特許第6161329号(P6161329)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社サムソンの特許一覧

<>
  • 特許6161329-給水予熱ボイラ 図000002
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6161329
(24)【登録日】2017年6月23日
(45)【発行日】2017年7月12日
(54)【発明の名称】給水予熱ボイラ
(51)【国際特許分類】
   F22D 1/02 20060101AFI20170703BHJP
【FI】
   F22D1/02
【請求項の数】1
【全頁数】7
(21)【出願番号】特願2013-41477(P2013-41477)
(22)【出願日】2013年3月4日
(65)【公開番号】特開2014-169814(P2014-169814A)
(43)【公開日】2014年9月18日
【審査請求日】2016年2月1日
(73)【特許権者】
【識別番号】000130651
【氏名又は名称】株式会社サムソン
(72)【発明者】
【氏名】黒木 茂
(72)【発明者】
【氏名】安藤則俊
【審査官】 杉山 豊博
(56)【参考文献】
【文献】 特開2008−298308(JP,A)
【文献】 特開2002−295804(JP,A)
【文献】 特開2002−250502(JP,A)
【文献】 特開2000−140611(JP,A)
【文献】 特開2003−342003(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F22D 1/02
(57)【特許請求の範囲】
【請求項1】
給水を予熱するエコノマイザと、エコノマイザで予熱した給水をさらに加熱して蒸気を発生させるボイラ本体を持っており、エコノマイザを通じてボイラ本体へ給水するようにしている給水予熱ボイラであって、エコノマイザでの伝熱管は、途中で分岐させる構造としてボイラ給水の上流側と下流側で構造を異ならせており、給水流の前記分岐部より上流側の伝熱管では排ガス流に対して交差する方向に流路を折り返した蛇行配置、給水流の前記分岐部より下流側の伝熱管では排ガス流に対して対向する方向であって給水流の上流側部分よりもパス数を多くした並列配置の流路として、エコノマイザ内のボイラ給水が流れる流路断面積は、給水流路上流側よりも下流側で大きくなるようにしたものであることを特徴とする給水予熱ボイラ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、給水を予熱するエコノマイザと、エコノマイザで予熱した給水をさらに加熱して蒸気を発生するボイラ本体を持っており、エコノマイザを通じてボイラ本体へ給水するようにしている給水予熱ボイラに関するものである。
【背景技術】
【0002】
特許5008134号公報にあるように、給水を予熱するエコノマイザと、エコノマイザで予熱した給水をさらに加熱して蒸気を発生するボイラ本体を設けておき、エコノマイザによって予熱した給水をボイラ本体へ供給するようにしている給水予熱ボイラが広く普及している。エコノマイザは排ガスを通す排ガス通路内に多数の伝熱管を設け、各伝熱管を連結して一続きの給水流路を形成することで、ボイラへの給水はエコノマイザを通して行われるようにしている。排ガスは、ボイラ本体にて熱交換を行うことで温度を低下させているが、それでも給水温度に比べれば十分に温度が高い。そのために給水の予熱には利用でき、排ガスで給水の予熱を行うことで熱の総合的な回収量を増加することができる。
【0003】
エコノマイザでの熱回収量を多くすれば、ボイラでの効率が向上するため、高効率をねらったボイラでは給水をより高い温度まで予熱するようにしている。しかし予熱後の給水温度を高く設定している場合、エコノマイザでの加熱量が想定より高くなると、給水がエコノマイザ内で蒸発し、蒸気を発生することがある。間欠的に給水を行っているボイラの場合、給水を行うとエコノマイザ内の水は入れ替わるために予熱水温度がある程度以上に高くなることはないが、給水を停止している時間帯ではエコノマイザ内部の水が入れ替わらない。そのため、エコノマイザ内長い時間加熱され続け、予熱水温度が高くなることがある。エコノマイザ4内で予熱水温度の上昇による蒸発によって気泡が発生すると、エコノマイザ内やエコノマイザとボイラ本体をつなぐ予熱水配管内のボイラ給水が気水混合物となる。気水混合物は液体の場合に比べると容積が大きくなるため、その場合には圧力損失が増大する。圧力損失が大きくなると、給水ポンプの作動を行ってもボイラへの給水が送られにくい状態となり、給水時間が長くなる。そして給水が間に合わなくなると、ボイラ内水位が低下してしまい、ボイラでは低水位異常になるということがあった。
【0004】
また、設計上はエコノマイザ内での給水は飽和温度以上にならないようにしていても、ボイラ本体部分で煤が付着するなどし、ボイラ本体部分で吸収する熱量が少なくなることによって、エコノマイザには想定よりも高い温度の排ガスが送られることもある。エコノマイザでは、供給されている排ガス温度が高くなれば、エコノマイザで吸収する熱量も増加する。そのため、上記のように排ガス温度が高くなった場合には、エコノマイザでは設計上の熱吸収量よりも多くの熱を吸収することになり、予熱後の給水温度は高くなる。そのことによって、エコノマイザ内で沸騰が発生し、給水中に気泡が現れるということもあった。特にエンジンの排ガスを利用している排ガスボイラでは、エンジンの不調によって発生した煤がボイラ本体の伝熱管に付着し、ボイラ本体部分での熱吸収量が低下することによって、エコノマイザでの排ガス温度が上昇するということが発生しやすい。
【0005】
特許5008134号公報に記載の発明では、エコノマイザ出口における予熱水温度と、ボイラ本体内におけるボイラ水飽和温度を検出し、予熱水温度と飽和温度の温度差を算出するようにしている。そして、温度差があらかじめ設定しておいた必要温度差よりも小さくなった場合には、ボイラへの給水を行わせるようにしている。このようにすることで、エコノマイザ内での蒸気発生を抑えるのであるが、実際にエコノマイザ内で気泡が発生してしまった場合には、上記の問題が発生することになる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許5008134号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、排ガスの熱を使用してボイラ給水の予熱を行っている給水予熱ボイラにおいて、エコノマイザ部分での予熱量が設定よりも大きくなり、エコノマイザ内で蒸気が発生することになっても、給水流路での圧力損失の増大によって給水が行わなくなる事態を防ぐことのできる給水予熱ボイラを提供することにある。
【課題を解決するための手段】
【0008】
請求項1に記載の発明は、給水を予熱するエコノマイザと、エコノマイザで予熱した給水をさらに加熱して蒸気を発生させるボイラ本体を持っており、エコノマイザを通じてボイラ本体へ給水するようにしている給水予熱ボイラであって、エコノマイザでの伝熱管は、途中で分岐させる構造としてボイラ給水の上流側と下流側で構造を異ならせており、給水流の前記分岐部より上流側の伝熱管では排ガス流に対して交差する方向に流路を折り返した蛇行配置、給水流の前記分岐部より下流側の伝熱管では排ガス流に対して対向する方向であって給水流の上流側部分よりもパス数を多くした並列配置の流路として、エコノマイザ内のボイラ給水が流れる流路断面積は、給水流路上流側よりも下流側で大きくなるようにしたものであることを特徴とする。
【発明の効果】
【0009】
エコノマイザ内で給水の予熱量が設定よりも大きくなり、エコノマイザ内で気泡が発生した場合であっても、圧力損失の増大を防止することができるため、圧力損失増大の影響による給水の阻害によってボイラで給水が間に合わなくなるといったことを防止することができる。また、エコノマイザ内では気泡が発生する程には加熱されなかったとしても、給水温度が上昇すればボイラ給水に体積の増大がある。体積が増大すると、ボイラ給水のエコノマイザ出口付近では速度が上昇することになり、エロージョンによる配管の減肉が発生しやすくなる。これに対しても、給水流路の下流側で流路面積を拡大した構造としておくと、ボイラ給水の流速増加を抑えることができ、エロージョンによる配管の減肉を防止する効果を得ることができる。
【図面の簡単な説明】
【0010】
図1】本発明の一実施例における給水予熱ボイラのフロー図
【発明を実施するための形態】
【0011】
本発明の一実施例を図面を用いて説明する。図1は本発明を実施している給水予熱ボイラのフロー図、図2は本発明の他の実施例における給水予熱ボイラのフロー図である。実施例でのボイラは、自身では燃焼装置を持っておらずガスエンジン(図示せず)から排出された高温の排ガスによって水を加熱し、蒸気を発生させる排熱蒸気ボイラである。ボイラは大きく分けると、ボイラ本体6の部分とエコノマイザ4の部分からなっている。ボイラ本体6は、多数の伝熱管を並列に設置し、上下を管寄せで接続した構成が一般的である。
【0012】
エコノマイザは、多数の伝熱管を連結して流路を形成したものであり、ボイラ本体6で熱の回収を行った後の排ガスを流す排ガス通路1に設置している。エコノマイザ4は、一方の端部に給水管3を接続しており、給水管3の途中に設けた給水ポンプ2を作動することで給水をエコノマイザ4内へ導入する。給水ポンプ2の作動制御は、ボイラ本体6での水位を検出する水位検出装置9からの信号を受けている運転制御装置8によって行う。給水ポンプ2と運転制御装置8は、信号線にて接続しており、給水ポンプ2は運転制御装置8からの指令に基づいて運転をオン−オフする。エコノマイザ4の他方の端部には、エコノマイザ4とボイラ本体6をつなぐ予熱水配管7を接続している。
【0013】
エコノマイザ4では、排ガス流は下向きに流れる。そしてボイラ給水流は蛇行しながら上向きに流れるようにしており、また排ガス流と給水流は対向方向に流れる部分を持った構造となっている。エコノマイザ4での伝熱管は、排ガス流上流側つまりボイラ給水の下流側と、排ガス流下流側つまりボイラ給水の上流側で構造を異ならせている。エコノマイザ4での伝熱管は、途中で分岐させる構造としており、給水上流側の伝熱管は蛇行配置、給水下流側の伝熱管は管寄せを介して並行配置とし、給水流の下流側に当たる部分では、給水流の上流側部分に当たる部分よりもパス数を多くしている。パス数が多くなると、個々の伝熱管での流路断面積は同じであったとしても、ボイラ水は多くの流路に分散して流れるために全体での流路断面積は大きくなる。また、エコノマイザ4と予熱水配管7を結ぶ予熱水配管7は、給水管3よりも口径の大きなものを使用する。このことにより、ボイラ給水が流れる流路のうち、加熱後のボイラ給水が流れる部分での流路断面積は、加熱前のボイラ給水が流れる部分での流路断面積よりも大きくしている。
【0014】
ボイラ本体6では、内部でボイラ水の加熱を行った場合に蒸気とともにボイラ水の沸き上がりが発生する。ボイラ水を含んだ蒸気は、ボイラ本体6の側部に設けた気水分離器10で蒸気とボイラ水に分離する。分離した蒸気は気水分離器10の上部に接続している蒸気取り出し管11を通して蒸気使用部へ供給し、分離したボイラ水は気水分離器10の下部に接続している還水管5を通してボイラ本体6の下部へ還流させる。予熱水配管7のボイラ本体6側は、気水分離器10に接続しておく。エコノマイザ4を通過することで予熱したボイラ給水は、気水分離器10内で蒸気から分離したボイラ水と混合し、還水管5を通ってボイラ本体6内へ入る。
【0015】
運転制御装置8では、ボイラ本体6の水位を検出する水位検出装置9からの情報に基づき、給水ポンプ2の作動を制御する。給水の制御は、水位検出装置9にて検出している水位が給水開始水位(水位E2)未満まで低下すると給水ポンプ2の作動を開始し、水位が給水停止水位(水位E1)以上まで上昇すると給水ポンプ2の作動を停止することで行っている。また、水位検出装置9では低水位異常を検出するために給水停止水位より低い下限位置(水位E3)でも水位の検出を行っている。水位が下限位置より低くなった場合には、低水位異常が発生したとの報知を行う。
【0016】
ガスエンジンで発生した排ガスは、まずボイラ本体内でボイラ水との間で熱交換を行い、その後にエコノマイザ内でもボイラ給水との間で熱交換する。排ガス通路1内を流れる排ガスは、ボイラ本体6の伝熱管と接触することで排ガスの持っている熱を伝熱管に伝える。伝熱管は排ガスから受け取った熱を伝熱管内部のボイラ水へ伝え、ボイラ水の温度を上昇させる。ガスエンジンから排出される排ガスは高温であるため、ボイラ水を沸騰させることができ、ボイラ本体6内で蒸気が発生する。ボイラ本体6で熱交換を行った排ガスは、ボイラ水に熱を与えたことによって温度は低下しているが、より温度の低い給水の予熱には利用することができるため、エコノマイザ4でさらに熱交換する。エコノマイザ4内に入った排ガスは、エコノマイザ4でも伝熱管と接触することで排ガスが持っている熱を伝熱管に伝え、ボイラ給水の予熱を行う。エコノマイザ4でボイラ給水の温度を高めることによって温度の低下した排ガスは、その後に戸外へ排出する。
【0017】
ボイラの給水は、給水ポンプ2を作動することで行う。運転制御装置8は水位検出装置9によってボイラ本体6での水位を検出しており、ボイラ本体6の水位が給水開始水位未満まで低下すると給水ポンプ2の作動を開始する。給水ポンプ2を作動すると、給水管3を通じてエコノマイザ4内へ水が入り、エコノマイザ4内を通ることによって給水は予熱される。エコノマイザ4で予熱された給水は、エコノマイザ4とボイラ本体6の間をつなぐ予熱水配管7を通してボイラ本体6へ供給される。給水によってボイラ本体内の水位が上昇し、水位検出装置9で検出してる水位が給水停止水位以上にまで上昇すると、運転制御装置8は給水ポンプ2の作動を停止する。エコノマイザ4での予熱後にボイラ本体6内へ入ったボイラ水は、ボイラ本体6内でさらに加熱され、ボイラ水は沸騰して蒸気を発生する。ボイラ本体内での蒸気はボイラ水を含んでいるものであるため、気水分離器10で蒸気とボイラ水の分離を行い、蒸気のみを蒸気使用箇所へ供給する。気水分離器10で分離したボイラ水は、気水分離器10の下部に接続している還水管5を通してボイラ本体6の下部へ戻すことになる。
【0018】
エコノマイザ4は給水経路の途中に設置しているものであるため、給水ポンプ2を作動させるとエコノマイザ4内を給水が流れ、給水ポンプ2の作動を停止すると給水の流れは止まることになる。給水ポンプ2を作動している場合は、エコノマイザ4内の給水は入れ替わり続けるため、エコノマイザ4内で給水温度がある程度以上に高くなることはない。しかし、給水ポンプ2を停止している場合、給水は行っていなくても排ガス通路1内には排ガスが流れ続けるため、エコノマイザ4内では滞留している給水に対しての加熱が長時間続くことになり、給水温度は高くなる。
【0019】
エコノマイザ4は、温度の低下した排ガスから熱を回収するものであり、給水温度はすぐには上昇しない。そのため、エコノマイザ4では流路を何重にも折り返した構造とすることがよく行われている。図1のエコノマイザ4の下半分にあるようにエコノマイザ4での流路を長くすると、給水を加熱する時間が長くなるため、温度の低下した排ガスからであっても、高い温度までボイラ給水を予熱することができる。
【0020】
エコノマイザでは、供給される排ガスが保有している熱量と目標とする熱吸収量から、流路の長さなどを決定する。この場合、エコノマイザ内では給水が飽和温度以上にならないように設計する。しかし、ボイラ本体部分の伝熱管に煤が付着するなどによって、ボイラ本体部分で吸収する熱量が少なくなり、エコノマイザには想定よりも高い温度の排ガスが送られることもある。エコノマイザでは、排ガス温度が高くなればエコノマイザで吸収する熱量も増加するため、上記のように排ガス温度が高くなった場合には、設計上の熱吸収量よりも多くの熱を吸収することになってしまう。そして給水をON−OFFで制御している場合には、給水停止中はエコノマイザ4内の水は入れ替わらずに加熱され続ける。これらのことが重なることで、エコノマイザ4内の予熱水温度が飽和温度まで上昇してしまい、エコノマイザ4の内部で蒸気が発生してしまうことがある。エコノマイザ内で蒸発が起きると、予熱水中に気泡が発生することになる。
【0021】
エコノマイザ4内や予熱水配管7内のボイラ給水に気泡があると、その分だけボイラ給水の容積が大きくなる。流路断面積が一定の場合に流路内を流れるボイラ給水中に気泡が発生した場合、流路内の圧力が増加することになり、圧力増加はボイラ本体6への給水を阻害することになる。給水ポンプ2を作動しても、ボイラ本体6へ給水が入りにくくなっていると、ボイラへの給水量が減少することになる。そのため、ボイラ本体内水位が給水開始水位まで低下し、給水ポンプ2の作動を行っているのに、十分な給水が行われないためにボイラ本体内では水位がさらに低下し、水位が下限位置未満まで低下することで低水位異常が発生することがあった。
【0022】
本発明では、予熱後のボイラ給水が流れる部分、つまりエコノマイザ4の後半から予熱水配管7にかけての部分では、流路断面積を増大させている。そのため、エコノマイザ4内でボイラ給水に気泡が発生しても、圧力損失の増大を抑えることができ、ボイラへの給水量が低下して給水が足りなくなる事態を防止することができる。また、エコノマイザ内では気泡が発生する程には加熱されなかったとしても、給水温度が上昇すればボイラ給水には体積の増大がある。体積が増大すると、ボイラ給水のエコノマイザ出口付近では速度が上昇することになり、エロージョンによる配管の減肉が発生しやすくなる。これに対しても、給水流路の下流側で流路面積を拡大した構造としておくと、ボイラ給水の流速増加を抑えることができるため、エロージョンによる配管の減肉を防止する効果も得ることができる。
【0024】
なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
【符号の説明】
【0025】
1 排ガス通路
2 給水ポンプ
3 給水管
4 エコノマイザ
5 還水管
6 ボイラ本体
7 予熱水配管
8 運転制御装置
9 水位検出装置
10 気水分離器
11 蒸気取り出し管



図1