(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6157586
(24)【登録日】2017年6月16日
(45)【発行日】2017年7月5日
(54)【発明の名称】ブタジエンを製造するための改良された制御可能な酸化脱水素方法
(51)【国際特許分類】
C07C 5/48 20060101AFI20170626BHJP
C07C 11/167 20060101ALI20170626BHJP
【FI】
C07C5/48
C07C11/167
【請求項の数】14
【全頁数】28
(21)【出願番号】特願2015-503555(P2015-503555)
(86)(22)【出願日】2013年3月28日
(65)【公表番号】特表2015-512417(P2015-512417A)
(43)【公表日】2015年4月27日
(86)【国際出願番号】US2013034215
(87)【国際公開番号】WO2013148913
(87)【国際公開日】20131003
【審査請求日】2016年3月24日
(31)【優先権主張番号】61/617,535
(32)【優先日】2012年3月29日
(33)【優先権主張国】US
(31)【優先権主張番号】61/617,506
(32)【優先日】2012年3月29日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】513157626
【氏名又は名称】ティーピーシー・グループ・エルエルシー
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100075270
【弁理士】
【氏名又は名称】小林 泰
(74)【代理人】
【識別番号】100101373
【弁理士】
【氏名又は名称】竹内 茂雄
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100129311
【弁理士】
【氏名又は名称】新井 規之
(72)【発明者】
【氏名】カシウラ,リアナ
(72)【発明者】
【氏名】ダフ,ジョゼフ・ジー
(72)【発明者】
【氏名】チャダ,シリシャ
(72)【発明者】
【氏名】バラード,エリザベス
(72)【発明者】
【氏名】マクファーランド,セシル・ジー
【審査官】
桜田 政美
(56)【参考文献】
【文献】
特開昭50−116402(JP,A)
【文献】
米国特許第03925498(US,A)
【文献】
特開2011−148765(JP,A)
【文献】
特開昭51−125007(JP,A)
【文献】
米国特許出願公開第2008/0183024(US,A1)
【文献】
米国特許第04083884(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
C07C 5/48
C07C 11/167
(57)【特許請求の範囲】
【請求項1】
ブテンに富む炭化水素質の供給材料を与え、当該炭化水素質のブテンに富む供給材料を気化させ、水蒸気と混合し、かつ当該混合流を少なくとも345℃(650°F)の温度に過熱し、反応器供給流を形成し;
酸化脱水素触媒の粒状物の触媒床を与え、前記反応器供給流および酸素に富む気体を入口から触媒床に通して、それによって以下のようにブタジエン富化生成物流を形成し;
酸化脱水素触媒の粒状物の触媒床は、床内の温度を流れの方向に沿って測定するように構成されている複数の温度検出装置をそれに付随して有し;
温度を含む反応器への入口条件を、酸化脱水素反応が最初は入口に対して最も遠位の前記触媒床の層を含む反応区域内で起こるように制御し、反応器供給流を酸化脱水素触媒上で反応させて、それによって前記ブタジエン富化生成物流を形成し;
前記触媒床の深さに沿って随時温度を監視し、入口温度を上昇させて、反応区域が酸化脱水素触媒床を通って入口に向かって移動するようにする;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
【請求項2】
ブタジエン富化生成物流を、アセチレン系不純物をそれから除去するのに有効なアルデヒドおよびアルキン除去触媒の床に通すことを更に含む、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項3】
酸化脱水素触媒粒状物が直径1mm〜30mmの範囲である、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項4】
酸化脱水素触媒粒状物が直径1mm乃至5mm以下の範囲である、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項5】
酸化脱水素触媒がフェライト酸化脱水素触媒である、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項6】
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、請求項5に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項7】
前記フェライト酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、請求項6に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項8】
反応器供給流中の酸素のモル量を、前記炭化水素質のブテンに富む炭化水素質の供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項9】
前記触媒床が70cm(27インチ)より大きい深さを有する、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項10】
温度検出装置が熱電対を含む、請求項1に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項11】
ブテンに富む炭化水素質の供給材料を与え、当該炭化水素質のブテンに富む炭化水素質の供給材料を気化させ、水蒸気と混合し、かつ当該混合流を少なくとも345℃(650°F)の温度に過熱し、反応器供給流を形成し;
フェライト酸化脱水素触媒の粒状物の触媒床を与え、反応器供給流および酸素に富む気体を触媒床に通して、それによってブタジエン富化生成物流を以下のように形成し;
その下にアルデヒドおよびアルキン除去触媒の粒子の床の層を与え;
フェライト酸化脱水素触媒の触媒床は、アルデヒドおよびアルキン除去触媒床の層の5〜10cm上方に間隔を開けて配置されている少なくとも1つの温度検出装置、及びアルデヒドおよびアルキン除去触媒床の層の15〜25cm上方に配置されている他の温度検出装置を含む、その深さ全体にわたってその中に埋封されている複数の温度検出装置を有し;
温度を含む反応器への入口条件を、酸化脱水素反応が最初はフェライト酸化脱水素触媒床の最下層を含む反応区域内で起こるように制御し、反応器供給流をフェライト酸化脱水素触媒上で反応させて、それによって前記ブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時触媒床全体にわたって温度を監視し、反応区域内の酸化脱水素触媒の層が失活し始めたら入口温度を上昇させて、反応区域がフェライト酸化脱水素触媒床内で上向きに移動するようにし、フェライト酸化脱水素触媒床の最上部分に配置されている温度検出装置によって温度が低下し始めたことが示された後に、ブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
【請求項12】
前記フェライト酸化脱水素触媒粒状物が直径1mm〜30mmの範囲である、請求項11に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項13】
前記フェライト酸化脱水素触媒粒状物が直径1mm乃至5mm以下の範囲である、請求項11に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【請求項14】
前記フェライト酸化脱水素触媒粒状物を、装填する前に熱処理する、請求項11に記載のブテンに富む炭化水素質の供給材料からブタジエンを製造する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本国際特許出願は、2012年3月29日出願の「ブタジエンを製造するための改良された制御可能な酸化脱水素方法」と題された共に係属している米国仮特許出願61/617,535(代理人書類番号TPC−11−8)に基づくものであり、その優先権をここに主張し、その開示事項はその全部を参照として本明細書中に包含する。
【0002】
本国際特許出願はまた、2012年3月29日出願の「ブタジエンを製造するための低排出酸化脱水素方法」と題された共に係属している米国仮特許出願61/617,506(代理人書類番号TPC−10−25)にも基づくものであり、その優先権をここに主張し、その開示事項はその全部を参照として本明細書中に包含する。
【背景技術】
【0003】
ブテンに富む炭化水素質の供給材料からブタジエンを製造するための従来公知の方法は、その形状が圧力降下を考慮することによって大きく左右されていた反応器を用いており、浅いとみなされる反応器が導かれていた。床の全4層の床深さ(流れの方向における線寸法)はしばしば約1メートル以下に制限され、酸化脱水素触媒の全高は約55〜60cm(22〜24インチ)以下に過ぎなかった。特に、従来のプロセスは、通常は、ブテンを気化させ、炭化水素、好ましくはブテン類、酸素、及び水蒸気の混合物を、260℃(500°F)より高く、より通常的には約315℃(600°F)より高く、好ましくは約345℃(650°F)より高く、或いは幾つかの場合においては更に370℃(700°F)より高い温度に加熱するために天然ガスを用いていた。通常のプロセスにおいては、反応混合物は、ブテン類、ブテンに富む炭化水素質の供給材料中のブテン1モルに対して約0.4モル〜約0.8モル、より通常的には0.5モルを僅かに超える量乃至約0.65モル以下の量の酸素、及び約12:1〜約16:1の量の過熱水蒸気を含む。加熱した反応混合物を、4つの層:触媒床を通る際の反応混合物のチャネリングを制限し、より下方の層を触媒床の上方に存在する可能性がある渦巻運動に対して所定位置に保持するようにも働く不活性の流量分布及び触媒保持層;第2の層は酸化/脱水素触媒である床のバルクを含み;一方、第3の層は、生成物中のアルキン類及びアルデヒド類を、アルキン類及びアルデヒド類よりもブタジエン類の重合プロセスに対して有害でない化合物に転化させるアルデヒド及びアルキン除去(AAR)触媒を含む;最下層は、不活性の粒状物支持材料を含む;を含む多層床上に通していた。通常述べられているように、全床高さは約1メートル以下に制限され、一方、酸化脱水素層の深さは約56cm(22インチ)未満に制限されていた。
【0004】
酸化/脱水素触媒上を通過させる間にブテン類をブタジエンに転化させており、同時に多量の熱が解離し、これによって540℃又は595℃(1000°F又は1100°F)の近傍の温度がもたらされた。過去においては、触媒床の深さが浅いと、反応混合物中に存在する酸素の全部をAAR触媒に達する前に消費することを確保するように通常的に注意を払っても、酸素のAAR触媒への漏出を阻止することは困難である可能性があった。酸素の漏出は、所望のブタジエン生成物の損失、及びより重大なことにはAAR触媒及び/又は反応容器に対する損傷の両方をもたらす可能性がある。したがって、多くの場合においては、これらを考慮することにより、どちらかというと控えめなサイクル長さの使用及び早期の触媒の交換がもたらされて、有効触媒寿命が必要量よりも短くなり、運転時間の割合が減少していた。
【0005】
反応に続いて、反応生成物の混合物を冷却し、吸収油との接触及びそれに続く分別によってブタジエンを分離する。通常は、これらのプロセスによって約50〜約70%、より通常的には約55〜約65%の範囲の純度の粗ブタジエンが生成し、これは公知の技術を用いて更なる処理を行うためにプラントにおいて前方に送る。
【0006】
興味深い参照文献を下記において議論する。
【0007】
Lewisの米国特許5,772,898(1998年6月30日)(新規なメタロ酸化マンガンを用いる炭化水素転化方法)は、炭化水素供給材料を、三次元骨格構造、結晶内細孔系、及び無水基準で式:
A
yMn
8−xM
xO
16
(式中、Aは、アルカリ金属、アルカリ土類金属、及びアンモニウムイオンから選択される構造規定剤であり、「y」はAのモル数であって、約0.5〜約2.0からなる群からの範囲であり、Mは、クロム、ジルコニウム、スズ、白金、ロジウム、ニオブ、タンタル、バナジウム、アンチモン、ルテニウム、ガリウム、及びゲルマニウムからなる群から選択される金属であり、「x」はMのモル数であって、約0.01〜約4.0の範囲であり、マンガンは+3又は+4の価数を有し、Mは、+3、+4、又は+5の価数を有する)
によって表される実験化学組成を有し、ホーランダイト構造を有する結晶質メタロ酸化マンガン組成物を含む触媒と接触させることを含む炭化水素転化方法に関する。
【0008】
Sakaiらの米国特許5,139,988(1992年8月18日)(鉄−アンチモン含有金属酸化物触媒組成物及びその製造方法)は、結晶質アンチモン酸鉄、並びにバナジウム、モリブデン、及びタングステンからなる群から選択される少なくとも1種類の元素を必須成分として含み、有機化合物の酸化反応における触媒として有用な組成物に関する。また、この組成物の製造方法も開示されている。
【0009】
Dejaifveらの米国特許4,975,407(1990年12月4日)(有機化合物を脱水素するための触媒、その製造方法及びその使用)は、酸化鉄を与える薬剤及び酸化カリウムを与える薬剤から誘導され、モル比が1.5〜60の範囲であり、カリウムフェライト(K
2Fe
12O
19)相が八面体Fe
3O
4マトリクス上に担持されて存在し、K
2Fe
12O
19の六方晶構造とFe
3O
4スピネル構造の(111)面との間に結晶エピタキシーを示すことを特徴とする触媒に関する。
【0010】
McFarlandの米国特許4,658,080(1987年4月14日)(アセチレン除去方法)は、フェライト及びニッケル酸化物、マグネシウム、カルシウム、ストロンチウム、又はバリウムのアルカリ土類金属の酸化物、炭酸塩、又は水酸化物、並びに、リチウム、カリウム、ナトリウム、又はルビジウムをベースとするアルカリ金属の酸化物、炭酸塩、又は水酸化物を含むアセチレン還元触媒を用いて、有機流、特にC
4〜C
8炭化水素の酸化脱水素から得られる流れからアセチレンを除去する方法に関する。触媒の使用はパイプ反応器内で例証されており、ここでは酸化脱水素をC
4〜C
8炭化水素に関して行い、反応生成物は直ちに同じパイプ反応器内のアセチレン還元触媒の床の上に通している。McFarlandの米国特許4,644,088(1987年2月17日)(アセチレン除去方法);及び4,513,159(1985年4月23日)も参照。
【0011】
Patelの米国特許4,266,086(ジオレフィンからアセチレン類を除去する方法)は、液相を、水素の不存在下、約90℃(200°F)〜約130℃(260°F)の範囲の温度において、担持金属酸化物触媒(酸化第2銅、酸化銀、又はこれらの混合物)と接触させることによって、約1.0重量%以下の量のα−アセチレン類が混入しているブタジエン及びモノオレフィンとアルカン類の混合物を含む供給流から、ビニルアセチレン及びメチルアセチレンを含むα−アセチレン類を除去することに関する。
【0012】
Besozziらの米国特許4,150,063(1979年4月17日)(不飽和化合物の精製)においては、不飽和炭化水素及びカルボニル化合物を含む気体流を、8族、1b族、2b族、4b族、6b族の少なくとも1種類の金属、並びに1a族及び2a族からの少なくとも1種類の元素を含む触媒と接触させて、不飽和炭化水素を実質的に損失させることなくカルボニル化合物を分解している。
【0013】
Miklasの米国特許3,953,370(1976年4月27日)(亜鉛フェライト酸化脱水素触媒を活性化する方法)は、370〜700℃(700〜1300°F)の温度の水蒸気を用いて、C
4〜C
8炭化水素からブタジエンを製造するための亜鉛フェライト酸化脱水素触媒を活性化することに関する。
【0014】
Tschoppの米国特許3,943,185(1976年3月9日)(ジオレフィンの製造及び精製)は、第1の区域内においてC
4炭化水素を吸収油中に吸収させ;第2の区域内において水相を維持する温度及び圧力の条件下で運転する第2の区域内において、吸収油とC
4炭化水素の混合物から酸素及び不活性の非凝縮性気体をストリッピングし;そして、(1)第2の区域からの主として水性の相、(2)主として酸素及び不活性の非凝縮性気体の全部である塔頂物、並びに酸素及び不活性の非凝縮性気体を実質的に含まない吸収油及びC
4炭化水素の塔底物を排出する;ことを含む、酸素及び不活性の非凝縮性気体が除去されて実質的に含まない酸化脱水素したC
4炭化水素の流れを製造する方法に関する。
【0015】
Woernerらの米国特許3,496,070(1970年2月17日)(ストリッパー塔頂物に液体溶媒を加えて抽出蒸留することによる不飽和炭化水素の精製)においては、抽出蒸留カラム内において選択的溶媒を用いて炭化水素混合物を抽出蒸留し、それによって抽出蒸留カラム内において炭化水素を選択的に抽出して炭化水素に富む溶媒フラクションを形成し、これを溶媒ストリッピングカラムに供給して、溶媒をストリッピングカラムから塔底物として取り出し、蒸気状の炭化水素フラクションをストリッピングカラムから塔頂フラクションとして取り出し;液相の選択的溶媒を溶媒ストリッパーからの蒸気状塔頂物に加えて、溶媒ストリッパーカラムの塔頂物凝縮器内及び溶媒ストリッパー内の圧力を低下させる;ことを含む、不飽和炭化水素を含む4〜5個の炭素原子を有する炭化水素の混合物を分離するための炭化水素分離方法が提供されている。このプロセスの生成物は、或いは、抽出蒸留カラムからの代わりに溶媒ストリッパーからの塔頂物として回収することができる。
【0016】
Bajarsの米国特許3,284,536(1966年11月8日)(マグネシウムフェライトを用いる脱水素)は、炭化水素を、蒸気相中、昇温温度において、酸素及びマグネシウムフェライトを含む触媒の存在下で脱水素することに関する。この方法にしたがって脱水素する炭化水素は、4〜7炭素原子の炭化水素、好ましくは、少なくとも4炭素原子の直鎖を有する4〜5又は6炭素原子の飽和炭化水素、モノオレフィン、ジオレフィン、及びこれらの混合物、並びに脂環式炭化水素からなる群から選択される脂肪族炭化水素である。脱水素する炭化水素1モルあたり0.2〜2.5モルの酸素の範囲内の量の酸素を反応区域内に存在させる。脱水素反応の温度は250℃より高く、例えば約300℃又は375℃より高く、反応器内の最高温度は約650℃又は750℃、或いは場合によって幾つかの状況下においてはより高い温度であってよい。
【0017】
Levinらの米国特許出願公開2004/0122275(2004年6月24日)(オレフィン流からアルデヒド類及び/又はケトン類を除去する方法)は、アルデヒド及び/又はケトンから選択される酸素化物不純物をオレフィン生成物流から除去することに関する。生成物流を、C
1〜C
6アルコールの存在下、酸素化物不純物をアルデヒド及び/又はケトンよりも大きい炭素数のオレフィン及び/又は酸素化物に転化させるのに十分な条件下で金属酸化物含有触媒と接触させる。金属酸化物含有触媒は、通常は、2族金属、3族金属(ランタニド及びアクチニド系列の金属を含む)、及び4族金属からなる群から選択される少なくとも1種類の金属の酸化物を含む。触媒には、同じ族の金属からの2種類以上の金属を含ませることができる。一態様においては、金属酸化物含有触媒は、酸化ランタン及び酸化マグネシウムを含む。他の形態においては、触媒は、Ti、Zr、及びHfからなる群から選択される金属の酸化物を含む。更に他の態様においては、触媒は、好ましくは、Sc、Y、La、及びCeからなる群から選択される金属の酸化物を含む。
【0018】
Van Egmondの米国特許出願公開2004/0122268(2004年6月24日)(オレフィン流からメチルアセチレン及び/又はプロパジエンを除去するための蒸留方法)は、2工程分別プロセスでプロピレン及び/又はブチレンからメチルアセチレン及び/又はプロパジエン(MAPD)を除去することによって、オレフィン流からプロピレン生成物流及び/又はブチレン生成物流を生成させる方法に関する。
【0019】
Welchら, BUTADIENE VIA OXIDATIVE DEHYDROGENATION, Hydrocarbon Processing, 1978年11月, p.131-136においては、断熱反応器システム内において、ハロゲン及びイオウ化合物のような気相添加剤を用いずに、温度上昇を抑えるヒートシンクとして水蒸気を用いて、水蒸気、空気又は酸素、及びn−ブテン類を加熱して、約430℃(800°F)において未公表の自己再生不均一触媒上に通す酸化脱水素プロセスが議論されている。このプロセスは供給材料中の酸素の実質的に全部を消費し、通常は流出流中の残留酸素レベルは0.3%より低いと述べられている。アセチレン類及び酸素化副生成物が主要な副生成物である。
【先行技術文献】
【特許文献】
【0020】
【特許文献1】米国特許5,772,898
【特許文献2】米国特許5,139,988
【特許文献3】米国特許4,975,407
【特許文献4】米国特許4,658,080
【特許文献5】米国特許4,644,088
【特許文献6】米国特許4,513,159
【特許文献7】米国特許4,266,086
【特許文献8】米国特許4,150,063
【特許文献9】米国特許3,953,370
【特許文献10】米国特許3,943,185
【特許文献11】米国特許3,496,070
【特許文献12】米国特許3,284,536
【特許文献13】米国特許出願公開2004/0122275
【特許文献14】米国特許出願公開2004/0122268
【非特許文献】
【0021】
【非特許文献1】Welchら, Hydrocarbon Processing, 1978年11月, p.131-136
【発明の概要】
【0022】
本発明は、ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化させ且つ少なくとも約205℃(400°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し、反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも約0.4、より好ましくは少なくとも約0.5モルの酸素の範囲になるように制御し、反応器供給流を、主要割合の酸化鉄;小割合の酸化亜鉛;及びより少量の酸化マンガン;並びにリン酸;を、非窒素含有カルシウム前駆体、好ましくは酢酸カルシウムから誘導される酸化カルシウムと一緒に含む触媒の上で酸化脱水素し、それによってブタジエン富化生成物流を形成する;工程を含む、ブテンに富む供給材料からブタジエンを製造する方法を提供する。代表的な態様においては、加熱した反応供給材料混合物を、4つの層:触媒床を通る際の反応混合物のチャネリングを制限し、より下方の層を触媒床の上方に存在する可能性がある渦巻運動に対して所定位置に保持するようにも働く、好ましくはα−アルミナの球状体を含む不活性の流量分布及び触媒保持層;それ自体が69又は70cm(27インチ)より大きい深さを有する酸化/脱水素触媒である床のバルクを含む第2の層;一方、第3の層は、生成物中のアルキン類及びアルデヒド類を、アルキン類及びアルデヒド類よりもブタジエン類の重合プロセスに対して有害でない化合物に転化させるアルデヒド及びアルキン除去(AAR)触媒を含む;最下層は、不活性の粒状物支持材材料を含む;を含む多層床上に通す。好ましくは、入口条件、主として温度を、酸化脱水素反応が最初は酸化脱水素触媒床のより下方の部分において起こるように制御して、最初の反応区域の上方の床の部分においてコーキングを回避し、少なくとも3つ、好ましくは少なくとも5つ、より好ましくは少なくとも8つで、約10〜75以下又はそれ以上の遠隔読み取り可能な熱電対を、床の酸化/脱水素部分の中に挿入して、種々の深さ、及び流れの方向に対してそれから横方向に間隔を開けた位置においてその中の温度を監視し、温度プロファイルを監視して、AAR触媒に最も近い触媒の有効部分が失活し始める時点を求める。これが起こったら、入口温度を僅かに上昇させて、酸化/脱水素反応が起こっている位置を触媒床に沿って僅かに上昇させ、触媒の新たな層が有効に使用されるようにする。続いて、反応プロセスを監視して、触媒の新たに使用される層が失活し始める時点を求め、入口温度を再び上昇させて、有効反応層を床内においてより高く移動させる。このようにして、触媒のより上方の層のコーキングを制御して、触媒の交換が妥当になるのに十分に床内の最上層が激しく失活し始めるまで、コーキングによって比較的影響を受けない触媒の層が常に使用されるようにすることができる。同時にこのプロセス全体にわたって、AAR触媒及び酸化脱水素触媒のより下方の層の中の酸素含量を、温度プロファイルの監視に対するバックアップとして監視して、AAR触媒中への酸素の漏出及びその非常に望ましくない結果を回避することを更に確実にすることができる。
【0023】
本発明のために好適なフェライト酸化物触媒は、通常は多少砕けやすいか又は壊れやすいので、触媒を配合及び装填するために通常の技術を用いると、触媒床が触媒粒子の破片によって部分的に閉塞するようにならないことを確保することは相当に困難である。かかる破片は、装填、運転中の粒子間の相対運動、又は更には床の全深さに達した後の上方の粒子の単純重量から生成する可能性がある。この問題は、(i)触媒粒子を反応器中に装填する前に予備還元して、それらをより耐摩耗性にすること;及び(ii)ソックスのような低衝撃性の装填技術を用いて触媒を装填するか、又は更には単純な投入とは対照的に手によって触媒を装填すること;の両方によって対処することができる。理想的には、予備還元技術及び低衝撃性配置技術の両方を一緒に用いて、床を通る圧力損失が可能な限り低く保持されることを確保する。
【0024】
下記において、複数の例及び添付の図面を参照して本発明を詳細に説明する。図面中の同じ番号は全体にわたって同様の部品を示す。
【図面の簡単な説明】
【0025】
【
図1A】
図1Aは、本発明の実施において用いるための反応器の概要断面図である。
【
図1B】
図1Bは、触媒支持グリッドの上方の反応器内の塔頂空間、及び接続ポート及び計測ポート、並びに触媒支持グリッドの相対配置を示す、反応器シェルのより詳細な図である。
【
図1C】
図1Cは、触媒支持グリッドの上方の反応器内の塔頂空間、及び接続ポート及び計測ポート、並びに触媒支持グリッドの相対配置を示す、反応器シェルのより詳細な図である。
【
図2】
図2は、反応器、及びブテンに富む供給材料を反応器の運転のために必要な入口条件にするための予備処理装置を示す粗ブタジエン装置の反応器セクションのフロー図である。
【
図3】
図3は、
図2の反応器セクションによって生成するブタジエン富化生成物流を初期処理するための気体圧縮及びスクラビング装置を示す粗ブタジエン装置の一部のフロー図である。
【
図4】
図4は、
図3の気体圧縮及びスクラビングセクションによって処理した後のブタジエン富化生成物流を処理するためのアルデヒドストリッパー及び関連する装置を示す粗ブタジエン装置の一部のフロー図である。
【
図5】
図5は、
図4のアルデヒドストリッパーセクションから受容されるブタジエン富化生成物流を処理することによって約50%のブタジエンの粗流を製造するためのC
4吸収及びストリッピング装置を示す粗ブタジエン装置の一部のフロー図である。
【
図6】
図6は、それからC
4化合物をストリッピングした後のリーンオイルを取り扱うために用いるシステムの複数の部分を示す粗ブタジエン装置の一部のフロー図である。
【発明を実施するための形態】
【0026】
下記において、例示のみの目的の図面に関連して本発明を詳細に説明する。本発明は添付の特許請求の範囲において規定される。明細書及び特許請求の範囲の全体にわたって用いる専門用語はそれらの通常の意味で与えられ、例えば「間接熱伝達」とは熱交換器壁を通して1つの媒体から他の媒体へ熱伝達させることを指し、圧力は他に示さない限りにおいてゲージ圧を指す。本発明方法を実施する際には、好ましくは、熱は、単一の熱交換器壁を通して、より高い温度の流れからより低い温度の流れへ、例えば下記に記載するように供給材料過熱器内において反応器流出流から反応器供給材料へ伝達させる。間接熱伝達は、本発明にしたがって、チューブアンドシェル熱交換器又はプレート式熱交換器のような任意の好適な装置を用いて行うことができる。
【0027】
他に示さない限りにおいて、「ブタジエン」又は「BD」とは、1,3−ブタジエン、又は1,3−ブタジエンを含む混合物を指す。
【0028】
本発明のブタジエン製造システムの前部は複数の概して同一のプロセス系列を含み、それぞれのプロセス系列はブタジエン富化生成物流を生成する1つの反応器30を有する。ブタジエン富化生成物流からは、急冷塔64に導入する前に間接熱交換によって有用な熱を引き抜く。急冷塔64の位置において全てのプロセス流が合流される。必要以上に複雑になるのを回避するために、1つの系列のみを示す。
【0029】
図1A〜Cを参照すると、ブテンに富む炭化水素質の気体、炭化水素1モルあたり約0.55モルの酸素の比の酸素、及び炭化水素1モルあたり約15モルの水蒸気の比の水蒸気を含む反応供給材料混合物を、反応器30の上部入口ポート31を通して反応器30に導入し、下向きに流した後、約3mm〜約10mmの平均粒径を有するアルミナの不活性粒状物の層32上に衝突させる。通常は、これらの不活性粒子は、通常はおおまかにγ−アルミナと呼ばれる幾つかのより大きい表面積の形態のものよりも、おそらくはα−アルミナのような低表面積のアルミナのものであるが、α−アルミナよりも大きい表面積を示すアルミナの幾つかの中間形態が存在する。次の特性を有するα−アルミナの球状体は、触媒床内の最上層及び最下層の両方のために非常に好適である。
【0031】
上層32は、深さ約50mm〜約100mm、例えば深さ約65〜85mm、幾つかの場合には約70〜80mmであってよい。上層32を含む触媒床内のそれぞれの層は、ソックス装填技術のような低衝撃性の配置法を用いて設置して、その下方の触媒層に対する損傷を回避し、一方、上層32の深さは、その下の酸化脱水素触媒の粉砕を回避するように制限する。触媒粒子をソックス装填する場合には、それらが、粒子を相当な高さから落下させることによって生じるもののような大きな力にかけられることを回避することが重要である。床の上方のソックスの高さを制御して、粒子が約91cm(36インチ)より大きい高さを落下しないようにすると粒子に対する大きな損傷の危険性が小さくなるが、特に粒子を予備還元又は他の形態で熱処理してそれらの強靱性を向上させた場合には、185cm程度の高さ(70〜75インチ)から落下させることも時には容認される。同様に、ソックスの上端のホッパー内に触媒を配置する際には、触媒粒子が過度の高さから落下しないように同様に注意が払われる。更に手による装填を用いることができる。
【0032】
他の構成においては、層34、36を含む床35のセクションを環状のセクションとして配列して、反応物質が床を通して放射状に流れるようにすることができる。理想的には、触媒床に近付く反応供給材料混合物の流れの中の乱流又は渦流によるその下の酸化脱水素層34への障害を阻止するように、不活性の流量分布粒状物を寸法調整及び構成する。酸化脱水素触媒粒子は、不活性支持材上などに分散している触媒活性種と反応物質の間の有効な接触を与えるが、通常は高表面積触媒支持材上に分散している活性物質ではなく巨大な粒子になる任意の物理的配列のものであってよい。好ましくは、触媒粒子は寸法が約1乃至約25〜30mmであり、しばしば直径約1mm乃至約5mm以下の押出物又は球状体の形態をとる。特に、本発明においてはこれまで通常的に用いられていたものよりも深い触媒床を用いることが好ましいので、本発明に関して好ましく用いられる触媒粒子は、触媒床を通る圧力降下を制限するために従来の実施において通常的に用いられていたものよりも僅かに大きくなければならない。より大きい圧力降下はシステム内のより高い圧力を必要とし、これによって選択性が低下する。本発明においてはまた、2つの主要な従来の実施との相違点:(1)粒子は、装填する前に「予備還元」又は他の形態の熱処理を行って、約50cm〜約150cm(約20インチ乃至約60インチ以下)の深さ、好適には約65cm〜約130cm(約25インチ〜約50インチ)、又は約75cm〜約100cm(約30インチ〜約40インチ)の深さを有する床内で用いることを可能にするのに必要な粉砕強度をそれらに与え;一方、か焼した粒子の嵩密度は、約1100kg/m
3(約70ポンド/フィート
3)以下、好適には約880kg/m
3〜1050kg/m
3(約55ポンド/フィート
3〜65ポンド/フィート
3)の間、又は約920kg/m
3〜1010kg/m
3(約58ポンド/フィート
3〜63ポンド/フィート
3)の間である;及び(2)これらの触媒中にしばしば含ませるカルシウム化合物のための前駆体として従来用いられている硝酸塩を使用することは回避することが好ましい;を有する触媒粒子を用いることも好ましい。酢酸カルシウムはこの点に関して好適な前駆体であり、NO
x放出を減少させる有利性を有し、一方、塩化カルシウム及び炭酸カルシウムも好適である。
【0033】
本出願の関連出願である上記で引用した「ブタジエンを製造するための低放出酸化脱水素方法」において示されている組成を有する酸化脱水素触媒粒子を、69cm(27インチ)より大きく約152cm(60インチ)以下、好ましくは約71cm(28インチ)〜127cm(50インチ)の間、より好ましくは約76cm(30インチ)〜102cm(40インチ)の間の深さを有する層又は床34内に配置し、ブテンに富む炭化水素質の供給材料をブタジエン富化反応生成物流に転化させ、これを、AAR触媒の層又は床36を通して酸化脱水素触媒粒子の層又は床34の下流に送る。
【0034】
AAR触媒粒子の層36においては、ブタジエン富化反応生成物流中のアルキン類及びアルデヒド類を、通常のその後の重合反応におけるブタジエンの使用に対してさほど有害でないより無害の種に転化させる。好ましくは、AAR触媒層36は、酸化脱水素触媒の深さの約40%〜約60%、より好ましくは約50%の深さに存在させる。或いは、この深さは、約30cm(12インチ)〜約51cm(20インチ)、より好ましくは約33cm(13インチ)〜約48cm(19インチ)、最も好ましくは約36cm(14インチ)〜約46cm(18インチ)であってよい。AAR触媒の層36の下方には、約1.0cm(0.4インチ)〜2.54cm(1インチ)の間の直径を有するアルミナ球状体を含む不活性支持材層38が配され、不活性支持材層38は、好ましくは深さ約2.54cm(1インチ)〜約20cm(8インチ)、好ましくは深さ約5.08cm(2インチ)〜約10cm(4インチ)、より好ましくは深さ約6.4cm〜8.9cm(2.5〜3.5インチ)、更により好ましくは約6.99cm〜7.62cm(2.75〜3インチ)である。他の場合においては、
図1Aにおいて示すように、より大きなビーズの層をより小さいビーズの層によってAAR触媒から分離することができる。不活性支持材層38から排出された後、ブタジエン富化反応生成物流は、その後にその中に含まれる発熱量を回収し、ブタジエン内容物の含量を約50〜60%のブタジエンの濃度を有する粗ブタジエン流にするために、下部出口ポート33を通して反応器30から排出する。
【0035】
通常は、触媒プロセスは、触媒床の温度を約425℃(800°F)に上昇させ;転化が観察されるまで反応物質を加え;次に入口温度を低下させて触媒床の温度を制御することによって開始される。殆どの場合においては、流れを所定温度にするために天然ガスを用いる。次に、転化が観察されたら天然ガスの使用を急速に削減するか、又は完全に停止する。定常運転においては、ブテンに富む供給材料は初めに触媒床に衝突するので、入口条件を注意深く制御して、ブテン類のブタジエンへの転化の大部分がAAR触媒の上方の酸化脱水素触媒の層34の最後の数cmにおいて起こるようにする。酸化脱水素触媒の層34全体に分布されている熱電対40の最も下方のもの、即ち反応が起こっている酸化脱水素触媒の層内の熱電対のみによって記録される温度の段階的変化が重要なものとしてまず検知される。反応物質がAAR触媒に達する前に反応が実質的に完了することが非常に重要である。これは、主として、反応器内の温度プロファイルを密に観察して、反応区域がAAR触媒の上方に位置して、酸化脱水素触媒のより下方の層が触媒活性を失い始めるにつれて上に向かって移動することを確保することによって制御する。更なる保険として、酸化脱水素触媒の最下層の直上、並びにAAR触媒それ自体の中における酸素含量を測定することによって反応区域の位置を確認することができ、いかなる量の酸素の存在も非常に有害であると考えられるが、0.3%〜0.5%程度の高さの酸素含量は短時間の間は許容することができる。反応が進行するにつれて、酸化脱水素触媒の層34の最下部分中の酸化脱水素触媒は失活し始め、これは検知される温度の下降によって示され、更に選択率又は更には収率の測定値に反映される可能性がある。列内のより下方の熱電対が温度下降を検知し始めて、酸素がAAR触媒に漏出する大きな危険性が存在する場合には、入口温度を僅かに上昇させて、反応区域を酸化脱水素触媒内で上に向かって移動させる。このようにして、使用中の層の上方の酸化脱水素触媒の層における触媒のコーキングが回避される。プロセス全体にわたって、AAR触媒内の酸素含量、又はより正確には大きな酸素含量の損失を注意深く監視して、酸素がAAR触媒層中に漏出していないことを確認する。酸化脱水素触媒の最上層が、触媒の交換が必要な程度まで失活し始めたら、プロセスを中断して新しい触媒床を与える。多くの場合において、80日より多く約1年以下の触媒寿命を達成することができるが、酸素の漏出を回避するかなりの程度の確実性なしに記録を作ることを試みることは必ずしも賢明ではない。通常は、プロセスの経済性は運転の終了時に向かって多少悪化するので、入口温度は運転全体にわたって次第に上昇させて、持続時間の記録を作る試みを更に阻止しなければならない。幾らかの混乱がなければ、本発明者らは、上記の予防策を厳密に守るならば最小で180日間の触媒寿命を予測している。
【0036】
図1B及び1Cは、導入できるように寸法調整されている複数の接続ポートが反応器30の側壁内に与えられており、触媒支持グリッド38がその下側に間隔を開けて配置されていて、触媒床の満充填レベルと反応器チャンバーの上面との間に好適には少なくとも約1.8m(6フィート)の間隔の頂部空間が形成されている本発明の反応器30に関する構成を示す。
【0037】
触媒床におけるチャネリング及びホットスポットを回避するためには、流量分布も重要である。好ましい流動様式は全乱流であり、これは入口分配器を存在させることによって向上する。即ち、入口分配器は、触媒床を通る均一な流量分布を確実にし、触媒寿命を短くする可能性があるチャネリング及びホットスポットの生成の可能性を阻止するために有利に与えられる。この入口分配器装置に関する1つの好ましいデザインは、流れの均一な分布を促進し、入口の圧力損失を最小にするために、触媒床上の蒸気空間中に設置されるバッフル及びリングの形態である。
【0038】
図2を参照すると、ブテンに富む供給材料はブテン気化器50内で気化される。ブテン気化器50においては、気化のために必要な熱は急冷塔64の塔底物から熱を取り出すことによって供給される。急冷塔64の塔底物は、下記において議論するように、進行中のプロセスにおいて定常状態の運転が達成された時点で高温の反応生成物と接触させることによって加熱される。ブテン気化器50を通過した後、気化したブテン供給材料を水蒸気と混合する。この水蒸気は2つの再循環凝縮物気化器54及び56内で生成される。再循環凝縮物気化器54内で生成する水蒸気は、反応器供給材料過熱器48から排出されるブタジエン富化生成物流との間接熱交換によって生成される。再循環凝縮物気化器56内で水蒸気を生成させるのに必要な熱は、好ましくはプラント配管網か、又は好ましくは熱酸化装置若しくは幾つかの他の都合よく利用できる供給源のいずれかからの水蒸気によって供給される。好ましくは、水蒸気は、反応器供給材料過熱器48に通される前の気化したブテンと混合する前に、再循環凝縮物気化器56内で完全に気化される。反応器供給材料過熱器48においては、反応器供給材料が、反応器30から排出されるブタジエン富化生成物流との間接熱交換によって予備加熱され、得られる混合導入流は、少なくとも約345℃(約650°F)、好ましくは約345℃〜400℃(約650°F〜750°F)の範囲の温度を有する。而して、反応器30への供給材料は、出口流との間接熱交換によって必要な温度に加熱され、これは下記において議論するように、通常は535℃(1000°F)より高く、より通常的にはおよそ595℃(1100°F)の温度である。重要なことには、回収される熱は、中間流体を用いるスキームと対比して単一の管壁のみを通過する。反応器供給材料過熱器48から排出される予備加熱された反応器供給材料は、加圧された酸素含有気体、通常は空気と混合され、供給空気の量は、反応器に送られる供給材料中の炭化水素1モルあたり約0.5〜0.6モルの酸素が供給されるように注意深く制御する。幾つかの場合においては、高圧水蒸気を用いて酸素含有気体を約205〜約235℃(約400〜約450°F)に予備加熱することが好都合である。混合した後、反応供給流を、
図1に示す耐熱性ライニング断熱反応器30に送り、ここでブテン/水蒸気/空気供給材料を、反応器30の内部において、まず不活性流量分布層32、次に83.8cm(33インチ)などの深さを有する酸化脱水素触媒層34、アルデヒド及びアセチレン除去(AAR)触媒層36、及び不活性支持材(アルミナ球体)層38に通す。
【0039】
それぞれの反応器内で起こる高発熱性の反応の位置を、酸化脱水素層34の高さに沿って間隔を置いて配置される複数の遠隔読取可能な熱電対40によって監視して、その中の反応区域の位置を求めることができるようにする。生成物流中に残留する酸素の量を、層34の底部付近に配置される酸素分析器42によって監視して、下記においてより詳細に議論するようにAAR層36中への酸素の漏出を回避するようにする。また、層36中の収束解析器のための下部試料ポート44も与えて、組成物を反応器の下端において監視することができるようにする。熱電対40はまた、場合によっては層36内にも配置して、AAR区域内の温度を監視する。好適な反応器構成において、抵抗温度検出器又は非接触型センサーのような任意の好適な温度検出装置を熱電対に代えて用いることができる。
【0040】
システムを制御するために、反応区域に関する目標温度を予め選択して、反応区域内において維持する。層
34内の反応区域は、最初は層
34の底部付近に位置する。酸化脱水素触媒層
34の反応区域又は「活性」層は、比較的短い床深さで温度が予め選択された目標温度に比較的急激に上昇することを特徴とする。一般に、反応区域は、1〜5インチ(2.5cm〜13cm)の床深さの変化で目標温度へ100°F〜300°F(55℃〜167℃)温度上昇することを特徴とする。より通常的には、活性層は、2〜4インチ(5cm〜10cm)の床深さで150°F〜250°F(83℃〜139℃)温度上昇することを特徴とする。床
34内の反応区域の下方において、反応区域内において酸素が完全か又はほぼ完全に使い果たされており、もはやシステム中に存在していない場合には、好ましくは更なる温度上昇はない。
【0041】
酸化脱水素反応区域に関して好適な運転目標温度は、1000°F〜1200°F(540℃〜650℃)である。反応区域の目標温度が低下し始めたら、反応器への入口温度を上昇させて、活性区域を層
34内で上向きに移動させる。反応区域の上向きの移動速度において示される床内の温度変化速度、及び反応区域の上方の残りの床深さに基づいて、酸素の漏出に関する時間を見積もることができる。反応区域の上方の温度は反応を触媒するのに用いることができる比較的新しい触媒を示しているので、漏出までの時間の見積は、反応区域又はその下方の温度よりも、反応区域の上方の層内の温度の読み値(これは、反応区域に関する目標温度よりも低い)に基づく。而して、反応区域が0.5cm/日の速度で上向きに移動していることが一時的な温度プロファイルによって示され、1つ又は複数の最上部の熱電対によって5cmの新しい触媒層が示される場合には、酸化脱水素触媒の消耗速度が比較的一定に維持されるならば、酸素の漏出前に僅か10日間の運転しか残されない。
【0042】
ここで記載するようにして反応区域の移動を制御することによって、酸化脱水素触媒によって最良の性能が長い時間与えられる。
【0043】
上述したように、反応器30からの高温の反応生成物流は反応器供給材料過熱器48(
図2)に通し、これにより反応器30への供給材料を必要な運転温度にするのに用いる熱の一部が供給され、反応器供給材料過熱器48から排出される反応生成物はそこから水蒸気発生器54に通して、そこでその中に含まれる顕熱の一部を用いて、反応器30へ送られる水蒸気を気化及び/又は過熱する。
【0044】
次に、水蒸気発生器54から排出されるブタジエン富化反応生成物は、急冷塔64(
図3)に送って、通常運転中において予測される最高液体レベルよりも僅かに高い高さにおいて導入する。言及したように、本発明の好ましい態様においては、反応器30からのブタジエン富化生成物流は、急冷塔64に導入する前に、他の反応器(図示せず)からの他のブタジエン富化生成物流と混合する。一態様においては、急冷塔64の底部セクション66にはバルブトレイが装備され、一方、頂部セクション70には、Lantzらの米国特許6,874,769(構造化充填プレート及び部材並びにその製造方法)又はRukovenaの米国特許4,740,334に記載されているものと同様のKoch Flexipac(登録商標)のような波形金属構造化充填材が装備される。或いは、塔全体に関して噴霧ノズルを用いることができる。多くの場合において、蒸気状及び液体状の反応生成物流出流の混合物を、予め相分離することなく急冷塔64中に直接供給することが可能であると予想されるが、かかる予め行う相分離は、適切な場合にはフラッシュタンク又は同様の相分離装置を含めることによって容易に適合させることができる。急冷塔64の下部出口67において回収され、主として凝縮水蒸気及び急冷水を含む凝縮液相は、ブテン気化器50の高温側を通して戻し、冷却された戻り液は急冷凝縮物空気冷却器76を通して戻して、そこから、急冷塔循環冷却器78に送った後に、急冷塔64の充填セクション70の頂部より十分に高いが、デミスターパッド83よりも低い位置において急冷塔64中に供給する。好ましくは、急冷凝縮物空気冷却器76には、種々の周囲条件中で温度制御を容易にするために、モジュラー管列、個々に制御されるファン、及び可変ピッチファンブレードを装備する。多くの場合においては、急冷塔64の塔底流からの更なる熱を、関連するプラントの他の箇所で用いるために引き抜いて、急冷塔冷却器76及び78の寸法及びコストを減少させることができる。
【0045】
粗ブタジエン蒸気は、急冷塔64の頂部セクション70(
図3)から排出され、主として気体圧縮機84を同伴される液滴から保護するために含まれるデミスターパッド83に通し、2段階遠心気体圧縮機84の吸込側上に導入する。圧縮機中間冷却器88及び89によって間接的な中間冷却が与えられ、圧縮機中間冷却器88への冷却はストリッピングされた水の冷却器99から排出されるプロセス流によって供給され、圧縮機中間冷却器88のシェル側からの加熱された流れはアルデヒドストリッパー98に供給する(
図4)。中間冷却器89への冷却は、好都合にはプラント冷却塔水によって供給される。
【0046】
デミスターパッド83上で凝集した同伴液滴は急冷塔64を通して還流し、一方、1140kPa絶対圧(約150psig)に加圧された加圧蒸気状ブタジエン富化生成物は気体圧縮機の第2段階から排出され、アルデヒドスクラバー92に送られる。アルデヒドスクラバー92の頂部部分93には、好ましくはNorton Intallox構造化充填材又は上記に記載の充填材と同様であってよい構造化充填材を充填する。アルデヒドスクラバー92からの塔底物の一部は、構造化充填材を通して、アルデヒドスクラバー塔底物冷却器95を介して再循環し、一方、残りはアルデヒドスクラバー塔底物分離器96(
図4)を介してアルデヒドストリッパー98に送る。アルデヒドスクラバー塔底物分離器96は、急冷塔塔底物ポンプ65を介して急冷塔64の塔底からの液体、及び気体圧縮機84の第2段階ノックアウトドラムからの液体を受容する。アルデヒドスクラバー塔底物分離器96の含有水は、デミスターパッド83の下方の位置において急冷塔64に戻すことができる。相当量のC
4より軽質の炭化水素又は他の低価値の揮発性物質をその中の種々の流れから取り出すことができる場合には、これらのオフガスを熱酸化装置に供給して、そこで燃焼させて水蒸気を生成させ、これを用いてプロセス全体の種々の部分に関して必要な熱を供給して、これによって定常運転中において天然ガスを燃焼させる必要性を大きく減少させ、且つこれによって付随して起こる一酸化炭素及び二酸化炭素の生成も減少させることができることは本発明の重要な特徴である。
【0047】
アルデヒドストリッパー(
図4)は、油相を掬い取った後のアルデヒドスクラバー塔底物からの水相を受容する。この流れは、まずストリッピングされた水の冷却器99のシェル側にポンプ移送し、これから圧縮機中間冷却器88のシェル側に送って、アルデヒドストリッパー98に供給する前に熱統合によってその温度を上昇させることを助け、アルデヒドストリッパー98からのこの塔頂蒸気の一部はアルデヒドストリッパー塔頂物凝縮器100に送り、ここからアルデヒドストリッパー98へ還流として戻して、カラム内の蒸気/液体平衡を維持し、この塔98への供給材料中に含まれるアルデヒドを塔頂に押し流す。塔頂物凝縮器100を迂回するアルデヒドストリッパー98からの塔頂蒸気流の残りは、他の低価値の可燃物と混合して、過熱水蒸気を生成させるために熱酸化装置(図示せず)に送る。塔頂物凝縮器100からの凝縮塔頂流中に同伴されるより重質の炭化水素は塔底物凝集装置によって回収し、これも従来の油水施設(図示せず)において処理することによって処分する。アルデヒドストリッパーリボイラー102は、水蒸気、有利には中圧水蒸気を用いて、アルデヒドストリッパー98からのアルデヒドストリッパー塔底物の一部を気化させ、この蒸気をアルデヒドストリッパー98の底部トレイの下方に再導入し、一方、残りはアルデヒドストリッパー塔底物ポンプ105を用いて2つの場所にポンプ移送する。即ち、(1)2つのストリッピングされた水の冷却器(図示せず)を介してアルデヒドスクラバー92の充填材の下方の底部に戻し;及び(2)再循環凝縮物気化器に送って、そこで酸化脱水素反応のために用いる水蒸気の全部ではないにしても多くの量を生成させる。
【0048】
アルデヒドスクラバー92(
図3)の塔頂からの反応生成物は、複数のトレイ又は気液接触を促進するための他の公知の器具を含み、少なくとも1つの中間冷却器111を装備したC
4吸収器110(
図5)の底部に送る。吸収器110内で用いる吸収油(時にはリーンオイルとも呼ばれる)は、好適にはパラフィン系、或いはパラフィン系と芳香族の混合物であってよいが、ビニルシクロヘキセン(ブタジエン二量体)に富むか、又は場合によっては更には完全にこれから構成されるオイルを用いると特に優れた結果が得られる。良好な商業的な結果は、新たな吸収油が主として、90℃〜150℃(200°F〜300°F)の沸点を有し、表1に示す組成を有する芳香族ナフサ製品であるEspersol 250である場合に得られた(表1Aにおいては摂氏の沸点を与える)。或いは、同等の沸点を有するパラフィン系ナフサ製品を用いることができる。
【0051】
生成物流中のブタジエンは、C
4吸収器110の頂部において導入される吸収油中に吸収され、それからの塔底物は、C
4吸収器塔底物ポンプ113及び脱気装置供給流冷却器115を通して脱気塔116の頂部にポンプ移送する。脱気塔116は、残留気体、特に二酸化炭素、窒素、及び水素の除去を促進するためにより低圧で運転し、これらは2段階気体圧縮機84の中間冷却器88を通して、アルデヒドスクラバー92に通す前のブタジエン富化生成物流に送る。脱気装置116からの脱気装置塔頂気体は、圧縮機84の第2段階に再循環して戻し、それからスクラバー92及び吸収器110に送り、そこから最終的に熱酸化装置114中に流入させる。脱気装置リボイラー122によって、脱気塔116の液相中の温度を、残留気体を上記に記載するようにフラッシングして熱酸化装置114に送るのに十分に高く維持する。主として吸収油中の粗ブタジエン及び種々のC
4化合物を含む脱気塔116からの塔底物は、C
4ストリッパー供給塔底物交換器127を通してC
4ストリッパー124に送る。C
4ストリッパー供給塔底物交換器127においては、C
4ストリッパー124の塔底からの高温の吸収油をC
4ストリッパー供給物/塔底物交換器127の管に通すことによってこの塔底流を加熱する。加熱された脱気装置塔底物は、C
4ストリッパー124中に中間高さで導入する。C
4ストリッパー124中において、加熱された吸収油から粗ブタジエン及びC
4化合物をストリッピングし、塔頂物としてC
4ストリッパー塔頂物凝縮器130に送り、一方、C
4ストリッパー124からの塔底物中に回収される消耗した吸収油は、C
4ストリッパーリボイラー128内で再加熱する。C
4ストリッパー124からの塔頂蒸気は、C
4ストリッパー塔頂物凝縮器130内で凝縮させ、凝縮した液体の一部はC
4ストリッパー還流ドラム125内で蓄積させて、ここで残留水を炭化水素相から分離してアルデヒドストリッパー塔98に戻すことができ、一方、粗ブタジエン生成物は、C
4ストリッパー還流ポンプ123を通して更なる処理にポンプ移送し、一方、C
4ストリッパー124内で十分な分離が行われるのを確保するのに十分な粗ブタジエンを還流として再循環させる。
【0052】
C
4ストリッパー124から排出される塔底物は、ブタジエン及びそれからストリッピングされた他のC
4化合物を有する吸収油を含み、これは3つの部分に分割し、1つは、C
4ストリッパーリボイラー128を通してC
4ストリッパー124に再循環し、第2の部分は吸収油サージドラム142(
図6)に送り、残りの部分は、上述したようにC
4ストリッパー供給物/塔底物交換器127を通過させることによってブタジエン/吸収油混合物を加熱するのに用い、C
4ストリッパー供給物/塔底物交換器127においては、それと吸収油サージドラム142から再循環される油を吸収油空気冷却器131及び吸収油冷却器133に送り、その後、再使用するためにC
4吸収器110に戻す。吸収油は分解してより重質の分子を形成するので、新しい補給油をシステム中に導入し、一方、残余は重質物を取り出すために再処理カラムに送る。吸収油再処理塔132の運転が妥当になるか又は必要になるのに十分な重質物が吸収油中に蓄積されたら、吸収油サージドラム142から再循環される油の一部を蒸留して、吸収油再処理塔の塔底物中のより重質の成分を取り出し、塔頂物は吸収油再循環ループにポンプで戻す。時には、回収される油を、新しい吸収油を貯蔵している貯蔵タンク140にポンプ移送することができる。
【0053】
表2及び2Aは、23,000kg/時(50,600ポンド/時)のブタジエンを製造するための3種類の可能なプラント構成に関するエネルギーバランスを示す。プラント構成は、1つは熱酸化装置を有さず;1つは、主としてブテンをブタジエンに転化させるプロセスにおいて生成する低価値の可燃物に合わせた寸法の小型の熱酸化装置を有し;1つは、ブテンをブタジエンに転化させるプロセスにおいて生成する低価値の可燃物、及び粗ブタジエンを販売できるグレードに精製するプロセスにおいて生成するものの両方に合わせた寸法のものである。ブテン類をブタジエンへ転化させるプロセスの定常運転中に反応器に供給される種々の流れを気化及び過熱するためのエネルギー必要量は、反応器生成物流中の顕熱を、ブタジエン製造及び精製の両方からの低価値の可燃物の熱酸化から得られるエネルギーと組み合わせると、驚くほど小さいことを認めることができる。
【0056】
反応セクションに関するエネルギー必要量はまた、下表3及び3Aにおいて示すように、生成するBD(ブタジエン)1kgあたりのkJ(BTU/ポンド)で表すこともできる。
【0059】
ブタジエン1kgあたり4400kJ(1900BTU/ポンド)を超える過熱器48のためのエネルギーの全ては、高温の反応器流出流(流出生成物流は370℃(700°F)を優に超える)からの顕熱の間接熱伝達によって供給することができる。更に、気化器54のためのエネルギーの全ては、流出生成物流の多少低い温度における間接熱伝達によって同じように供給することができる。プロセス流からの熱回収は、供給材料を過熱する目的のために流れが比較的高温にある時点で流出流から熱を引き抜き、次に供給材料を気化させる目的のために比較的低い温度で反応器流出流から熱を引き抜くことによって向上する。気化器56のためのエネルギーは、本明細書に記載する酸化脱水方法に関連して生成する揮発性有機化合物の熱酸化から熱を引き抜くプラント水蒸気配管網から供給することができる。
【0060】
本発明を詳細に記載したが、本発明の精神及び範囲内の修正は当業者には容易に明らかになるであろう。上記の議論、当該技術における関連する知識、並びに背景及び詳細な説明に関連して上記で議論した参照文献(共に係属中の出願を含む)(これらの開示事項は全て参照として本明細書中に包含する)を考慮すると、更なる記載は不要であると考えられる。更に、本発明の複数の形態及び種々の態様の複数の部分は、全体的又は部分的に組み合わせるか又は交換することができることを理解すべきである。更に、当業者であれば、上記の記載は例示のみの目的であり、本発明を限定することは意図しないことを認識するであろう。
以下に本発明の実施態様を記載する。
[態様1]
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約345℃(650°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し;
酸化脱水素触媒の粒状物の触媒床を与え、反応器供給流を入口から触媒床に通して、それによってブタジエン富化生成物流を形成し;
酸化脱水素触媒の触媒床は、床内の温度を流れの方向に沿って測定するように構成されている複数の温度検出装置をそれに付随して有し;
反応器への入口条件を、酸化脱水素反応が最初は反応区域内を含む入口に対して最も遠位の酸化脱水素触媒の層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
床の長さに沿って随時温度を監視し、入口温度を上昇させて、反応区域が酸化脱水素触媒床への入口に向かって移動するようにする;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
[態様2]
ブタジエン富化生成物流を、アセチレン系不純物をそれから除去するのに有効なAAR触媒の床に通すことを更に含む、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様3]
酸化脱水素触媒粒状物が直径約1mm〜約30mmの範囲である、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様4]
酸化脱水素触媒粒状物が直径約1mm乃至約5mm以下の範囲である、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様5]
酸化脱水素触媒がフェライト酸化脱水素触媒である、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様6]
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様7]
酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、態様6に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様8]
反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様9]
フェライト酸化脱水素触媒床が70cm(27インチ)より大きい深さを有する、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様10]
温度検出装置が熱電対を含む、態様1に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様11]
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約345℃(650°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し;
フェライト酸化脱水素触媒の粒状物の触媒床の層を与え、反応器供給流を触媒床に通して、それによってブタジエン富化生成物流を形成し;
その下にAAR触媒の粒子の床の層を与え;
フェライト酸化脱水素触媒の触媒床は、AAR触媒の層の約5〜約10cm上方に間隔を開けて配置されている少なくとも1つの温度検出装置、及びAAR触媒の層の約15〜約25cm上方に配置されている他の温度検出装置を含む、その深さ全体にわたってその中に埋封されている複数の温度検出装置を有し;
反応器への入口条件を、酸化脱水素反応が最初は反応区域内を含む酸化脱水素触媒の最下層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時床全体にわたって温度を監視し、反応区域内の酸化脱水素触媒の活性層が失活し始めたら入口温度を上昇させて、反応区域が酸化脱水素床内で上向きに移動するようにし、酸化脱水素触媒床の最上部分に配置されている温度検出装置によって温度が低下し始めたことが示された後に、ブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
[態様12]
酸化脱水素触媒粒状物が直径約1mm〜約30mmの範囲である、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様13]
酸化脱水素触媒粒状物が直径約1mm乃至約5mm以下の範囲である、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様14]
粒状物を、装填する前に、約60cm(27インチ)乃至約150cm(60インチ)以下の深さを有する床内で用いることができるために必要な粉砕強度がそれらに与えられるのに十分な程度に予備還元又は他の形態で熱処理し、予備還元した粒子の嵩密度は約1121kg/m3(70ポンド/フィート3)以下である、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様15]
予備還元した粒状物の嵩密度が約930kg/m3〜1010kg/m3(58ポンド/フィート3〜63ポンド/フィート3)の間である、態様14に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様16]
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様17]
酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、態様16に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様18]
反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様19]
フェライト酸化脱水素触媒床が70cm(27インチ)より大きい深さを有する、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様20]
温度検出装置が熱電対を含む、態様11に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様21]
フェライト酸化脱水素触媒の粒状物の触媒床の層、及びその下にAAR触媒の粒子の床を与え、フェライト酸化脱水素触媒の触媒床は、AAR触媒の層の約5〜約10cm上方に間隔を開けて配置されている少なくとも1つの熱電対、及びAAR触媒の層の約15〜約25cm上方に配置されている他の熱電対を含む、その深さ全体にわたってその中に埋封されている複数の熱電対を有し;
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約345℃(650°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し;
反応器への入口条件を、酸化脱水素反応が反応区域内を含む酸化脱水素触媒の最下層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時床全体にわたって温度を監視し、測定される温度に基づいて、及び複数の熱電対によって示される観察される温度変化速度に基づいて酸素の漏出が起こる時点を随時計算し;
酸化脱水素触媒の活性層が失活し始めたら入口温度を上昇させて、反応区域が酸化脱水素床内で上向きに移動するようにし、測定される温度に基づいて、及び複数の熱電対によって示される観察される温度変化速度に基づいて酸素の漏出が起こる時点を随時計算し、酸素漏出に関する予測時間の前にブテンに富む炭化水素質の供給材料の供給を停止し、ここで少なくとも多少の時間の間は、酸素漏出に関して計算される予測時間は、最上の酸化脱水素触媒層からより遠位に間隔を開けて配置されている熱電対によって示される温度よりも、最上の酸化脱水素触媒層により近い少なくとも2つの熱電対によって示される温度に基づいており;
酸化脱水素触媒床中の温度プロファイルによって示される酸素漏出の予測時間の前に、ブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
[態様22]
酸化脱水素触媒が直径約1mm〜約30mmの範囲である、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様23]
酸化脱水素触媒が直径約1mm乃至約5mm以下の範囲である、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様24]
粒子を、装填する前に、約70cm(27インチ)乃至約150cm(60インチ)以下の深さを有する床内で用いることができるために必要な粉砕強度がそれらに与えられるのに十分な程度に予備還元又は他の形態で熱処理し、予備還元した粒子の嵩密度は約1120kg/m3(70ポンド/フィート3)以下である、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様25]
予備還元した粒子の嵩密度が約930kg/m3〜1010kg/m3(58ポンド/フィート3〜63ポンド/フィート3)の間である、態様24に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様26]
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様27]
酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、態様26に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様28]
反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様29]
フェライト酸化脱水素触媒床が70cm(27インチ)より大きい深さを有する、態様21に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様30]
粒子を投下することなく確実に配置することによって床内に触媒粒子を配置することにより、フェライト酸化脱水素触媒の粒状物の触媒床の層、及びその下にAAR触媒の粒子の床を与え、フェライト酸化脱水素触媒の触媒床は、AAR触媒の層の約5〜約10cm上方に間隔を開けて配置されている少なくとも1つの熱電対、及びAAR触媒の層の約15〜約25cm上方に配置されている他の熱電対を含む、その深さ全体にわたってその中に埋封されている複数の熱電対を有し;
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約345℃(650°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し;
反応器への入口条件を、酸化脱水素反応が反応区域内を含む酸化脱水素触媒の最下層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時床全体にわたって温度を監視し、測定される温度に基づいて、及び複数の熱電対によって示される観察される温度変化速度に基づいて酸素の漏出が起こる時点を随時計算し;
酸化脱水素触媒の活性層が失活し始めたら入口温度を上昇させて、反応区域が酸化脱水素床内で上向きに移動するようにし、測定される温度に基づいて、及び複数の熱電対によって示される観察される温度変化速度に基づいて酸素の漏出が起こる時点を随時計算し、酸素漏出に関する予測時間の前にブテンに富む炭化水素質の供給材料の供給を停止し、ここで少なくとも多少の時間の間は、酸素漏出に関して計算される予測時間は、最上の酸化脱水素触媒層からより遠位に間隔を開けて配置されている熱電対によって示される温度よりも、最上の酸化脱水素触媒層により近い少なくとも2つの熱電対によって示される温度に基づいており;
酸化脱水素触媒床中の温度プロファイルによって示される酸素漏出の予測時間の前に、ブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
[態様31]
酸化脱水素触媒が直径約1mm〜約30mmの範囲である、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様32]
酸化脱水素触媒が直径約1mm乃至約5mm以下の範囲である、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様33]
粒子を、装填する前に、少なくとも約70cm(27インチ)乃至約150cm(60インチ)以下の深さを有する床内で用いることができるために必要な粉砕強度がそれらに与えられるのに十分な程度に予備還元又は他の形態で熱処理し、予備還元した粒子の嵩密度は約1120kg/m3(70ポンド/フィート3)以下である、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様34]
予備還元した粒子の嵩密度が約930kg/m3〜1010kg/m3(58ポンド/フィート3〜63ポンド/フィート3)の間である、態様33に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様35]
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様36]
酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、態様35に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様37]
反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様38]
フェライト酸化脱水素触媒床が70cm(27インチ)より大きい深さを有する、態様30に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様39]
フェライト酸化脱水素触媒の粒状物の触媒床、及びその下にAAR触媒の粒子の床を与え、フェライト酸化脱水素触媒の触媒床は、AAR触媒の層の約5〜約10cm上方に間隔を開けて配置されている少なくとも1つの熱電対、及びAAR触媒の層の約15〜約25cm上方に配置されている他の熱電対を含む、その深さ全体にわたってその中に埋封されている少なくとも約5つの複数の熱電対を有し;
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約345℃(650°F)の温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し;
反応器への入口条件を、酸化脱水素反応が反応区域内を含む酸化脱水素触媒の最下層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時床全体にわたって温度を監視し、測定される温度に基づいて、及び複数の熱電対によって示される観察される温度変化速度に基づいて酸素の漏出が起こる時点を随時計算し;
酸化脱水素触媒の活性層が失活し始めたら入口温度を上昇させて、反応区域が酸化脱水素床内で上向きに移動するようにし、酸素漏出に関する予測時間の前にブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。
[態様40]
酸化脱水素触媒が、直径約1mm〜約30mmの粒径範囲を有する硝酸塩を含まない触媒である、態様39に記載のブテンに富む供給材料からブタジエンを製造する低排出方法。
[態様41]
酸化脱水素触媒が直径約1mm乃至約5mm以下の粒径範囲を有する、態様40に記載のブテンに富む供給材料からブタジエンを製造する低排出方法。
[態様42]
粒子を、装填する前に、少なくとも約70cm(27インチ)乃至約150cm(60インチ)以下の深さを有する床内で用いることができるために必要な粉砕強度がそれらに与えられるのに十分な程度に予備還元又は他の形態で熱処理し、予備還元した粒子の嵩密度は約1121kg/m3(70ポンド/フィート3)以下である、態様41に記載のブテンに富む供給材料からブタジエンを製造する低排出方法。
[態様43]
予備還元した粒子の嵩密度が約920kg/m3〜1010kg/m3(58ポンド/フィート3〜63ポンド/フィート3)の間である、態様42に記載のブテンに富む供給材料からブタジエンを製造する低排出方法。
[態様44]
フェライト酸化脱水素触媒が実質的に硝酸塩を含まない、態様39に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様45]
酸化脱水素触媒が、酸素、主要割合の鉄、小割合の亜鉛、及びより小量のマンガン、リン、及び硝酸塩を含まないカルシウム前駆体の残渣を含む、態様44に記載のブテンに富む供給材料からブタジエンを製造する低排出方法。
[態様46]
反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも0.5モルの酸素が供給されるように制御する、態様39に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様47]
フェライト酸化脱水素触媒床が70cm(27インチ)より大きい深さを有する、態様39に記載のブテンに富む供給材料からブタジエンを製造する方法。
[態様48]
ブテンに富む炭化水素質の供給材料を与え、炭化水素質のブテンに富む供給材料を気化及び少なくとも約650°Fの温度に過熱し、炭化水素質のブテンに富む供給材料を過熱水蒸気及び酸素に富む気体と混合して反応器供給流を形成し、反応器供給流中の酸素のモル量を、炭化水素質のブテンに富む供給材料1モルあたり少なくとも約0.5モルの酸素の範囲になるように制御し;
実質的に硝酸塩を含まないフェライト酸化脱水素触媒の粒状物の約70cm(27インチ)より大きい深さを有する触媒床を与え、反応器供給流を触媒床に通して、それによってブタジエン富化生成物流を形成し;
その下にAAR触媒の粒子の床を与え、触媒床は、AAR触媒の層の約5〜約10cm上方に間隔を開けて配置されている少なくとも1つの熱電対、及びAAR触媒の層の約15〜約25cm上方に配置されている他の熱電対を含む、それぞれの床の深さ全体にわたってその中に埋封されている複数の熱電対を有し;
反応器への入口条件を、酸化脱水素反応が最初は反応区域内を含む酸化脱水素触媒の最下層内で起こるように制御し、反応器供給流を触媒上で反応させて、それによってブタジエン富化生成物流を形成し;
反応区域内の温度の低下に応答して随時床全体にわたって温度を監視し、酸化脱水素触媒の活性層が失活し始めたら入口温度を上昇させて、反応区域が酸化脱水素床内で上向きに移動するようにし、酸化脱水素触媒床の最上部分内に配置されている熱電対によって示される温度が低下し始めた後に、ブテンに富む炭化水素質の供給材料の供給を停止する;
工程を含む、ブテンに富む供給材料からブタジエンを製造する方法。