前記隣り合う2つの前記フィンセットのうち前記翼根に近いフィンセットの前記回転中心からの距離をrとし、前記rと前記Rとの比(r/R)である無次元半径位置をμとしたとき、少なくとも前記無次元半径位置μが0.10≦μ≦0.15の範囲において、角度θが前記翼根に近づくにつれて大きくなるように前記複数のフィンセットを配置して前記風車翼に取付ける。
【0034】
典型的な風車翼では、μが0.10≦μを満たす領域は、風車翼のハブへの取付け位置からある程度離れた位置であるため、風車翼にボルテックスジェネレータを取り付けることによる風車の性能改善効果をある程度見込める。また、典型的な風車翼では、μがμ≦0.15を満たす領域では、風車翼の前縁側の形状が円柱で精度よく近似できるため、上記(11)で説明した効果が得られる。
よって、上記(15)の方法によれば、風車翼面上において、流れの剥離を効果的に遅延させるために適した領域にフィンが設けられる。これにより、風車の運転効率を効果的に向上させることができる。