【実施例18】
【0113】
別の実施例(図示せず。)について説明する。前述した「
図1に示す実施例1」は「特開2005−236985号(特許文献3)の
図9の多値論理回路において、ダイオード26及び抵抗27が無い場合で、『ダイオード25と抵抗23の接続点』・『トランジスタ24のゲート』間に
図1の実施例1中のD型フリップ・フロップ27を挿入・接続する等し、双方向性プル・スイッチング手段のターン・オフ速度を
図1の実施例1中のトランジスタ37等で速めたもの」である。
同様に、特開2005−236985号の
図11、
図13、
図17、
図20、
図23(b)、
図25(b)の各・多値論理回路においても同様な事をした本発明の各実施例が可能である。
つまり、特開2005−236985号の
図17、
図20の各多値論理回路では2つ有るPMOSのうち、前段のPMOSのドレインと後段のPMOSのゲートの間に同様に「両電源線V
m+1・V
mから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
また、特開2005−236985号の
図23(b)の多値論理回路では前段の「入力端子In4を持つPMOS」のドレインと後段のPMOSのゲートの間に同様に「両電源線V
m+1・V
mから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
さらに、特開2005−236985号の
図25(b)の多値論理回路では前段のPMOS4つのドレイン接続点と後段のPMOSのゲートの間に同様に「両電源線V
m+1・V
mから電源供給されたD型フリップ・フロップ27」を挿入・接続する等することになる。
「
図1に示す実施例1から
図2〜7に示す実施例2〜7それぞれへ派生した」のと同様に、その入力用特定整数の数値と個数を変更したり、あるいは、そのプル・スイッチング手段を逆導通型または逆阻止型に変更したり、あるいは、そのプル・スイッチング手段の一方のスイッチ端子を接続する電源線を変更したりすることによって、「上述の特開2005−236985号の各実施例から派生した本発明の各実施例」からさらに派生した各・派生実施例が可能である。そして、これら本発明の各実施例またはその各・派生実施例でも本発明・「
図1に示す実施例1」の様にトランジスタ37等でその双方向性スイッチング手段のターン・オフを速めた各・派生実施例も可能である。 (派生実施例)
つまり、トランジスタ37等の有る場合と無い場合の各派生実施例が有るということである。
【0114】
****************************************
◆◆◆********* 最後に以下の事を補足する。 *********◆◆◆
****************************************
●1)説明の便宜上、入力端子、出力端子(請求項1記載中の入口手段、出口手段に相当。)と呼んだが、実際には端子として存在せず、単なる導線や電極などである場合が多い。これは例えばトランジスタのベース端子、ベース電極、ベース・リード線、あるいは、単にベースという呼び方がされるのと同様である。
●2)各実施例あるいはその各派生実施例において、「そのバックゲートとソースを接続した各NMOS」に関してそのバックゲートは「そのソース」ではなく「その回路の最低定電位供給手段{例:電源線V
0又はV
−1}」に接続しても良い。あるいは、そのソース電位より電位の低い他の定電位供給手段に接続しても良い。 (派生実施例)
また、各実施例またはその各派生実施例において、「そのバックゲートとソースを接続した各PMOS」に関してそのバックゲートは「そのソース」ではなく「その回路の最高定電位供給手段{例:電源線V
n−1又はV
n}」に接続しても良い。あるいは、そのソース電位より電位の高い他の定電位供給手段に接続しても良い。 (派生実施例)
●3)各実施例あるいはその各派生実施例において抵抗15、20、21、26、28、62〜64、67等の代わりに「そのゲート・ソース間を直結した接合型FETまたはノーマリィ・オン型MOS・FET」又は「そのドレイン・ゲート間を接続したノーマリィ・オフ型MOS・FET」を抵抗手段として1つずつ使用できる。 (派生実施例)
さらに、その回路動作に支障が無ければ、各実施例あるいはその各派生実施例においてその各抵抗の代わりに定電流ダイオード、「定電流ダイオード2つを逆向きに直列接続したもの」、カレント・ミラー回路、又は、2端子の定電流手段を抵抗手段として1つずつ使用できる。ただし、定電流ダイオード、定電流手段などを使う場合は分圧比に注意する。
(派生実施例)
●4)各実施例あるいはその各派生実施例において、各ダイオードの代わりに「そのコレクタとベースを直結したバイポーラ・トランジスタ」、「そのドレインとソースを直結した接合型FET」、「そのドレインとゲートを直結したバイポーラ・モードのSIT又はGTBT」、「そのゲート、バックゲート及びソースを接続したノーマリィ・オフ型MOS・FET」又は「そのドレイン・バックゲート間、そのソース・バックゲート間それぞれが導通しない様にそのバックゲート電位を保ち、そのドレインとゲートを接続したノーマリィ・オフ型MOS・FET」を1つずつ使用できる。 (派生実施例)
●5)各実施例あるいはその各派生実施例において各電源電位の高低を正反対にして、各可制御スイッチング手段を「それと相補関係に有る可制御スイッチング手段(例:Nチャネル型MOS・FETに対するPチャネル型MOS・FET)」で1つずつ置き換え、電圧方向または電圧極性の有る各構成要素(例:ダイオード)の向きを逆にした「元の実施例に対して電圧方向または電圧極性に関して対称的な関係に有る実施例」も当然可能である。この対称的な関係に有る各実施例は請求項1記載中の「第1定電位から第N定電位まで番号順にこれらの定電位が低くなって行く場合」に対応する。但し、その場合、それは正論理に対する負論理に対応するので、その多値論理機能が元の回路と同じ場合も有るし、違う場合も有る。
【0115】
●6)本発明の追加効果として、多値論理
回路・単位で同期ラッチングできるので、その全体回路の組み方に柔軟性が有って、全体の回路構成の選択肢が増えて便利になる。
従来だと、必ず多値回路と多値回路の間に多値同期型ラッチング回路を設けなければならなかった。
●7)各実施例またはその各派生実施例において、電源線V
0か他の電源線が「その回路の本体ケース」又は「その回路装置の本体」又は「自動車、オートバイ、自転車などの車体」又は「船などの船体」又は「水陸両用のホーバー・クラフト等の本体」又は「飛行機、ヘリコプター等の飛行手段の本体」又は「宇宙船、宇宙ステーション等の宇宙航行手段・宇宙漂遊手段の本体」又は「地球、月、火星などの天体」等に接続されて、その本体・車体・船体・天体の電位がアース電位などの大本(おおもと)の基準電位となる場合が多くなる。ただし、「その電源電位の高さで隣り同士となる2つの電源線」それぞれの間に直流電圧供給用の直流電源が1つずつ接続されているが、図示されていない。
●8)蛇足ながら『Beyond the CMOS』ということで、量子素子など各種の新素子が提案されて来たが、☆☆☆CMOSも進化する!!! ☆☆☆CMOSは3次元IC、多値、新概念コンピューター(→→後述する段落番号[0129、0165〜0167]。)に向かって進化する!!!
その1例が
図9中の「トランジスタ3、5を組み合わせた双方向性スイッチ」又は「トランジスタ3、5、22〜25(とダイオード36)を組み合わせた双方向性スイッチング手段」である。 →→ 下記・特許文献6(特開2006−252742号)。
その別の1例が下記・特許文献8(特開2007−035233号)の
図19の多値メモリーである。
しかも、たとえ、ある回路が完全なCMOS構造でなくても、その回路全体で電力消費が根本的に少なければ、全く問題が無い。例えばプル・アップ抵抗やプル・ダウン抵抗を使う場合であっても、その回路中において「その動作中オン状態にあって、プル・アップ(又はプル・ダウン)抵抗をプルするMOS・FET等の総数が常に少なく」、「その動作中そのオン・オフが切り換わるMOS・FET等の総数も常に少ない」回路の場合である。後述する入出力パターン記憶型10進法コンピューターではそうなると予測される。 →→ 段落番号[0129、0165〜0167]。
一方、現在のCPU等はCMOS回路の塊(かたまり)であるにもかかわらず、「高いスイッチング周波数でオン・オフが切り換わるMOS・FET等」の総数が極めて多い為に、「その各貫通電流による電力損失を含む、その総スイッチング損失」と「その各ゲート・ソース間静電容量などの充放電に伴う総電力損失」などにより、そのCPU等はヒーターみたいになっているのが現状である。
【特許文献6】特開2006−252742号(双方向性スイッチング手段、多値バッファー手段、多値記憶手段。)
【特許文献8】特開2007−035233号(多値デコーディング手段、多値情報処理手段など。)
【0116】
●9)本発明で使うノーマリィー・オフ型MOS・FETに関して、そのドレイン・ソース間耐電圧とそのゲート・ソース間耐電圧をある程度の大きさに保つ(、できれば大きくする)一方、そのオフ時の漏れドレイン電流を小さく保ったまま、そのオン・オフしきい値電圧の大きさをどんどん小さくできれば、100値コンピューター、さらに1000値コンピューター(!?)も視野に入って来る。
●10)本発明の1構成手段である2値同期型フリップ・フロップ手段のデータ入力部(例:D端子の入力部。)が「その入力整数がその1つの入力用特定整数より『大きいか大きくないか』又は『小さいか小さくないか』を判別する数値判別手段の要件を満たしていれば、その2値同期型フリップ・フロップ手段がその数値判別手段を兼ねてももちろん構わない。
●11)
図12〜
図13に示す各多値論理
回路は、その双方向性スイッチング手段の一端を電源線V
m又はIV
mから切り離せば、多値トランスファー・ゲート手段として利用することができる。
なお、これらの絶縁スイッチは「後述する特許文献30〜37の絶縁給電手段」と共に「直列接続した複数のバッテリーの各電圧を検出する電圧検出手段」に応用されている様である。
【特許文献19】特開平6−196991号(完全絶縁型スイッチング手段)
【特許文献17】特許第3,423,780号(完全絶縁型スイッチング手段)
【特許文献18】特許第3,321,203号(条件付き絶縁型スイッチング手段)
【特許文献20】特許第3,321,218号(条件付き絶縁型スイッチング手段)
【特許文献21】特許第3,333,643号(条件付き絶縁型スイッチング手段)
【特許文献22】特許第3,553,666号(条件付き絶縁型スイッチング手段)
【特許文献23】特開平9−252582号(条件付き絶縁型スイッチング手段)
【特許文献24】特開平11−164546号(条件付き絶縁型スイッチング手段)
【0117】
◆◆◆*********** 電源の課題を解決 ***********◆◆◆
***
●12)電位モード(又は電圧モード)の多値論理回路では各・直流電圧供給が大きな課題(参照:非特許文献9)であるが、以下の通り、既にDC−DCコンバーター回路などに関する技術が有る。さらに精密な定電圧制御が必要ならば「定電圧制御されたDC−DCコンバーター回路」等の後段に3端子レギュレーター等のアナログ型定電圧手段を接続すれば良い。
【特許文献25】特許第2,717,963号☆a)シュミット・トリガー回路を使用した間欠発振制御による定電圧制御。☆b)自己発振式DC−DCコンバーター回路(非共振型)とシュミット・トリガー回路を組み合せる点が「この発明以前のヒステリシス制御(参照:後述する・非特許文献17)」と全く違う点である。☆c)シュミット・トリガー回路が引き起こす「異常発振、異常過熱および異常な電力損失の増大」を防ぐ工夫が為されている。☆d)出願日:1987年5月19日、優先日:1986年6月25日、同年8月25日。
【0118】
【特許文献26】特許第3,187,470号☆a)複合共振型DC−DCコンバーター回路(完全・電流ゼロ・スイッチング、オン・オフ切換え時のスイッチング損失ゼロ)。この発明技術以前、スイッチング・ノイズ低減(電波ノイズ対策など。)やスイッチング損失低減(⇒電力変換効率の向上。)の為に完全な「電流ゼロ・スイッチング動作または電圧ゼロ・スイッチング動作」の実現・実用化が極めて大きな、解決すべき技術課題であった。 →→後述する非特許文献13(日経産業新聞[東京版]のスイッチング電源広告特集)☆b)普通、直列共振電流は電流ゼロを中心に減衰振動するので、その共振電流がその極小値または極大値でゼロになることは有り得ない。しかし、本発明者は「直列共振回路、並列共振回路および双方向性定電圧手段の組合せが持つ独特な作用効果」を実験しながら検討・考察して発見した。その独特な作用効果とはその共振電流がその極小値または極大値でゼロになる様に設定できることである。 (⇒これによって、その共振電流がゼロに留まっている時間が長くなる為、電流ゼロ・スイッチングし易くなる。) このとき、独特なフィルター・スイッチング作用(又はインピーダンス・スイッチング作用)の様なものが働き、それによる効果が現われている。
【0119】
☆c)例えば、その双方向性定電圧手段として「2つのパワー・ダイオードを逆並列接続したもの」を使う場合、その双方向性定電圧手段とその並列共振回路は並列接続されている為、その各ダイオードの順方向電圧とその並列共振コンデンサ電圧は同じなるので、その各・順方向電圧−順方向電流特性に基づいてその並列共振コンデンサ電圧が直接その各・順方向電流を制御することになる。一方、その双方向性定電圧手段がその定電圧作用によりその並列共振コンデンサ電圧の振幅の大きさを抑制する、クランプする。そして、その直列共振周波数とその並列共振周波数が同じなら、その並列共振回路はその直列共振電圧に対してインピーダンス∞(理想的動作時)なので、単独なら普通その直列共振電流を全く通さない筈である。反対に、「2つのパワー・ダイオードを逆並列接続したもの」は単独なら普通その定電圧特性に基づいて双方向にいくらでも電流を通す筈である。
ところが、その並列共振コンデンサ電圧が各・順方向電流を制御する為に、「その並列共振回路とその双方向性定電圧手段の並列回路」のインピーダンスはその直列共振電圧に対して「その各・順方向電圧−順方向電流特性に基づいて決まる各電流値(=1方向の電流値とその逆方向の電流値)」を境にして「ゼロから∞へ切り換わったり」、「∞からゼロへ切り換わったり」して、その『フィルター・スイッチング作用(又はインピーダンス・スイッチング作用)みたいなもの』がその直列共振電圧に対して働いていると考えられる。そのせいで『その直列共振電流が電流ゼロを中心にして減衰振動しない』のではないかと本発明者は考えている。その各電流値はその並列共振コンデンサ電圧と共に変化し、そのプラス、マイナスの両電流値の間ではその直列共振電流はその並列回路を通過することができる。それは『何か合金みたいな新作用・新効果』である。その直列共振電流に対して互いに正反対の性質を持つ回路構成手段2つを組み合わせて新しい性質の回路構成手段が作り出された様な感じである。
【0120】
☆d)特許公報に記載の回路定数と使用部品などは「有り合わせの部品を用いたので、ベストな選択ではない」が、第三者はその回路動作を検証し易い。
☆e)普通の共振型DC−DCコンバーター回路の場合そのスイッチング周期は通常ほぼ1/2共振周期になるが、この発明技術の場合そのスイッチング周期はほぼ3/4共振周期になる為、その分そのスイッチング周波数が低くて済み、例えば「使用パワーMOS・FETの『ドレイン、ソース、ゲート各間の静電容量』それぞれの充放電に伴うスイッチング損失」が少なくなるので、そのスイッチング損失低減の面からも有利である。
☆f)ついでながら、一般的なダイオードのオン・オフ動作で考えると、上記・使用パワー・ダイオードのメーカー仕様書(後述する非特許文献14)には『そのターン・オン遅れ』と『そのターン・オフ遅れ』について、その実測方法・実測条件とその実測値(順回復時間と逆回復時間)が記載されている。しかし、この複合共振型DC−DCコンバーター回路の場合、その逆並列接続されたダイオード2つはアナログ的に動作するので、そのオン・オフ動作的な事はこの回路には当てはまらない。
もし仮に、この回路をオン・オフ動作的に考えても、その使用条件はかなり緩(ゆる)い。例えば1キロ・ヘルツの「V
max1ボルトの交流電圧とV
max100ボルトの交流電圧」を比較すると、その各・瞬時値がゼロである時の電圧変化率(=交流電圧波形の傾き)は前者の方がかなり小さい。しかも、その並列共振コンデンサ電圧に関してその各パワー・ダイオードの電圧クランプ作用によって「正弦波で言えばπ/2、3π/2各場合のプラスのピーク値付近とマイナスのピーク値付近ではその傾きはゼロかほぼゼロ」な為、つまり、その電圧変化が極めて小さい為、その電圧が変化するのに時間が掛かり、その各パワー・ダイオードがターン・オンしたり、ターン・オフしたりするのに充分な時間が与えられると考えられる。
☆g)下記・非特許文献15、16もこの発明技術の確かさと有用性を裏付ける。
☆h)出願日:1991年6月1日、優先日:1990年6月1日。
【0121】
【特許文献27】特許第3,187,411号(共振型DC−DCコンバーター回路)[下記・特許文献28技術を改良した自己発振式、駆動用変圧器と出力用変圧器の共通化による駆動電力の節約、部品点数の削減]
【特許文献28】特許第3,333,504号(同上)[自己発振式、双方向性定電圧手段(例:逆並列接続ダイオード。)と駆動用変圧器を用いた簡単な駆動手段、共振電圧の一定化など]
【特許文献29】特許第3,477,136号☆a)シュミット・トリガー回路を用いた間欠発振制御による定電圧制御。☆b)共振型・自己発振式DC−DCコンバーター回路とシュミット・トリガー回路を組み合わせる点が「この発明以前のヒステリシス制御(参照:下記・非特許文献17)」と全く違う点である。☆c)このため、その共振周期とその間欠周期は互いに独立しているので、そのスイッチング周波数はその共振動作によって一定のスイッチング周波数となる。☆d)電流ゼロ・スイッチングがもたらす効用により上記・特許文献25の発明技術において必要な工夫・構成手段を必要とせず、回路構成や入出力電圧関係の自由度が高い。☆e)特許文献26の原出願の分割出願。☆f)この発明技術以前、共振型DC−DCコンバーター回路の「定電圧制御と無負荷時の待機電力低減」が極めて大きな、解決すべき技術課題であったが、この発明技術によって両課題を同時に解決することができた。 →→後述する非特許文献13(日経産業新聞[東京版]のスイッチング電源広告特集)
【0122】
【特許文献30】特許第3,494,303号(共振型DC−DCコンバーター回路)[少ない巻線数]
【特許文献31】特許第3,521,055号(同上)[制御手段の削減]
【特許文献32】特許第3,645,274号(同上)[特許文献27技術の共振型DC−DCコンバーター回路において発振起動のアシスト]
【特許文献33】特許第3,730,354号(非可制御スイッチング手段=トランジスタ式ダイオード手段)[順電圧の大きさを低減、電力損失の低減]
【特許文献34】特開平9−51677号(共振型DC−DCコンバーター回路)[少ない巻線数]{最優先日:1994年10月17日、見なし取下}[多くの実施例を開示]。この主回路は特許文献26技術の主回路を簡単化したものだが、この主回路の1例と下記・非特許文献15技術の主回路は同一である。
【特許文献35】特許第4,450,295号(共振型AC−DCコンバーター装置、励磁型)。完璧(かんぺき)な力率改善にはさらにプラス・アルファーの技術が必要である。
【特許文献36】特許第4,694,690号(共振型AC−DCコンバーター装置、ダイオード・クランプ型)。完璧(かんぺき)な力率改善にはさらにプラス・アルファーの技術が必要である。
【0123】
【非特許文献13】1990年(平成2年)1月12日付けの日経産業新聞(東京版)中の「スイッチング電源広告特集」、『スイッチング電源 通信機器や人工衛星にも採用 スイッチングレギュレーター』、執筆:甲木(かつき)明彦(九州大学工学部)
【非特許文献14】電力用半導体マニュアル、『TOSHIBA 整流素子・サイリスタ 中小型編1989』の「順回復時間(Forward Recovery Time)と逆回復時間(Reverse Recovery Time)」の説明(p.56〜p.57)、パワー・ダイオードの各回復特性の具体例(p.383〜p.384)。
【非特許文献15】J.G.Hayes,et al.:“Full−Bridge,Series−Resonant Converter Supplying the SAE J−1773 Electric Vehicle Inductive Charging Interface”,PESC’96 Record,1913(1996)。 [上記・特許文献26の複合共振型DC−DCコンバーター回路の技術などを応用したと考えられる電気自動車用蓄電池の急速充電器]。
【非特許文献16】『電気学会技術報告 第687号 電力変換器の高性能スイッチング技術』、p.46の
図4.14の[電流複共振を使用したDC−DCコンバータ]。著者:電力変換器の高性能スイッチング技術調査専門委員会、(社)電気学会が1998年8月25日に発行。 [上記・非特許文献15の回路技術の紹介]。
【非特許文献17】『日経エレクトロニクス6月15日号(2009年)、第1006号』、p.78〜p.86の『アナログ強化塾 第6回 高速が特徴のヒステリシス制御 電源制御方式の主役に躍り出る』、執筆:山下勝己、日経BP社が2009年6月15日発行。
【0124】
また、各・直流電圧供給にチャージ・ポンプ回路などを使うことも考えられる。
【特許文献37】特許第3,657,623号(チャージ・ポンプ回路)
【特許文献38】特開平6−225518号(コンデンサを用いた絶縁給電手段とコイルを用いた絶縁給電手段){見なし取下}
【特許文献39】特開平8−23671号(直列共振回路を用いた絶縁給電手段){見なし取下}
【特許文献40】特開平9−98567号(直列共振回路を用いた絶縁給電手段){自発取下}
【特許文献41】特開平9−182414号(コンデンサを用いた降圧回路){見なし取下}
【特許文献42】特開平10−164826号(コンデンサを用いた降圧回路){見なし取下}
【特許文献43】特開平11−164546号(コンデンサを用いた降圧回路){見なし取下}
【特許文献44】特開2000−60112号(コンデンサを用いた降圧回路){見なし取下}
【0125】
◆◆◆**** 新・多値論理『フージ(Hooji)代数』の説明 ****◆◆◆
***
●13)本発明の基になった電位モード(又は電圧モード)多値論理回路は『2002年当時、本発明者が独自に考え出した全く新しい世界初の新・多値論理』を具体化・実現化したものである。しかし、その新・多値論理に名前が無いと何かと不便なので、『フージ代数(Hooji Algebra)』と名付けることにした。
そう名付けた理由は「本発明者は日本人なので、日本の象徴である富士山に因(ちな)んでいること」、「ブール代数(Boolean Algebra)の『ブール』に少し語路(ごろ)合わせしていること」及び「その曖昧(あいまい)表現能力を含む能力、可能性、実用性、展開拡張性、将来性など、いずれを取っても、huge{=度外(どはず)れて大きい、途方も無く大きい、巨大な。}であると本発明者は強く判断しているので、英語のhuge(ヒュージ)に語路合わせしていること」である。
***
【特許文献1】特開2004−032702号(『フージ代数』に基づく多値論理回路。)[出願日:2003年3月10日、優先日:2002年3月11日、同じく5月7日]、(見なし取下)。
【特許文献2】特開2005−198226号(特許文献1特許の拡大再出願。特許登録。)
【特許文献3】特開2005−236985号(特許文献2特許の改良。特許登録。)
【0126】
その様に判断した理由は、以下の通り新・多値論理『フージ代数』に基づいた多値論理回路には「『◎
多値数Nがいくつであっても』、従来の多値論理回路には無い有利な独特の効果(⇒2002年当時、世界初。)」がいくつも有る、からである。ただし、2002年当時その存在に気が付かなかった効果も有る。
◆a)その前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイスが必要無いこと。[段落番号0155]
◆b)その後段に2値回路を接続するときも、その接続性が極めて良く、その間に特別なインターフェイスが必要無いこと。[段落番号0156]
◆c)本発明で述べた通り多値論理回路内の信号伝達途中においても2値回路との接続性が極めて良く、その間に特別なインターフェイスが必要無いこと。[段落番号0039〜0040]
◆d)このため、従来の多値回路と違ってわさわざ2値に変換しなくても多値ハザードを本発明の様に除去できること。
◆e)2値・ブール代数の(非反転論理、)AND論理、OR論理、NOT論理、NAND論理、NOR論理の各・基本論理回路を包含し、互換性が有ること。[段落番号0135〜0136]
◆f)多値数Nに応じて複数個の「互いに特定整数が異なる同種の基本・多値論理回路」を使用する場合も有るが、その複数の同種の基本・多値論理回路・同士は「接続する電源線」が互いにただ違うだけで、それらの基本構成は全く同じで、互換性が有ること。[段落番号0133〜0134]
◆g)このため、多値数Nの小さい合成・多値論理回路をそのまま土台にして多値数Nの大きい合成・多値論理回路を組むことができること。[段落番号0137]
◆h)その多値数Nの変更が極めて容易なこと。[段落番号0137]
◆i)『双対(そうつい)が成り立つ』という双対性が有ること。[段落番号0130〜0132]
◆j)その多値数Nに関係無く、全ての多値論理関数を1種類の多値論理回路(完全系)で表現できること。 ⇒⇒ 完全性、それも『完全』。[段落番号0138〜0148]
◆k)その基本または合成・多値論理回路の「ユニット化またはモジュール化」がとても容易なこと。[段落番号0133〜0134、0137]
◆l)複数の論理変数「…、x、y、z、…」とその論理関数f(…、x、y、z、…)の各多値数N(≧2)が互いに全く異なっていても、全く問題無く柔軟に対応できる対応柔軟性が有ること。[段落番号0154]
◆m)2値ワイヤードOR回路と同様に多値ワイヤードOR回路が成り立つ為、その全体回路構成の簡単化とその総部品点数の削減に際して非常に有利なこと。[段落番号0149〜0151]
◆n)『完全』回路の(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが可能なこと。[段落番号0151〜0152]
◆o)本発明者がさらに創り出した8個の新・多値論理、「OVER論理、NOVER(ノウバー)論理、UNDER論理、NUNDER(ナンダー)論理、IN論理、NIN(ニン)論理、OUT論理、NOUT(ナウト)論理」等の各・多値論理回路を使うことによって「曖昧(あいまい)さ」を自由・柔軟に簡単に定義・表現することができること。[段落番号0157〜0158]
【0127】
これらの際(きわ)立った有利な独特な効果・特徴は『フージ代数』の出現以前のどの多値論理体系・回路にも無かった。
そんな訳で、「新・多値論理『フージ代数』は『ブール代数をこれまでで一番忠実に・正統的に多値へ展開・拡張したもの』であり」、「その曖昧表現能力を含む能力、可能性、実用性、展開拡張性、将来性など、いずれを取ってもhugeである」と本発明者は考えている。
【0128】
これまで多値コンピューターが2値コンピューターの様に広く深く実用化されず、発展しなかった先ず第1の大きな理由は「2値の場合、2値回路をしっかりと支える土台となり、かつ、実用化に耐え得る2値論理体系、『ブール代数』が有ったのに対して、多値の場合、多値回路をしっかりと支える土台となり、かつ、実用化に耐え得る多値論理体系が無かった」からだと本発明者は考えている。そのほかにも、3次元(化)IC技術や「低電圧駆動(=オン・オフしきい値電圧の絶対値が小さい。)と高耐電圧の両立技術」が特に重要で、省エネルギーや冷却技術なども重要である。
その様に多値コンピューターの土台となる為には「2値論理、『ブール代数』と互換性が有って、それを完全に包含し」、しかも「互いに多値数Nの異なる同種の基本・多値論理回路・同士でも互換性が有り、その多値数Nの大きい方が小さい方を完全に包含し」、さらに「2値、多値に関係無く、『その論理関数および[その1つ又は複数の論理変数]』の各多値数N(≧2)がいくつであっても全く影響されず、自由・柔軟に、その各機能を発揮できる」ことが必要である、と本発明者は考えている。
【0129】
ところで、多値数Nが大きければ大きい程、「表現することができる多値論理関数の種類数」つまり「表現することができる情報処理の種類数」が下記の通り超・爆発的に増え、さらにその各桁数も活用すると超・……超・爆発的に増え、「プログラム記憶型(=内蔵型)コンピューター方式の、プログラミングによる情報処理の種類数」を軽く越えることができる(!!!)為、例えば10値・10進法コンピューターでプログラムを使わない新概念のコンピューター方式が可能になる。
◇◇10値論理関数などの種類数の例◇◇
ただし、各(多値)論理変数の個数は2個ずつである。
*2値1桁2論理変数 →→ 2の4乗・種類=16種類。
*3値1桁2論理変数 →→ 3の9乗・種類=19,683種類。
*4値1桁2論理変数 →→ 4の16乗・種類≒4,294,968,000種類。
*5値1桁2論理変数 →→ 5の25乗・種類。
*6値1桁2論理変数 →→ 6の36乗・種類。
*7値1桁2論理変数 →→ 7の49乗・種類。
*8値1桁2論理変数 →→ 8の64乗・種類。
*9値1桁2論理変数 →→ 9の81乗・種類。
*10値1桁2論理変数 →→ 10の100乗・種類。
*10値2桁2論理変数 →→ 10の1万乗・種類。
*10値3桁2論理変数 →→ 10の100万乗・種類。
*10値4桁2論理変数 →→ 10の1億乗・種類。
*10値5桁2論理変数 →→ 10の100億乗・種類。
*10値6桁2論理変数 →→ 10の1兆乗・種類。
*10値7桁2論理変数 →→ 10の100兆乗・種類。
*10値8桁2論理変数 →→ 10の1京(=1万兆)乗・種類。
→→ 参考:下記・特許文献
8。
正しく言えば、上記の「軽く越えることができる(!!!)」と言うよりは正反対に、その多値数N(≧2)がいくつであっても、「プログラミングによる情報処理の種類数」は絶対に「その桁数も活用して表現することができる論理関数の種類数」を超えることはできない。
その理由は次の通りである。「プログラムによる情報処理」においても、その情報処理の過程に関係無く、その「データ又は情報」の出入りだけからその情報処理手段としての機能内容を判別することができる。しかも、その「個々の各入力『データ又は情報』」も「これに対する個々の情報処理結果」も必ずすべて数字の組合せ、そう!つまり真理値表で表現することができるので、その情報処理内容は絶対に「その真理値表で表現することができる論理関数の種類数」を超えることはできない。
しかも、「プログラミングによって編み出され、人の役に立ち、実際に使用する情報処理」の種類数は、いくらなんでも、10の100乗・種類も有るとは思えない。
【特許文献8】特開2007−035233号の段落番号[0029〜0033]
【0130】
◆◆◆****** 『フージ(Hooji)代数』の双対性 ******◆◆◆
***
●14)新・多値論理『フージ代数』の『多値数Nに関係無く双対(そうつい)が成り立つ』という双対性などについて以下説明する。
『フージ代数』は「2値ブール代数を☆本発明者・流に忠実に多値へ展開・拡張させたもの」なので、当然、その多値(特定値)NOT論理、多値(特定値)AND論理および多値(特定値)OR論理に関して『双対』が成り立つ。
『ブール代数における双対性』とは「NOT論理、AND論理あるいはOR論理で構成された任意の論理関数の恒等式において、その両辺の『1』と『0』を入れ換え、同時にAND論理とOR論理を入れ換えても、その恒等式が成り立つこと」である。
図18は『フージ代数』においても「ブール代数における2重否定の定理、ド・モルガンの定理、双対定理それぞれと同様に対応する各定理」が成り立つことを示している。
***
【非特許文献5】『トランジスタ回路入門講座5 ディジタル回路の考え方』、p.27〜p.31の『3・3 ブール代数 〔1〕公理 〔2〕定理 〔3〕双対性』、監修:雨宮好文・小柴典居(つねおり)、著者:清水賢資(けんすけ)・曽和将容(まさひろ)、(株)オーム社が昭和56年5月20日発行。
【0131】
先ず先に、ブール代数において既に公知なOR回路、AND回路それぞれの等価回路について説明する。
★★OR回路の等価回路:
*2重否定の定理より
「AとBのOR論理」=A+B
=「(A+B)の2重否定」
*ド・モルガン定理のより
「(A+B)の2重否定」=「(Aの否定)・(Bの否定)の否定」
=「(Aの否定)と(Bの否定)のAND論理の否定」
*従って、
「AとBのOR論理」=「(Aの否定)と(Bの否定)のAND論理の否定」 ……
… … … … … … … … … … … … … … … … … 式(1)
★★AND回路の等価回路:
*2重否定の定理より
「AとBのAND論理」=A・B
=「A・Bの2重否定」
*ド・モルガン定理のより
「A・Bの2重否定」=「{(Aの否定)+(Bの否定)}の否定」
=「(Aの否定)と(Bの否定)のOR論理の否定」
*従って、
「AとBのAND論理」=「(Aの否定)と(Bの否定)のOR論理の否定」 ……
… … … … … … … … … … … … … … … … … 式(2)
★◆★ブール代数における双対性;
式(1)と式(2)は自分の両辺の「1」と「0」を入れ換え、同時にAND論理とOR論理を入れ換えると、互いに相手の恒等式に成り、双対が成り立つ。
【0132】
★◆★新・多値論理[フージ(Hooji)代数における双対性:
次に、
図18の多値論理回路に基づいて『新・多値論理[フージ(Hooji)代数]において多値数Nに関係無く、双対(そうつい)性が成り立つこと』等について説明する。
ただし、m=入力用特定整数=出力用特定整数、v
mは「特定整数mに対応する電位」、v
Cm(≠v
m)は「特定整数m以外の整数に対応する電位」又は「どの整数とも対応しない、独立した追加電位」、すなわち、「多値のAND、OR、NOTの各回路がその入力数値が特定整数mであると判別することが無い電位なら何でも良い電位」である。なお、電源電位v
mの電源線をV
mで表わし、電源電位v
Cmの電源線をV
Cmで表わしている。
また、「NOT(m)=m」は略して入力用特定整数=出力用特定整数=mの多値NOT回路を、「AND(m)=m」は略して入力用特定整数=出力用特定整数=mの多値AND回路を、「OR(m)=m」は略して入力用特定整数=出力用特定整数=mの多値OR回路を、それぞれ意味する。
念の為述べておくと、多値{特定値(=特定整数)}NOT論理、多値(特定値)AND論理、多値(特定値)OR論理の各定義は以下の通りである。
◆多値NOT論理;その入力数値が特定整数mと等しいとき「その出力を開放し」、そうでなければ特定整数mを出力する。
◆多値AND論理;そのすべての入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
◆多値OR論理;その少なくとも1つの入力数値が特定整数mと等しいとき特定整数mを出力し、そうでなければ「その出力を開放する」。
図18(a)の多値OR(m)回路の等価回路では「入力論理変数x、yの少なくとも1つが整数mのとき論理関数f(x、y)は特定整数mを出力する一方、そうでなければその出力を開放する」ことが分かる。しかも、mの値はマイナス整数からプラス整数までの自由な値である。
一方、
図18(b)の多値AND(m)回路の等価回路では「入力論理変数x、yのすべてが整数mのとき論理関数f(x、y)は特定整数mを出力する一方、そうでなければその出力を開放する」ことが分かる。こちらもmの値はマイナス整数からプラス整数までの自由な値である。
しかも、後述(段落番号0137)する(17)項の通り多値数Nの変更が極めて容易なので、『新・多値論理[フージ代数]では多値数Nに関係無く、少なくとも2重否定の定理、ド・モルガン定理、双対定理が成り立つ』ことが分かる。
【0133】
◆◆◆***** 多値数Nに影響されない、特定整数の変更容易性 *****◆◆◆
***
●15)『フージ代数』に基づいた多値論理回路が持つ、多値数Nに全く影響されない『[特定整数値mの変更容易性]と[極めて容易な回路のユニット化またはモジュール化(独特な効果)]』という2つの特徴について以下説明する。
◆下記・特許文献1、2、3の各特許公報に開示されたEQUAL(または判定)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路の各実施例とその派生実施例などの場合、その出力スイッチ部が双方向性のとき特定整数mは(n−2)≧m≧1になっているが、別に「m=n−1」又は「m=0」であっても回路動作的にも論理動作的にも全く問題は無く、特定整数mの値を(n−1)≧m≧0の範囲で自由に設定できる。ただ、接続する電位供給手段(例:電源線など)を変更するだけである。
ただし、m=n−1の場合、電位v
n−1の上に電位v
nを供給する電源線V
n等が必要になったり、あるいは、「プラス側のしきい値電位に基づいて判別する」という余分な機能や構成部分が有ったり、等するだけである。
そして、m=0の場合、電位v
0の下に電位v
−1を供給する電源線V
−1が必要になったり、あるいは、「マイナス側のしきい値電位に基づいて判別する」という余分な機能や構成部分が有ったり、等するだけである。
しかも、特定整数mはマイナス整数からプラス整数まで(例:符号対称表現の場合。)自由な値を取っても構わない。いずれにしても、「接続する電位供給手段(例:電源線など)」を変更するだけで特定整数mの値を自由に変更できる。
このため、同じ多値論理・同士なら特定整数mの違いを考慮する必要が無く、同じ回路構成のままで良いので、多値論理の種類ごとに回路の「ユニット化またはモジュール化」が可能になる。 ( 独特な効果 )
☆☆回路の具体例:
図24の多値AND回路と
図25、
図26の各・多値NOT{又はNEVEN(ニーブン又はネーブン)}回路。
【特許文献1】特開2004−032702号(新・多値論理『フージ代数』に基づく多値論理回路)
【特許文献2】特開2005−198226号(同上)
【特許文献3】特開2005−236985号(同上)
【0134】
◆また、同じく「OVER回路、UNDER回路、NOVER(ノウバー)回路、NUNDER(ナンダー)回路」、前述(段落番号0062〜0066)の「IN回路、OUT回路、NIN(ニン)回路、NOUT(ナウト)回路」の場合でも、その限定された「1つ又は2つの入力用特定整数」の設定範囲内でその整数を自由に設定できる。ただ、接続する電位供給手段(例:電源線など)を同様に変更するだけである。
こちらでも、同じ多値論理・同士なら各特定整数mの違いを考慮する必要が無く、同じ回路構成のままで良いので、多値論理の種類ごとに回路の「ユニット化またはモジュール化」が可能になる。 ( 独特な効果 )
◆しかも、いずれの場合も後述(段落番号0137)する通り『多値数Nの変更が極めて容易である』という特徴が有るので、『特定整数の変更容易性』も『極めて容易な回路の[ユニット化またはモジュール化]』もその多値数Nに全く影響されない。
【0135】
◆◆◆******** ブール代数を包含する『フージ代数』 *******◆◆◆
***
●16)新・多値論理『フージ(Hooji)代数』が2値論理のブール代数を包含し、互換性が有ることについて以下説明する。
新・多値論理『フージ代数』は本発明者のやり方で2値論理のブール代数を忠実に多値へ展開・拡張したもので、ブール代数を完全に包含し、ブール代数と互換性が有る。
例えば、特定整数値が1である多値特定値EQUAL{又はEVEN(イーブン)又は非反転}回路、AND回路、OR回路、NOT{又はNEVEN(ニーブン)}回路、NAND回路、NOR回路の各出力端子を抵抗で電源線V
0の電位v
0にプル・ダウンして、各入力数値を「1」と「0」に限定すれば、これら多値論理回路は2値・正論理のバッファー(又は非反転)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路と全く同じ論理動作をし、互換性が有る。
そして、特定整数値が0である多値特定値EQUAL{又はEVEN(イーブン)又は非反転}回路、AND回路、OR回路、NOT{又はNEVEN(ニーブン)}回路、NAND回路、NOR回路の各出力端子を抵抗で電源線V
1の電位v
1にプル・アップして、各入力数値を「1」と「0」に限定すれば、これらの多値論理回路は2値・負論理のバッファー(又は非反転)回路、AND回路、OR回路、NOT回路、NAND回路、NOR回路と全く同じ論理動作をし、互換性が有る。
一方、「AND回路(=Min回路)、OR回路(=Max回路)、反転(complement)回路、リテラル(literal)回路およびサイクリング(cycling)回路」で構成される、ブール代数を多値へ展開・拡張した筈の従来の多値論理回路(ウカシェヴィッチ型)の場合、2値NOT回路を多値へ展開・拡張した「反転回路、リテラル回路およびサイクリング回路」に関して、どの多値回路もブール代数の2値NOT回路を包含せず、全く互換性が無い。
従って、その従来の多値NAND回路、多値NOR回路についても、当然の事ながら、同様にブール代数の2値NAND回路、2値NOR回路を包含せず、全く互換性が無い。
★参 考:非特許文献3のp.18〜p.20。
【非特許文献3】『多値情報処理 ―ポストバイナリエレクトロニクス―』、著者:樋口龍雄・亀山充隆(みちたか)、昭晃堂(しょうこうどう)が1989年6月に発行。
【0136】
しかも、例えば『フージ代数』に基づく10値論理回路において「電源電位v
8と対応する特定整数値8のAND回路」は「電源線V
0の電位v
0が整数0と対応する等と定義されるから」その特定整数値は8になるが、「もし、電源線V
7の電位v
7が整数0と対応する等と定義し直されれば」、その特定整数値は1になる。この場合、電源線V
7・V
8間に「ブール代数に基づく2値AND互換回路」が形成されることになり、『フージ代数』に基づくAND回路は「ブール代数に基づく2値AND回路(特にオープン・ドレイン型やオープン・コレクタ型)」と完全に互換性が有る。
同じ様に、電源線V
6から電源線V
1まで順々にその電源電位が整数0と対応する等と定義し直されれば、電源線V
8の電位v
8に対応する整数値は以下の様になる。
・電源線V
6の電位v
6 →→ 整数値2
・電源線V
5の電位v
5 →→ 整数値3
・電源線V
4の電位v
4 →→ 整数値4
・電源線V
3の電位v
3 →→ 整数値5
・電源線V
2の電位v
2 →→ 整数値6
・電源線V
1の電位v
1 →→ 整数値7
これらの定義し直しの間、電子回路的にはその回路構成は全く変化・変更しておらず、完全に同一である。
この様になるのは、『フージ代数』に基づく各種・多値論理回路の場合、前述(段落番号0133〜0134)の通り特定整数mの変更が「その多値論理回路に接続する1つ又は複数の電源線をただ変更する」だけで良い為である。
【0137】
◆◆◆*********** 多値数Nの変更容易性 ***********◆◆◆
***
●17)新・多値論理『フージ(Hooji)代数』の『多値数Nの変更が極めて容易である』という独特な効果・特徴について:
前述(段落番号0133〜0134、0136)の通り特定整数mの変更が極めて容易な為、多値数Nの変更も極めて容易である。
例えば、そのAND回路、OR回路、NOT回路などの各基本・多値論理回路において互いに多値数Nの異なる同種の基本・多値論理回路群・同士でも互換性が有り、多値数Nの大きい方が小さい方を包含している。なぜなら、「互いに特定整数が違っても(=接続する電源線が互いに違うだけで)基本構成が全く同じ基本・多値論理回路」を必要に応じてただ付け足す等することによってその多値数Nを容易に変更することができる、からである。
さらに例えば、AND回路、OR回路、NOT回路などの基本・多値論理回路を使って4値で合成・多値論理回路を組んでいた時に5値に変更したければ、電位供給手段(例:電源と電源線。)を1つ追加し、「その入力用特定整数あるいは出力用特定整数を『5』等に設定した(つまり、接続する電源線などを決めた)、必要な各種の『基本・多値論理回路または多値論理回路ユニットまたは多値論理回路モジュール』を追加し、必要な結線をする」だけで、その多値数Nを極めて容易に変更することができる。
つまり、「多値数Nの小さい合成・多値論理回路」をそのまま土台にして「多値数Nの大きい合成・多値論理回路」を構成することができる。
***
一方、従来技術として「ブール代数を多値へ展開・拡張した筈のウカシェヴィッチ等の多値論理」に基づく多値論理回路の場合、前述(2つ前の段落。)の通り2値NOT回路を多値へ展開・拡張した「反転回路、リテラル回路およびサイクリング回路」に関して、どの多値論理回路も2値NOT回路を包含せず、全く互換性が無いだけでなく、その多値数Nの異なる同種の基本・多値論理回路・同士でも包含が成り立たず、全く互換性が無い。
例えば、「3値の反転回路と4値の反転回路」、「3値のリテラル回路と4値のリテラル回路」、「3値のサイクリング回路と4値のサイクリング回路」。他の多値数同士でも同様。
この為、これらの基本・多値論理回路に関して「多値数の小さい基本・多値論理回路」をそのまま土台にして「多値数の大きい基本・多値論理回路」を構成することができないし、当然、これらの基本・多値論理回路を応用した多値NAND回路、多値NOR回路についても同じ様な事が言える。
その結果、「これらの基本・多値論理回路を1つでも用いた合成・多値論理回路」をそのまま土台にして「これより多値数の大きい合成・多値論理回路」を構成することができないので、多値数Nの変更が極めて難しい。1から組み直す必要が有る。
【0138】
◆◆◆******** 『フージ代数』の完全性それも完全 ********◆◆◆
***
●18)新・多値論理『フージ(Hooji)代数』における『多値数Nに全く影響されない、1種類の多値論理回路による完全性、それも[完全]』という独特な効果・特徴について以下説明する。
前述(段落番号[0130〜0132]。)した『多値数Nに関係無く双対(そうつい)が成り立つという双対性』等により『多値NAND論理か多値NOR論理どちらか1種類の多値論理を[単独で]又は[複数個組み合わせることにより]その多値数Nに関係無くすべての多値論理関数を実現することができる完全性、それも[完全]』という効果・特徴が『フージ代数』に有る。
【非特許文献4】『よくわかるディジタル電子回路』、p.9の14行目〜p.10の1行目の『完全系』。著者:関根慶太郎、(株)オーム社が平成9年7月25日発行。
【非特許文献2】『論理回路入門』、p.31の『(8)完全系』。著者:浜辺隆二、森北出版(株)が2001年9月28日発行。
【非特許文献3】『多値情報処理 ―ポストバイナリエレクトロニクス―』、p.16〜p.17の『完全性、完全系、完全』に関する記載内容。著者:樋口龍雄・亀山充隆(みちたか)、昭晃堂(しょうこうどう)が1989年6月に発行。
【0139】
図19の合成・多値論理回路に基づいて「電子回路工学的に分かり易く」、その『完全(性)』について以下説明する。
◆ただし、多値数N=10(10進法)で、各・特定整数m(=入力用特定整数=出力用特定整数)と各・電源線電位(例:v
0〜v
9、v
C0〜v
C9、v
C0≠v
0、………、v
C9≠v
9)に関しては具体的に始めから各整数m(=0、1、2、……、8、9)を書き込んでいるが、各基本・多値論理回路の定義は前述(段落番号0132前半)の通りである。なお、電源電位v
0〜v
9の各電源線をV
0〜V
9で表わし、電源電位v
C0〜v
C9の各電源線をV
C0〜V
C9で表わしている。
◆また、2値論理回路の場合と同様に「多値NAND回路の全・入力端子を接続して1つの入力端子にまとめたり」あるいは「多値NAND回路の1つの入力端子を残して他の入力端子すべてをそのNAND回路の入力用特定電位v
m(=その入力用特定整数mに対応する電源電位)の電源線等に接続したり」すれば、その多値NAND回路は「多値NOT回路」になる。
★参考:特開2005−236985号・
図11の多値(特定値)NAND回路(3入力)。
◆さらに、多値NAND回路の出力端子をそのNAND回路の入力用特定電位(=出力用特定電位)v
m以外の電源電位v
Cm(≠v
m)に抵抗等でプル・アップ又はプル・ダウンし、その出力端子の後段に上記「多値NOT回路」を接続すれば、その多値NAND回路は多値AND回路になる。
◆あるいは、2値論理回路の場合と同様に、「多値NOR回路の全・入力端子を接続して1つの入力端子にまとめたり」あるいは「多値NOR回路の1つの入力端子を残して他の入力端子すべてをそのNOR回路の入力用特定電位v
m以外の電源電位v
Cm(≠v
m)の電源線などに接続したり」すれば、その多値NOR回路は「多値NOT回路」になる。
★参考:特開2005−236985号・
図13の多値(特定値)NOR回路。
◆それから、多値NOR回路の出力端子をそのNOR回路の入力用特定電位(=出力用特定電位)v
m以外の電源電位v
Cm(≠v
m)に抵抗でプル・アップ又はプル・ダウンし、その出力端子の後段に上記「多値NOT回路」を接続すれば、その多値NOR回路は多値OR回路になる。
◆しかも、前述(
図18と段落番号[0130〜0132]。)の通り「新・多値論理『フージ代数』の双対性」という特徴により多値OR回路から多値AND回路などを構成したり、又は、逆に多値AND回路から多値OR回路などを構成したり、することができる。
このため、多値NOR回路1種類から多値OR回路、多値AND回路、多値NOT回路、多値NAND回路を構成したり、多値NAND回路1種類から多値OR回路、多値AND回路、多値NOT回路、多値NOR回路を構成したり、することができる。
その結果、前述(段落番号[0133〜0134]。)の「多値数Nに全く影響されない、特定整数mの変更の容易性」という特徴も有って、新・多値論理『フージ代数』に基づく「多値NAND回路か多値NOR回路」のどちらか1種類の基本・多値論理回路だけで
図19の合成・多値論理回路を構成できることが分かる。
【0140】
そして、
図19の合成・多値論理回路は「
図20に示す多値論理関数f(x、y)の真理値表で表現されるすべての多値論理関数」を実現・具体化できる回路である。ただし、
図20は分かり易く説明する為にかなり省略・簡略化されている。
図20に示すf(x、y)の真理値表はその数値パターンの書換えによって、つまり、各・升(ます)目の数値を書き換えることによって、10進法・2(多値)論理変数x、yの全・多値論理関数(全部で10の100乗・種類有る。)を表現することができる。
なぜなら、1つの升(ます)目が取り得る数値は整数「0〜9」の10通りで、しかも、升目の総数は全部で100個有るので、升目100個が取り得る数値パターンは全部で、(10通り)×(10通り)×………… ≪≪100個の(10通り)同士の積≫≫ …………×(10通り)×(10通り)=10の100乗・種類になる、からである。
そのうえ、
図20に示すf(x、y)の真理値表において、その「多値数N」と「論理変数x、yの各・論理変数範囲」の変更によってN進法・2論理変数の全・多値論理関数を表現できる。例えばN=7の7進法で、6≧x≧0、6≧y≧0。この場合、
図20中のx横方向の升目は全部で7つ、y縦方向の升目も全部で7つ、従って、升目の総数は49個になり、その数値パターンは全部で7の49乗・種類になる。
【特許文献8】特開2007−035233号の段落番号[0030〜0031]に多値論理関数の種類数に関する説明。
【0141】
ところで、後述{段落番号[0146]中の◆ニ)項。}する通り「入力論理変数x、yの各値の組合せは2入力の多値AND回路などで表現することができる」し、「入力論理変数x、y、zの各値の組合せは3入力の多値AND回路などで表現することができる」し、「入力論理変数w、x、y、zの各値の組合せは4入力の多値AND回路などで表現することができる」し、「入力論理変数u、w、x、y、zの各値の組合せは5入力の多値AND回路などで表現することができる」という具合に、その入力論理変数の個数に応じてその多値AND回路の入力数を増減させることによってその個数の増減に対応することができる。
ただし、その入力論理変数の個数の増減に応じて(その真理値表の書き方が変わり、)「これらに対応する真理値表の升目の総数」も増減するが、それは「多値数Nの増減に応じてその真理値表の升目の総数・増減に対応する」のと全く同じ様な対応の仕方で良い。
例えば、10値1桁の入力論理変数u、w、x、y、z、aの6入力の場合は、
図20の真理値表においてxの所をuwxと置き換え、yの所をyzaと置き換える。このため、uwx横方向は「数値000〜999」の1,000個の升目になり、yza縦方向も「数値000〜999」の1,000個の升目になるので、その升目の総数は100万個になり、その数値パターンは全部で10の100万乗・種類になる。もちろん、このとき入力論理変数u、w、x、y、z、aそれぞれが10値1桁の整数それぞれを表現することになるが、この様に表現することによってその入力論理変数の個数が6個である場合を真理値表で、(その升目の総数からすると相当大変であるが)、たて・よこ・単純な仕組みで表現することができる。
ここで、さらに、そのuwxをx
2x
1x
0で置き換え、このx
2x
1x
0でxの3桁を表現することもできる。このとき、入力論理変数xが10値3桁で表現されていると解釈することもできるし、1000値1桁で表現されていると解釈することもできる。
なお、「1000値1桁で表現」と言うと奇妙に聞こえるかもしれないが、我々は既に16値を「0、1、2、……、8、9、A、B、C、D、E、F」の16文字1桁で表現している。「数値10がAに、数値11がBに、……、数値14がEに、数値15がFに」それぞれ該当する。同じ様に、10〜999の各数値を1文字ずつで置き換えれば、1000値1桁で表現することができる。一方、10値3桁・表現の場合、x
2x
1x
0の3文字は互いに独立した数値を表現しているから、x
2x
1x
0を1つの文字で表現したら、10値3桁・表現という意味が失われてしまう。また、1000値で必要な電源電位は少なくとも1000個であるが、10値なら少なくとも10個である。
さて、その残りのyza側も、そのyzaをy
2y
1y
0で置き換え、このy
2y
1y
0でyの3桁を表現することもできる。このとき、同様に入力論理変数yが10値3桁で表現されていると解釈することもできるし、1000値1桁で表現されていると解釈することもできる。
そんな訳で、もし
図19の合成・多値論理回路が「
図20に示す論理関数f(x、y)の真理値表が表現する、N進法・2論理変数x、yの全・多値論理関数」を実現化・具体化できることを証明できれば、その論理変数の個数や桁数に関係無く、多値論理『フージ代数(Hooji Algebra)』の『完全性』、それも『完全』が証明されることになる。
【0142】
図19の合成・多値論理回路は「すべての、2論理変数の多値論理関数を実現できる回路」の1構成例で、その大部分の構成手段は点線で示されていて、具体的に図示されていないが下記の様に有る。
但し、「NOT(m)=m」は入力用特定整数=出力用特定整数=mの多値NOT回路を、「AND(m)=m」は入力用特定整数=出力用特定整数=mの多値AND回路を、「OR(m)=m」は入力用特定整数=出力用特定整数=mの多値OR回路を、それぞれ意味し、
図19中では各特定整数mに具体的な数値m(=0、1、2、……、8、9)を書き込んでいる。
図19中、多値「OR(0)=0」回路と多値「OR(9)=9」回路の間にはふつう多値「OR(1)=1」回路〜多値「OR(8)=8」回路の8回路が有り、多値「AND(0)=0」回路グループ(=「AND(0)=0」で表わされる回路・全部。)と多値「AND(9)=9」回路グループ(=「AND(9)=9」で表わされる回路・全部。)の間にはふつう多値「AND(1)=1」回路グループ〜多値「AND(8)=8」回路グループの8回路グループが有る。各多値「AND(…)=…」回路グループには、そのグループに対応する多値「NOT(…)=…」回路が必要な数だけ接続されている。
また、再度確認しておくと、多値「OR(m)=m」回路、多値「AND(m)=m」回路および多値「NOT(m)=m」回路の各動作は次の通りである。
◆多値「OR(m)=m」回路:複数個の入力数値のうち少なくとも1つが特定整数mのとき特定整数mを出力する一方、そうでないときその出力を開放する。
◆多値「AND(m)=m」回路:複数個の入力数値すべてが特定整数mのとき特定整数mを出力する一方、そうでないときその出力を開放する。
◆多値「NOT(m)=m」回路:1つの入力数値が特定整数mのときその出力を開放する一方、そうでないとき特定整数mを出力する。
【0143】
■■ 回路と機能の大まかな説明 ■■
図19中では各特定整数mに具体的な整数値m(=0、1、2、……、8、9)を書き込んでいるが、各回路の機能は以下の通りである。
◆多値「OR(m)=m」回路グループ(図面・縦方向に広がるグループ。全部で10回路。)は
図20に示すf(x、y)の真理値表に記載された各整数m=0、1、……、8、9を出力する。
従って、多値「OR(m)=m」回路の個数と「
図20に示すf(x、y)の真理値表に記載されている整数の種類数」は同じである。このため、もし、9種類の整数しか記載されていなければ、その記載されていない整数を除く、残り9個の整数に対応する9回路しかない。8種類なら8回路しかない。以下同様であるが、分かり易くするの為に一応m=0〜9として説明して行く。
◆同じ多値OR−AND−NOT回路グループ(図面・横方向に広がるグループ。全部で10グループ。)に属する多値「OR(m)=m」回路と多値「AND(m)=m」回路の両mの各値(=0〜9)は同一である。当然、このグループ数と多値「OR(m)=m」回路の総数は同じである。
◆各・多値「AND(m)=m」回路グループ(図面・縦方向に広がるグループ。m=0〜9。)は「
図20・真理値表が示す各関係の通りに」f(x、y)の各値とx、yの各値を結び付ける。
このため、その論理変数の個数と各多値「AND(m)=m」回路の入力端子の数は同じである。
また、各・多値OR−AND−NOT回路グループに属する「AND(m)=m」回路の個数は、
図20に示すf(x、y)の真理値表において「その回路グループ固有の整数の値m」を書き込んだ升目の総数と同じである。
◆各・多値「NOT(m)=m」回路グループ(図面・縦方向に広がるグループ。m=0〜9。)はx、yの各値を判別する。
この様にした理由は、各・多値「AND(m)=m」回路のm値と「判別する際に本来比較すべき特定整数値m」が異なっている場合が有る、からである。このため、各AND回路のm値と「それに接続されるNOT回路」のm値は必ず異なる。
両m値が一致する場合は、多値「NOT(m)=m」回路は不必要で、多値「AND(m)=m」回路が直接xの値またはyの値を判別するので、入力端子Txまたは入力端子Tyは多値「AND(m)=m」回路の入力部と直接接続される。
つまり、f(x、y)の値とxの値が同じm値の場合、多値「AND(m)=m」回路が直接そのxの値を判別し、f(x、y)の値とyの値が同じm値の場合、多値「AND(m)=m」回路が直接そのyの値を判別する。
◆各・多値「AND(m)=m」回路と各・多値「OR(m)=m」回路の各間に1つずつ接続されたプル・アップ抵抗またはプル・ダウン抵抗が前者の各出力信号を後者の各入力信号とする為に両信号をマッチング(整合)させる。なお、各電源電位に関してv
C0≠v
0、v
C1≠v
1、v
C2≠v
2、……、v
C9≠v
9の各関係に有るが、電源電位v
0〜v
9の各電源線をV
0〜V
9で表わし、電源電位v
C0〜v
C9の各電源線をV
C0〜V
C9で表わしている。
◆各・多値「NOT(m)=m」回路と各・多値「AND(m)=m」回路の各間に1つずつ接続されたプル・アップ抵抗またはプル・ダウン抵抗も前者の各出力信号を後者の各入力信号とする為に両信号をマッチング(整合)させる。
【0144】
■■ 細部の各機能は次の通りである。 ■■
◆1)多値OR回路の特定整数m=0に設定した多値OR−AND−NOT回路グループでは、多値「OR(0)=0」回路の入力部は図
20に示すf(x、y)の真理値表においてf(x、y)=0を満足する場合すべてを網羅(もうら)する。このため、「m=0が書き込まれた升目の総数」=多値「OR(0)=0」回路の入力端子の総数(=多値「AND(0)=0」回路の総数)となる。
なお、同じ多値OR−AND−NOT回路グループに属する「OR(m)=m」と「AND(m)=m」の両m値は同一であるが、そのグループ内の各「NOT(m)=m」のm値とは必ず異なる。
また、もし、その真理値表に「m=0が書き込まれた升目」が全部で2個しか無ければ、多値「OR(0)=0」回路の入力端子数も2個である。もし、その「m=0が書き込まれた升目」が全部で70個有れば、その入力端子数も70個である。
◆2)特定整数m=0に設定した各・多値「AND(0)=0」回路は「f(x、y)=0を満足する論理変数x、yの値の各・組合せ」を網羅(もうら)する。すなわち、各・多値「AND(0)=0」回路は「m=0が書き込まれた升目のx値とy値の各組合せ」と1対1ずつ対応する。
図20の真理値表では(5,0)と(8,3)の各組合せが図示されており、f(5,0)=0とf(8,3)=0である。
この様に、各・多値「AND(m)=m」回路は「f(x、y)=mを満足する論理変数x、yの値の各・組合せ」を網羅(もうら)する。
◆3)入力端子Txに接続された各「NOT(m)=m」回路は論理変数x=m(=0、1、2、……、8、9)を判別し、入力端子Tyに接続された各「NOT(m)=m」回路は論理変数y=m(=0、1、2、……、8、9)を判別する。
ただし、判別すべき論理変数xの値が多値「AND(m)=m」回路のm値と同じ場合、「NOT(m)=m」回路を使わずに多値「AND(m)=m」回路が論理変数x=mであるかどうか直接判別する。
例えば、f(x、y)=0を満足する論理変数xの値が0なら(つまりf値=x値のとき)、「NOT(0)=0」回路は必要無いので、入力端子Txの電位信号はそのまま多値「AND(0)=0」回路に入力される。
そして、f(x、y)=0を満足する論理変数yの値が0なら(つまりf値=y値のとき)、「NOT(0)=0」回路は必要無いので、入力端子Tyの電位信号はそのまま多値「AND(0)=0」回路に入力される為、両者は
図19中の様に導線で直結される。
→→ f(5,0)=0のとき入力端子Tyは一番下の多値「AND(0)=0」回路の第2入力端子に直結される。
→→ 同様にf(7,9)=9のとき入力端子Tyは一番下の多値「AND(9)=9」回路の第2入力端子に直結される。
◆4)特定整数m=0に設定した多値「OR(0)=0」回路と各・多値「AND(0)=0」回路の間に1つずつ接続されたプル・「アップ又はダウン」抵抗は入出力信号のマッチング(整合)を行う。その為に、電位v
C0≠v
0である。
◆5)「同じ回路グループ内の多値『NOT(…)=…』回路とプル・『アップ又はダウン』抵抗」の各組合せは入力端子Tx、Tyの各電位信号と各・多値「AND(0)=0」回路の入力部をマッチング(整合)させる。
◆6)以下同様に、「特定整数m=1〜9」それぞれに設定した各・多値回路グループ(=多値OR、ANDおよびNOTの各回路グループ)においても、それぞれが全く同様な機能を果たす。
【0145】
以上は10進法の場合であるが、N進法の場合なら、升目の値=0に関しては既に説明した通りで、ただ上述の「以下同様に『特定整数m=1〜9』それぞれ」が「以下同様に『特定整数m=1〜(N−1)』それぞれ」(通常の多値数値表現の場合)又は「以下同様に『特定値m=−(N−1)〜−1、1〜(N−1)』それぞれ」(符号対称表現の場合)等に変わるだけである。
***
以上の通り、
図19の合成・多値論理回路は「図
20に示すf(x、y)の真理値表が表現する、すべての多値論理関数」を実現化・具体化できるので、新・多値論理『フージ代数』の『完全性』が証明される。しかも、『論理定数入力回路』を使わず、前述(段落番号0
139)の通り1種類の基本・多値論理回路だけでそのすべての多値論理関数を実現化・具体化できるので、新・多値論理『フージ代数』の『完全』が証明される。
★★ 基本・多値論理回路1種類だけによる『フージ代数』の『完全』 ★★
【非特許文献3】『多値情報処理 ―ポストバイナリエレクトロニクス―』、p.16〜p.17の『完全性、完全系、完全』に関する記載内容。著者:樋口龍雄・亀山充隆(みちたか)、昭晃堂(しょうこうどう)が1989年6月に発行。
【0146】
■■
図19に示す合成・多値論理回路の構成・個々の説明 ■■
念の為ここから、
図19に示す合成・多値論理回路の構成・個々について
図20に示す「簡略したf(x、y)の真理値表」を用いて具体的に説明する。ただし、最大ファン・イン、最大ファン・アウト、電流容量、多値ハザードの問題は無視している。
◆イ)
図20に示すf(x、y)の真理値表の各升(ます)目にはふつう「f(x、y)=0〜9という各・具体的な整数値」が記載されるが、その記載される各・具体的な整数値を特定整数mとする各多値「OR(m)=m」回路を用意する。
もし、そこに記載されていない具体的な整数が有れば、その記載されていない具体的な整数の多値「OR(m)=m」回路、各多値「AND(m)=m」回路および「この各多値「AND(m)=m」回路の前段に接続される各多値「NOT(…)=…」回路は不要なので省略できる。
◆ロ)
図20に示すf(x、y)の真理値表において、ある1つの升目の整数値、例えば整数m=0に設定したf(x、y)=0の升目を観ると全部で2つ有る(図示を簡略している為、実際にはもっと多い場合が有る。)ので、多値「OR(m)=m」回路において特定整数m=0に設定した多値「OR(0)=0」回路の入力端子数を同数の2個に設定する。
◆ハ)特定整数m=0に設定した多値「OR(0)=0」回路の入力端子数と同じ数だけ、多値「AND(m)=m」回路において特定整数m=0に設定した多値「AND(0)=0」回路を用意する。そして、その多値「OR(0)=0」回路の前段にその多値「AND(0)=0」回路を1つずつ接続する。
◆ニ)このとき、各多値「AND(m)=m」回路の入力端子数は論理変数x、yの個数2と同じ2であるが、論理変数がx、y、zの3個有ればその入力端子数は3になり、論理変数がw、x、y、zの4個有ればその入力端子数は4になり、論理変数がu、w、x、y、zの5個有ればその入力端子数は5になる。あとは各入力端子に多値「NOT(m)=m」回路を1つずつ接続する等するだけである。
上記ニ)項の通り各多値「AND(m)=m」回路の入力端子数は2個である。
◆ホ)特定整数m=0に設定した各多値「AND(0)=0」回路の出力端子を電位v
0(このときm=0だからv
m=v
0。)以外の電位v
C0(このときm=0だからv
Cm=v
C0。)にプル・アップ又はプル・ダウンする。v
C0≠v
0(v
Cm≠v
m)。
なお、電位v
Cmは「その特定整数m以外の整数に対応する電位」又は「いずれの整数にも対応しない独立した追加電位で、多値『OR(m)=m』回路が特定整数mと判別することが無い電位なら何でも良い電位」である。
◆ヘ)
図20において整数m=0に設定したf(x、y)=0を満足する論理変数x、yの値の各組合せ(5、0)、(8、3)を確認する。
一般的には、f(x、y)=mを満足する論理変数x、yの値の各組合せを確認する。
【0147】
◆ト)第1組(5、0)に対しては、入力端子Txと第1の多値「AND(0)=0」回路(ANDの特定整数m=0)の第1入力端子の間に特定整数m=5(=論理変数xの値m
x)とする多値「NOT(5)=5」回路を接続し、その多値「NOT(5)=5」回路の出力端子を電位v0(ANDの特定整数m=0だからv
m=v
0)にプル・「アップ又はダウン」する。
一方、入力端子Tyと第1の多値「AND(0)=0」回路(このときm=0)の第2入力端子の間の場合、論理変数yの値m
y=0で、そのAND回路の特定値m=0と同じ値0なので、入力端子Tyをそのまま第1の多値「AND(0)=0」回路の第2入力端子に直結する。
もちろん、論理変数yの値m
y≠0なら、入力端子Txの場合と同様に入力端子Ty・その第2入力端子・間に、その0と違う整数「…」を特定整数とする多値「NOT(…)=…」回路を接続する等する。
また、論理変数xの値m
x=0の場合が有るなら、上記の論理変数yの値m
y=0の場合と同様に入力端子Txはそのまま第1の多値「AND(0)=0」回路の第1入力端子に直結する。
◆チ)第2組(8、3)に対しては、入力端子Txと第2の多値「AND(0)=0」回路(このときm=0)の第1入力端子の間に特定整数m=8(=論理変数xの値m
x)とする多値「NOT(8)=8」回路を接続し、その多値「NOT(8)=8」回路の出力端子を電位v
0(このときm=0だからv
m=v
0。)にプル・「アップ又はダウン」する。
一方、入力端子Tyと第2の多値「AND(0)=0」回路(このときm=0)の第2入力端子の間に特定整数m=3(=論理変数yの値m
y)とする多値「NOT(3)=3」回路を接続し、その多値「NOT(3)=3」回路の出力端子を電位v
0(このときm=0だからv
m=v
0。)にプル・「アップ又はダウン」する。
もちろん、論理変数xの値m
x=0又は論理変数yの値m
y=0の場合が有るなら、上記◆ト)項内の結線作業と同様に直結の結線作業をする。
◆リ)もし、
図20に示すf(x、y)の真理値表においてf(x、y)=0を満足する論理変数xとyの値m
x、m
yの組合せが他にも有れば、その組合せの数だけ上記◆ト)項または上記◆チ)項の結線作業を繰り返す。
◆ヌ)同様に、
図20に示すf(x、y)の真理値表・中の★「f(x、y)=1〜9」の整数についても、その整数値ごとにその整数値をm=0の代わりに特定整数m=1〜9それぞれに設定して「上記◆ロ)〜上記◆リ)項」の結線作業を繰り返す。
◆ル)以上は10進法の場合であるが、N進法の場合なら、ただ上記★「f(x、y)=1〜9」が「f(x、y)=1〜(N−1)」(普通のN値表現型)又は「f(x、y)=−(N−1)〜−1、1〜(N−1)」(符号対称表現型)等に変わるだけである。
以上で結線作業・完了。
【0148】
それから、
図19の合成・多値論理回路において、各・多値「OR(m)=m」回路と各・多値「AND(m)=m」回路を同時に多値「NAND(m)=m」回路で1つずつ置き換えた多値等価回路が可能である。もちろん、mの各整数値は
図19中に示された各整数値に設定し、各・入力端子数も
図19中に示された各・入力端子数に設定する。
その等価回路になる理由は、
図19中の各・多値「OR(m)=m」回路を
図18(a)の多値「OR(m)=m」回路の等価回路で1つずつ置き換え、その置換え後の「多値『AND(m)=m』回路とその後段に接続される多値『NOT(m)=m』回路」の各・直列回路を多値「NAND(m)=m」回路で1つずつ置き換えると、上記の多値等価回路になる、からである。
さらに、前述(段落番号[0139])の通り、
図19中の各・多値「NOT(m)=m」回路を「その全・入力端子を接続して入力端子1つにまとめた多値『NAND(m)=m』回路」等で1つずつ置き換えれば、上記の多値等価回路すなわち
図19の合成・多値論理回路は多値「NAND(m)=m」回路だけで構成できることが分かる。
しかも、前述(段落番号[0140]中)の通り論理変数x、yの各・論理変数範囲の変更によってN進法・2論理変数の全・多値論理関数を表現できるし、前述{段落番号[0141]や[0146]の◆ニ項)}の通り論理変数の個数を変更することができるし、あるいは、各論理変数x、yの各桁数を3桁などに変更することができる。
そういう訳で、新・多値論理『フージ(Hooji)代数』には『多値数Nに全く影響されない、1種類の多値論理による完全性、それも[完全]』という独特な効果・特徴が有る。
◆↑ 多値数Nに全く影響されない、基本・多値論理回路1種類だけ ↑◆
◆↑ による新・多値論理『フージ(Hooji)代数』の『完全』 ↑◆
【0149】
◆◆◆***** 『フージ代数』における多値ワイヤードOR回路 *****◆◆◆
***
●19)新・多値論理『フージ(Hooji)代数』に基づく多値論理回路において多値ワイヤードOR回路が成り立つことについて述べる。
最初に、
図19の合成・多値論理回路(=完全回路)に多値ワイヤードOR回路を導入した合成・多値論理回路(=完全回路)を
図21に示す。当然ながら、前者の回路構成に比べて後者の回路構成はかなり単純になり、その部品点数も相応に少なくなっている。
なお、
図21の合成・多値論理回路において出力端子Tfにプル・アップ抵抗もプル・ダウン抵抗も接続されていないのは、常にいずれかのAND回路の出力スイッチ部がオンとなって、出力端子Tfの電位をプル・アップまたはプル・ダウンするので、そのプル・アップ抵抗もそのプル・ダウン抵抗も省略することができる、からである。
→→ 各プル抵抗が消費する電力の節約。
もし、
図20の真理値表において数値が記入されていない升目が1つでも有れば、その升目のx値、y値の時に出力端子Tfは開放になるので、プル・アップ抵抗またはプル・ダウン抵抗の一端を出力端子Tfに接続し、他端を所定の電源線V
Cmに接続する必要が有る。
図21の合成・多値論理回路が
図19の合成・多値論理回路と同様に
図20の真理値表を満足していることは、具体的にそのx値、y値、f(x、y)値の各・整数値を
図21の合成・多値論理回路に当てはめれば直ぐ判明することである。でも、単純に考えれば、「
図19の合成・多値論理回路の各AND回路が各OR回路を介して出力端子Tfにその出力数値を出力する」のに対して、「
図21の合成・多値論理回路の各AND回路は直接出力端子Tfにその出力数値を出力する」だけの違いである。
【0150】
それから、その回路構成や部品点数の課題に加えて
図19の合成・多値論理回路には『非常に不便で、実用的でない』という「解決すべき課題」が有るが、「多値ワイヤードOR回路を用いている
図21の合成・多値論理回路」はその課題を解決することができる。
◆例1:
図20の真理値表においてその整数値が例えば6である升目が全部で80個有り、6以外の整数値0〜5、7〜9それぞれの升目が2、3個ずつ有る場合、多値「OR(6)=6」回路の総・入力端子数だけ80個必要になる。他のそれは2、3個ずつである。
◆例2:
図20の真理値表においてm=0〜9の各整数値である升目の数が均一的にほぼ10個ずつの場合、各・多値「OR(m)=m」回路の総・入力端子数も均一的にほぼ10個ずつである。
***
要するに、
図20の真理値表の数値パターンによって、すなわち、同一整数値の升目がいくつずつ有るかによって、各・多値「OR(m)=m」回路の総・入力端子数が変動してしまい、しかも、その書き込まれる整数値mが片寄ると、特定の多値「OR(m)=m」回路の総・入力端子数だけ特に多くなってしまう。
その結果、
図20の真理値表で示される多値論理関数を合成・多値論理回路として具体化、実現化する際に非常に不便で、実用的ではない。
一方、
図21の合成・多値論理回路では多値ワイヤードOR回路を用いている為、「
図20の真理値表の数値パターンによってその入力端子数が変動する各・多値『OR(m)=m』回路そのもの」が無いので、
図21の合成・多値論理回路は上述した「解決すべき課題」を解決することができる。加えて前述の通り
図21の合成・多値論理回路は
図19の合成・多値論理回路に比較してその回路構成が簡単になり、その部品点数が少なくなるので、極めて実用的で、とても便利である。
これらの事は、後述する「
図22の合成・多値論理回路(多値数N=3)と
図23の真理値表」の関係、及び、その発展・派生回路(多値数N=4、5、6……10。)の関係でも同様である。
【0151】
◆◆◆***** 『完全』回路の(3次元の)IC・LSI化など *****◆◆◆
***
●20)『完全』回路の(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが可能なことについて説明する。
図22の合成・多値論理回路は「
図19の合成・多値論理回路において、両論理変数x、yの多値数を10から3に変更し、3個の多値「OR(m)=m」回路(m=0、1、2)の代わりに多値ワイヤードOR回路を用いて回路構成を簡単化し、標準化したもの」である。
なお、複数のAND回路のうち、必ずどれか1つがオンなので、プル・アップ抵抗またはプル・ダウン抵抗などの接続は省略することができる。つまり、それを接続する必要は無くなる。 →→ 消費電力の節約。
これにより、(3次元の)プログラマブル・ロジック・アレイ化、セミ・オーダー(3次元)IC・LSI化などが実現し易くなり、便利である。
◆◆ 多値ワイヤードOR回路が成り立つ効用 ◆◆
そして、
図23は、
図22中の関数f(x、y)=m
zの真理値表・図で、書き直すと以下の通りである。
◆x=0、1、2
◆y=0、1、2
◆f(x、y)=m
z、(m
z=m0、m1、……、m7、m8)
f(0、0)=m0、 f(0、1)=m1、 f(0、2)=m2
f(1、0)=m3、 f(1、1)=m4、 f(1、2)=m5
f(2、0)=m6、 f(2、1)=m7、 f(2、2)=m8
ただし、2≧m0、m1、m2、m3、m4、m5、m6、m7、m8≧0
***
m0〜m8の各整数値は0、1、2のいずれか1つである為、m0の値は3通り、m1の値は3通り、……、m8の値は3通り有るので、結局、「これら全部で表現できる多値論理関数f(x、y)の種類」=(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)×(3通り)=3の9乗・種類=19,683種類有る。
それから、
図22では各・多値「NOT(m)=m」回路の横に「単なる導線」が1つずつ画かれ、入力端子Tx、Tyそれぞれと各・多値「AND(m
z)=m
z」回路・入力部の間が各・多値「NOT(m)=m」回路を介して接続される場合と、直結される場合が有ることが「各接続端子と各点線」で示されている。
図23において論理変数xの値m
x(0、1、2のうち、いずれか1つ)と多値論理関数f(x、y)の値m
zが同じ(m
x=m
z)とき、入力端子Txは「そのm
zを特定整数とする多値『AND(m
z)=m
z』回路の第1入力端子」に直結される。
一方、論理変数xの値m
xと多値論理関数f(x、y)の値m
zが異なる(m
x≠m
z)とき、入力端子Txは
図22の様に多値「NOT(m
x)=m
x」回路を介して「そのm
zを特定整数とする多値『AND(m
z)=m
z』回路の第1入力端子」に接続される。
同様に、入力端子Tyと各・多値「AND(m
z)=m
z」回路の第2入力端子の接続についても、多値「NOT(m
y)=m
y」回路を介して接続したり、あるいは、直結したりする。ただし、m
yは論理変数yの値で、0、1、2のうち、いずれか1つである。
【0152】
なお、m0〜m8の各整数値を順々に0〜8の各整数に設定すると、
図22の合成・多値論理回路は3値・9値コード変換回路になる。もちろん、yがその3値表現の1桁目で、xがその3値表現の2桁目である。この場合、「AND(0)=0」回路の特定電位供給手段は例えば電源線V
0になり、「AND(1)=1」回路の特定電位供給手段は例えば電源線V
1になり、……「AND(9)=9」回路の特定電位供給手段は例えば電源線V
9になる。
また、論理変数x、y及び多値論理関数f(x、y)3つそれぞれの多値数を自由に設定することができる。全・多値数を同一に設定しても良いし、各・多値数を互いに違う値に設定しても良い。
さらに、それら3つの多値数Nが同一で4のとき、「表現できる多値論理関数f(x、y)の種類」は4の16乗・種類≒4,294,968,000種類も有る。しかも、そのぼう大な種類の多値論理関数は「
図22の合成・多値論理回路において『多値[AND(…)=…]回路、2つの多値[NOT(…)=…]回路および2つの導線』の組合せを9組から16組に増やし、多値数の1増加に伴う電源と電源線を1つずつ増やす」だけで実現することができる。
同様に、その同一多値数が5のとき「表現できる多値論理関数f(x、y)の種類」は5の25乗・種類≒2.980233×(10の17乗)種類で、
図22の合成・多値論理回路において上記・組合せをさらに16組から25組に増やす等するだけで良い。
同じく、その同一多値数が10のとき「表現できる多値論理関数f(x、y)の種類」は10の100乗・種類で、
図22の合成・多値論理回路において上記・組合せをさらに25組から100組に増やす等するだけで良い。
そんな訳で、少ない部品点数の
割には「表現できる多値論理関数f(x、y)の種類」はその同一多値数Nの増加と共に超・爆発的に増えて行くことになる。
★参 考:特開2007−035233号の段落番号[0031〜0033]。
しかも、後述(段落番号0154)する通り論理変数x、論理変数y及び多値論理関数f(x、y)の各・多値数が違っても構わない。同一である必要は無い。→対応柔軟性。
この様な超・爆発的な増加とその対応柔軟性は、
図21、
図22の各合成・多値論理回路などをプログラマブル・3次元化ロジック・アレイ、セミ・オーダー・3次元化IC・LSIなどで実用化する際に、極めて強力な武器・効能になる。
【0153】
具体的な各多値回路として、例えば以下2例が有る。
◆例1:
図24に非同期型・多値「AND(m)=m」回路の1例を示し、
図25、
図26に非同期型・多値「NOT(m)=m」回路の2例を示す。
図25の非同期型・多値NOT回路においてダイオード125は「トランジスタ101がオフで、トランジスタ102、128がオンのとき電源線V
mから抵抗123、トランジスタ128、抵抗120及びトランジスタ102を経て電源線V
m−1へ電流が流れるのを阻止する為のもの」である。ダイオード125の順電圧の為にトランジスタ101、128がトランジスタ124をオフ駆動できないときはダイオード126と抵抗127が必要である。しかし、トランジスタ101がオフで、トランジスタ102がオンのときトランジスタ128がオフになるなら、ダイオード125、126を挿入接続する必要は無いし、抵抗127も不要である。
★参 照:特許文献3(特開2005−236985号)の
図10と
図9の各回路。
図26の非同期型・多値NOT回路は、
図17の実施例17(=同期型・多値NOT回路)においてD型フリップ・フロップ127などを取り外す等して非同期型・多値NOT回路に変更したものである。
◆例2:9個の「本発明・
図14に示す実施例14中の同期型AND回路」と18個の「本発明・
図1に示す実施例1の同期型NOT回路」又は「本発明・
図17に示す実施例17の同期型NOT回路」で
図21、
図22の各合成・多値論理回路を同期型に変更し、その全・同期型NOT回路とその全・同期型AND回路の両ラッチングのタイミングをずらした同期型合成・多値論理回路が可能である。
当然の事ながら、この同期型合成・多値論理回路は多値ハザードを除去することができる。しかも、本発明・
図1に示す実施例1においてトランジスタ41のゲート端子をQ端子からQバー端子に接続変更すれば、実施例1は同期型NOT回路から同期型EVEN回路(=同期型EQUAL回路)に変わるので、
図21、
図22の各図中において各NOT回路の隣りに示された各導線は必要無くなる。
この場合も、「全多値数Nの増加」や「互いに異なる各多値数Nへの変更」を前述(段落番号[0152]。)と同様に行うことができる。
【0154】
◆◆◆**** 互いに多値数が異なる論理変数等に対する対応柔軟性 ****◆◆◆
***
●21)新・多値論理『フージ(Hooji)代数』の『複数の論理変数およびそれらの論理関数それぞれの多値数N(≧2)が互いに異なっていても対応できる柔軟な対応性』という特徴について以下説明する。
★参 照:多値数N=2の場合については → 段落番号[0135〜0136]。
多値論理回路システムによっては、多値数N(≧2)が互いに異なる複数の情報が入(い)り交(ま)じった複合情報を取り扱う場合が有る。例えば、光の3原色(青赤緑)の多値数「3」、陽画と陰画の多値数「2」、他にも「明るさの多段階」という多値数、「青赤緑の配合割合」という多値数などである。
この様な場合、互いに多値数N(≧2)の異なる多値論理回路を混在して組むことになるが、「その多値数の大きい方の多値論理」は「その多値数の小さい方の多値論理」を完全に包含し、前者が後者に対して互換性が有った方が良い。
新・多値論理『フージ(Hooji)代数』の場合、前述(段落番号[0137]。)の通り前者は後者(多値数N≧2)を土台にして組み上げられているので、当然の事ながら前者は後者を包含し、後者に対して互換性が有る。
また、前述した
図19の合成・多値論理回路では多値AND回路と多値OR回路の多値数N1(≧2)に対して、論理変数xの多値数N2(≧2)は常に同じである必要は無いし、論理変数yの多値数N3(≧2)も常に同じである必要は無い。N1≠N2又はN1≠N3の場合が有っても構わない。さらに、N2とN3も常に同じである必要は無い。N1≠N2又はN1≠N3又はN2≠N3の場合が有っても構わない。
◆例1:段落番号[0152]中の3値・9値コード変換回路。
◆例2:
図20の真理値表において論理変数xだけその変数範囲を例えば0〜7にする場合は、
図19中で入力端子Txに接続された多値「NOT(m)=m」回路のうち、m=8、9となる多値「NOT(8)=8」回路と多値「NOT(9)=9」回路を取り外し、その取外しによって入力端子数が1つになった多値「AND(m)=m」回路も取り外せば、その多値数の変更に対応できる。
この場合、各多値「AND(8)=8」回路と各多値「AND(9)=9」回路のうち、その入力が直接入力端子Txに接続された多値AND回路が有れば、その多値AND回路も「それに接続された多値NOT回路」も不要なので、取り外すことができる。
この例2のことは、当然のことながら、論理変数yについても同様に当てはまる。
その結果、『[複数の論理変数およびそれらの関数]それぞれの多値数N(≧2)が互いに異なっていても対応できる柔軟な対応性』が新・多値論理『フージ(Hooji)代数』に有る。
一方、前述(段落番号[0135]後半と段落番号[0137]後半。)した従来の「AND回路、OR回路、反転回路、リテラル回路およびサイクリング回路」で構成される多値論理回路の場合、互いに多値数の異なる「反転回路同士、リテラル回路同士およびサイクリング回路同士」では包含が成り立たず、互換性が全く無いので、新・多値論理『フージ代数』の様な柔軟な対応性が無い。
★参 考:非特許文献3のp.19〜p.20。
【非特許文献3】『多値情報処理 ―ポストバイナリエレクトロニクス―』、著者:樋口龍雄・亀山充隆(みちたか)、昭晃堂(しょうこうどう)が1989年6月に発行。
【0155】
◆◆◆********* 前段2値回路との良好な接続性 *********◆◆◆
***
●22)新・多値論理『フージ(Hooji)代数』の『前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイスが必要無い』という独特な効果・特徴について以下説明する。
新・多値論理『フージ代数』に基づく各・多値論理回路の場合、その判別手段が根本的に判別することは結局「各・判別内容に対して肯定か否定かを示す信号、肯定・否定信号(二者択一信号)」つまり「各・判別内容に対してYesかNoかを示す信号、Yes・No信号(二者択一信号)、2値信号みたいなもの」なので、基本的にその前段2値回路の出力信号との相性(あいしょう)がとても良い。
従って、あとは以下の通りその前段2値回路の出力部とそれら多値論理回路の入力部をマッチング(整合)させるだけである。
◆a)その前段2値回路がHレベルとLレベルの2つを出力する場合:
その多値論理回路が「肯定」と判別する入力判別範囲内にその2値回路のHレベル、Lレベルのうち一方の出力レベル範囲がすっぽり入(はい)り、その多値論理回路が「否定」と判別する入力判別範囲内にその他方の出力レベル範囲がすっぽり入る様にマッチング(整合)させれば良い。
◆b)その前段2値回路の出力部がオープン・コレクタ又はオープン・ドレイン等の場合:
図18、
図19、
図21、
図22の各回路中の各・多値「NOT(…)=…」回路の様にそれら多値論理回路の出力端子にプル・アップ抵抗手段またはプル・ダウン抵抗手段を接続し、その2値回路が出力するHレベル、Lレベルの各・出力レベル範囲内について上記◆a)項と同様にマッチング(整合)させれば良い。
なお、◆a)項、◆b)項どちらの場合も、H、L両レベルが対応する両・電源電位は「多値回路の最低電位〜最高電位のうち、いずれか2つの電源電位」なら何でも良い。例えば10進法なら、その両・電源電位は「v
0とv
1」、「v
4とv
5」、「v
8とv
9」、「v
5とv
7」、「v
3とv
8」、「v
0とv
9」、「v
0未満とv
9を超えた電位(どちらの電位も数値と対応しない電位。)」など。
そういう訳で、『前段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイスが必要無い』という独特な効果・特徴が新・多値論理『フージ代数』に有ることが分かる。
【0156】
◆◆◆********* 後段2値回路との良好な接続性 *********◆◆◆
***
●23)新・多値論理『フージ(Hooji)代数』の『後段に2値回路を接続するとき、その接続性が極めて良く、その間に特別なインターフェイスが必要無い』という独特な効果・特徴について以下説明する。
実際の2具体例として以下のものが有る。
◆例1:特開2006−190239号・
図5の回路中の「各AND多値回路」と「その後段の各2値回路。
◆例2:特開2007−035233号・
図11〜12両図に示す回路中の「
図11に示す各多値NOT回路」とその後段の「
図12に示す各2値NOR回路」。
***
一方、多値論理分野ではよく知られた従来のウカシェヴィッチ型多値論理回路の場合、前段でも後段でも2値回路との接続性が悪く、その間に特別なインターフェイス(2値・多値コード変換手段と多値・2値コード変換手段)が必要である。
★参 考:非特許文献3のp.13の
図1.2。
【非特許文献3】『多値情報処理 ―ポストバイナリエレクトロニクス―』、著者:樋口龍雄・亀山充隆(みちたか)、昭晃堂(しょうこうどう)が1989年6月に発行。
【0157】
◆◆◆***** 「あいまいさ」を表現できる各種の新・多値論理 *****◆◆◆
***
●24)本発明者が創(つく)り出した8個の新・多値論理、「多値OVER論理、多値NOVER(ノウバー)論理、多値UNDER論理、多値NUNDER(ナンダー)論理、多値IN論理、多値NIN(ニン)論理、多値OUT論理、多値NOUT(ナウト)論理」の各・多値論理回路を使うことによって「曖昧(あいまい)さ」を自由・柔軟に簡単に定義・表現することができる。
これらの各・多値論理回路を使って例えば下記の様に「曖昧さ」を自由・柔軟に簡単に定義したり、表現したりすることができる。
◆例1:論理数値的に「大体この辺の数値」と表現する場合。0〜9の中で「3〜5」とか「4〜6」とか「≦2」とか「7≦」。
◆例2:Yes(→数値9)、No(→数値0)どちらとも言えない、どっち付かずの場合を数値「4、5」で表現。
◆例3:「どちらかと言えばYes寄り」と表現する場合。「数値9がYes」、「数値0がNo」を意味すると定義したときに「6〜7」。
◆例4:「どちらかと言えばNo寄り」と表現する場合。「数値9がYes」、「数値0がNo」を意味すると定義したときに「2〜3」。
◆例5:「疑わしきは被告人の利益に」ということで「限りなく有罪(→数値0)に近い灰色無罪(→数値1)」を表現する場合。つまり、数値0が「完全な有罪(真っ黒)」を意味し、数値9が「完全な無罪(真っ白)」を意味すると定義したときに数値1で「限りなく有罪に近い灰色無罪」を表現する場合。
***
あとは「この各種の新・多値論理を利用する人」が自由に、好きな様に、どうにでも、各数値の意味を定義・表現することができる。
【0158】
なお、「多値OVER論理、多値UNDER論理、多値IN論理、多値OUT論理」の各多値論理回路においてその該当する入力整数の個数を、例えば「その入力用特定整数値が4と8である多値IN論理において該当する整数5、6、7の3個を複数個から徐々に1つに絞り込む」様に、絞り込むと、その各多値論理は必ず多値EVEN論理になる。
→→ 前述した段落番号[0058]
つまり、その絞り込みはちょうど「写真のピントの『ぼやけ』から『合致』へのピント合わせ」の様に「曖昧さ」から「明確さ」への焦点合わせを意味する為、「OVER論理、NOVER(ノウバー)論理、UNDER論理、NUNDER(ナンダー)論理、IN論理、NIN(ニン)論理、OUT論理、NOUT(ナウト)論理」及び「これらの各多値論理と多値AND論理または多値OR論理の組合せ論理」によって「曖昧さ」を表現することは的(まと)外(はず)れ、ピント外れではなく、理(り)に適(かな)っていると本発明者は考える。
そんな訳で、これらの多値論理および「これらの多値論理と多値AND論理や多値OR論理の組合せ」を使って、従来のファジー制御技術と異なる、新しい『あいまい制御技術(IMy[ai−mai]−Control−Technology)』を切り開くことができるのではないかと本発明者は考えている。
なぜなら、従来のファジー制御理論では「明確にYESとNOをはっきり表現する数値0、1」の中に「あいまいさ」を表現する為にブール代数に「確率と統計の数学理論」を導入したが、一般的にはかなり複雑で、分かり難い、からである。
尚、その発音から直ぐ分かる通り、その英語名、IMy[ai−mai]はその日本語名の「あいまい」の語路(ごろ)合わせから本発明者がその様に名付けた。
【0159】
◆◆◆**
図19、
図21、
図22の各回路で1方向スイッチの使用可能性 *◆◆◆
***
●25)結論から言えば、1方向性出力スイッチの使用は可能である。前述(段落番号[0138〜0153]。)した
図19、
図21、
図22の各合成・多値論理回路では、主に「その出力スイッチ部に双方向性スイッチング手段を使う各種の基本・多値論理回路」を使用して、すべての多値論理関数を実現することができる『完全回路』について説明した。
しかし、
図19、
図21、
図22の各合成・多値論理回路において「その出力部にプル・アップ抵抗あるいはプル・ダウン抵抗が接続された基本・多値論理回路」それぞれに関しては、その出力スイッチ部は何も双方向性スイッチング手段である必要は無い。「その出力部にプル・アップ抵抗が接続された基本・多値論理回路」それぞれは「その出力スイッチ部が逆阻止型または『逆阻止能力の無いタイプ(例:逆導通型、逆導電型等。)』のプル・ダウン・スイッチング手段である基本・多値論理回路」でも別に構わない。なお、その逆導通型には例えば内蔵ダイオードを持つMOS・FET等が有り、その逆導電型には例えばバイポーラ・トランジスタ等が有る。
一方、「その出力部にプル・ダウン抵抗が接続された基本・多値論理回路」それぞれは「その出力スイッチ部が逆阻止型あるいは『逆阻止能力の無いタイプ』のプル・アップ・スイッチング手段である基本・多値論理回路」でも別に構わない。もちろん、「その出力部にプル・アップ抵抗、プル・ダウン抵抗どちらを接続しても構わない基本・多値論理回路」それぞれはその抵抗のプル方向に応じて「その出力スイッチ部が『逆阻止型あるいは逆阻止能力の無いタイプ』の『プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段』である基本・多値論理回路」を使うことになる。
これらの場合、
図19の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び「双方向性出力スイッチを用いた多値OR回路」の少なくとも3回路が完全系を成し、
図21、
図22の各合成・多値論理回路では「1方向プル出力スイッチを用いた多値NOT回路」、「双方向性出力スイッチを用いた多値AND回路」及び多値ワイヤードOR回路の少なくとも3回路が完全系を成す。
【0160】
さらに、
図19の合成・多値論理回路中の各・多値OR回路と
図21の合成・多値論理回路中の各・多値AND回路に関しても、各回路の出力端子Tfのプル出力が双方向性である必要が無く、そのプル出力がプル・アップかプル・ダウンどちらかで良いのであれば、そのすべての基本・多値論理回路は「その出力スイッチ部が逆阻止型の『プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段』である基本・多値論理回路」でも別に構わない。この場合、
図19の合成・多値論理回路において、その全・多値OR回路がその出力スイッチ部に逆阻止型プル・アップ・スイッチング手段を使うのであれば、その出力端子Tfは例えば
図19の合成・多値論理回路の電源電位v
0より低い電源電位{例:電源電位v
0より電位1つ低い電源電位v
−1。}を基準にした出力信号を出力することになる。一方、その全・多値OR回路がその出力スイッチ部に逆阻止型プル・ダウン・スイッチング手段を使うのであれば、その出力端子Tfは例えば
図19の合成・多値論理回路の電源電位v
9より高い電源電位{例:電源電位v
9より電位1つ高い電源電位v
10。}を基準にした出力信号を出力することになる。この事は
図21、
図22の各合成・多値論理回路中の各・多値AND回路に関しても同様である。
これらの場合、
図19の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路、多値AND回路および多値OR回路』」の少なくとも3回路が完全系を成し、
図21、
図22の各合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも3回路が完全系を成す。
【0161】
それから、その出力スイッチ部に「逆阻止能力の無いタイプ(例:逆導通型、逆導電型等。)」の「プル・アップ・スイッチング手段かプル・ダウン・スイッチング手段」を使った各基本・多値論理回路に関しても、ひと工夫すれば
図21の回路の最終段に使用することができる。例えば、
図21の回路において、「その出力用特定整数が同じ値の多値AND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードを接続すれば良い。この様にすれば、多値AND回路・同士の電源短絡を防止することができる。
この場合も、全・多値AND回路の出力スイッチ部はオン駆動時プル・アップかプル・ダウンのどちらかを行い、プル・アップ動作とプル・ダウン動作の混在は無く、その出力端子Tfから出力される出力信号は
図21の回路の「電源電位v
9より高い電源電位{例:電源電位v
9より電位1つ高い電源電位v
10。}」か「電源電位v
0より低い電源電位{例:電源電位v
0より電位1つ低い電源電位v
−1。}」どちらかを基準にすることになる。
このため、その出力用特定整数値が0(その基準電源電位がv
10の時)か9(その基準電源電位がv
−1の時)どちらかである多値AND回路群にはダイオードの接続は必要無いから、必要とする出力ダイオードの数は全部で9個で済む。
この場合、
図21の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも3回路に加えて、その出力ダイオード9個が完全系を成す。
一見、その部品点数が多くなった様に思えるが、前述(1つ前の段落。)した逆阻止型プル・スイッチング手段を使う
図21の合成・多値論理回路の場合、普通なら必要とする逆阻止用・出力ダイオードの数は全部で100個で、出力ダイオードが91個余計に必要である。
【0162】
あるいは、
図19の合成・多値論理回路において、例えば、その電源電位がv
0〜v
4、vB、v
5〜v
9の順に電位が高くなって行き、電源電位vBが余分に有る場合、次の様にすることもできる。
図19の合成・多値論理回路中の各多値OR回路は電源電位vBを基準にした出力信号を出力する。その為に、「その出力用特定整数値が0〜4のいずれかである多値OR回路」それぞれに関して、その出力スイッチ部は逆阻止型プル・ダウン・スイッチング手段である。一方、「その出力用特定整数値が5〜9のいずれかである多値OR回路」それぞれに関して、その出力スイッチ部は逆阻止型プル・アップ・スイッチング手段である。
なお、その出力信号の基準電位となる電源電位vBは、必ずしも両電源電位v4・v5間に有る必要は無く、電源電位v
0〜v
9のうち、隣り合う2つの電源電位のいずれか2つの間に有っても構わない。もちろん、この場合、電源電位vBより高くプル・アップするか、電源電位vBより低くプル・ダウンすることになる。
これらの様にする事は、
図21の合成・多値論理回路に対しても同様で、その各多値AND回路は電源電位vBを基準にした出力信号を出力する。前述した事が
図19の合成・多値論理回路ではその各多値OR回路に対してだったのを
図21の合成・多値論理回路ではその各多値AND回路に対して当てはめる。
これらの場合、そのプル方向が2つ有る場合も有るので、
図19の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路、多値AND回路および多値OR回路』」の少なくとも4回路が完全系を成し、
図21の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも4回路が完全系を成す。
【0163】
あるいは、前述(1つ前の段落内容。)の様に
図21の合成・多値論理回路中の各多値AND回路が電源電位vBを基準にした出力信号を出力するのであるが、その各出力スイッチ部に逆導通型または逆導電型などのプル・スイッチング手段を使う場合である。
「その出力用特定整数値が0〜4のいずれかである多値AND回路」それぞれに関して、その出力スイッチ部は逆導通型または逆導電型などのプル・ダウン・スイッチング手段であるが、前述(段落番号[0161]。)と同様ひと工夫する。「その出力用特定整数が同じ値の多値AND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードをプル・ダウン方向にして接続する。
一方、「その出力用特定整数値が5〜9のいずれかである多値AND回路」それぞれに関して、その出力スイッチ部は逆導通型または逆導電型などのプル・アップ・スイッチング手段であるが、前述(段落番号[0161]。)と同様ひと工夫する。「その出力用特定整数が同じ値のAND回路」毎(ごと)に一旦その出力端子・全部を接続し、その接続・共通端子・毎(ごと)にその共通端子と出力端子Tfの間にダイオードをプル・アップ方向にして接続する。
この場合、そのプル方向が2つ有る場合も有るので、
図21の合成・多値論理回路では「1方向プル出力スイッチを用いた『多値NOT回路と多値AND回路』」及び多値ワイヤードOR回路の少なくとも4回路に加えて、その出力ダイオード9個が完全系を成す。