(58)【調査した分野】(Int.Cl.,DB名)
前記複数の画像は、所定の光量の可視光と前記所定の光量よりも高い光量の赤外光とを含む照射光を前記眼底に照射しながら前記眼底を複数撮像することにより得られた画像であることを特徴とする
請求項1に記載の画像処理装置。
【発明を実施するための形態】
【0069】
以下、本技術を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(眼底画像処理装置)
2.第2の実施の形態(眼底画像処理装置)
3.第3の実施の形態(眼底画像処理装置)
4.第4の実施の形態(眼底画像処理装置)
5.第5の実施の形態(眼底画像処理装置)
6.第6の実施の形態(遠隔診断システム)
7.第7の実施の形態(パーソナルコンピュータ)
【0070】
<1.第1の実施の形態>
[眼底画像処理装置の構成]
図1は、本技術を適用した眼底画像処理装置の主な構成例を示すブロック図である。
図1に示される眼底画像処理装置100は、観察対象である被験者の、眼球内の網膜や視神経乳頭等の眼底を撮像し、その撮像画像である眼底の画像(眼底画像)を得る装置である。
【0071】
眼底画像処理装置100は、被写体(被験者の眼底)への負荷の増大を抑制するために、被写体に照射する光量を抑制して撮像を行う。また、眼底画像処理装置100は、より高画質な眼底画像を得るために、撮像を複数回行い、複数の撮像画像を得、それらを用いて超解像処理を行う。
【0072】
眼底画像処理装置100は、撮像部101、画像処理部102、記憶部103、および出力部104を有する。
【0073】
撮像部101は、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等を用いた撮像素子を有し、所定の位置の被験者の眼底を撮像する。撮像部101は、被験者の眼底を撮像し、眼底画像を得ることが出来るのであれば、どのようなものであってもよい。ただし、撮像部101は、より高画質な眼底画像を得るために、撮像の際に被写体に光を照射する機能を有する。
【0074】
一般的に、より高画質な眼底画像を得るためには、照射する光(照射光)の光量を増大させる(より強い照射光を照射し、眼底をより明るくする)ことが望ましいが、単に照射光の光量を増大させると被写体への負荷を増大させ、観察対象に対して不要な影響を及ぼしたり、被験者の心理的な負担を増大させたりする恐れがあった。また、被験者が、所謂、眩しいと感じ、瞼を閉じたり、動いたりしてしまい、結果として高画質な眼底画像を得ることが出来ない恐れがあった。
【0075】
そこで撮像部101は、照射光の光量を増大させる代わりに、複数回撮像を行う。つまり、撮像部101は、照射光を低光量で照射させながら眼底の撮像を複数回繰り返す。したがって撮像部101は、撮像により得られる各眼底画像をできるだけ互いに近似させることができるように、できるだけ短時間に複数回撮像することができる方が望ましい。
【0076】
このような撮像により得られる各眼底画像は、照射光が弱い(暗い)ため、低画質である。撮像部101は、このように得られた複数の低画質な眼底画像を画像処理部102に供給する。
【0077】
画像処理部102は、撮像部101から供給される複数の低画質な眼底画像を用いて、1枚の、より高画質な眼底画像を生成し、それを記憶部103に記憶させたり、出力部104から出力させたりする。
【0078】
記憶部103は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM(Random Access Memory)等の任意の記憶媒体を有し、画像処理部102から供給される、より高画質な眼底画像を記憶する。記憶部103に記憶された眼底画像は、図示せぬ再生部等により読み出され、出力部104に表示されたり、他の装置に伝送されたり、図示せぬ画像処理部により画像処理されたりする。
【0079】
出力部104は、CRT(Cathode Ray Tube)ディスプレイやLCD(Liquid Crystal Display)等の任意のモニタ、または、出力端子等を有し、画像処理部102から供給される眼底画像を、そのモニタに表示したり、眼底画像処理装置100の外部の装置に出力したりする。
【0080】
図1に示されるように、画像処理部102は、入力画像バッファ111、超解像処理部112、SR(Super Resolution)画像バッファ113、および演算部114を有する。
【0081】
入力画像バッファ111は、例えばハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、撮像部101から供給される、複数の低画質な眼底画像(撮像画像)を入力画像として保持し、その各入力画像を、所定のタイミングでLR(Low Resolution)画像として超解像処理部112に供給する。
【0082】
[超解像処理部の構成]
超解像処理部112は、例えば、特開2009−093676号公報(以下、特許文献4と称する)に記載の超解像処理器と同様の超解像処理を行う。すなわち、超解像処理部112は、入力画像バッファ111から供給されるLR画像と、SR画像バッファ113から供給される、過去に生成したSR画像とを用いて、新たなSR画像を生成するためのフィードバック値を算出して出力する超解像処理を再帰的に繰り返す。超解像処理部112は、超解像処理結果として、算出したフィードバック値を演算部114に供給する。
【0083】
SR画像バッファ113は、例えばハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、生成されたSR画像を保持し、そのSR画像を所定のタイミングで超解像処理部112や演算部114に供給する。
【0084】
演算部114は、超解像処理部112から供給されるフィードバック値を、SR画像バッファ113から供給される、過去に生成したSR画像に加算することにより、新たなSR画像を生成する。演算部114は、生成した、新たなSR画像をSR画像バッファ113に供給して保持させ、そのSR画像を次の超解像処理(新たなSR画像の生成)に利用させる。また、演算部114は、生成したSR画像を、記憶部103に供給して記憶させたり、出力部104に供給して表示させたり、外部の装置等に出力させたりする。
【0085】
図1に示されるように、超解像処理部112は、動きベクトル検出部121、動き補償部122、ダウンサンプリングフィルタ123、演算部124、アップサンプリングフィルタ125、および逆方向動き補償部126を有する。
【0086】
SR画像バッファ113から読み出されたSR画像は動きベクトル検出部121と動き補償部122に供給され、入力画像バッファ111から読み出されたLR画像は動きベクトル検出部121と演算部124に供給される。
【0087】
動きベクトル検出部121は、入力されたSR画像とLR画像に基づいて、SR画像を基準とした動きベクトルを検出し、検出した動きベクトルを動き補償部122と逆方向動き補償部126に供給する。
【0088】
動き補償部122は、動きベクトル検出部121から供給された動きベクトルに基づいてSR画像に動き補償を施し、動き補償を施して得られた画像をダウンサンプリングフィルタ123に供給する。動き補償を施して得られた画像に写るオブジェクトの位置は、LR画像に写るオブジェクトの位置に近い位置になる。
【0089】
ダウンサンプリングフィルタ123は、動き補償部122から供給された画像をダウンサンプリングすることによってLR画像と同じ解像度の画像を生成し、生成した画像を演算部124に供給する。
【0090】
このように、SR画像とLR画像から動きベクトルを求め、求めた動きベクトルによって動き補償して得られた画像をLR画像と同じ解像度の画像にすることは、撮像して得られる眼底画像(LR画像)を、SR画像バッファ113に記憶されているSR画像に基づいてシミュレートすることに相当する。
【0091】
演算部124は、LR画像と、そのようにしてシミュレートされた画像の差分を表す差分画像を生成し、生成した差分画像をアップサンプリングフィルタ125に供給する。
【0092】
アップサンプリングフィルタ125は、演算部124から供給された差分画像をアップサンプリングすることによってSR画像と同じ解像度の画像を生成し、生成した画像を逆方向動き補償部126に出力する。
【0093】
逆方向動き補償部126は、動きベクトル検出部121から供給された動きベクトルに基づいて、アップサンプリングフィルタ125から供給された画像に逆方向の動き補償を施し、逆方向の動き補償を施して得られた画像を表すフィードバック値を演算部114に供給する。逆方向の動き補償を施して得られた画像に写るオブジェクトの位置は、SR画像バッファ113に記憶されているSR画像に写るオブジェクトの位置に近い位置になる。
【0094】
画像処理部102は、超解像処理部112を用いてこのような超解像処理を入力画像バッファ111に保持させた複数の眼底画像(LR画像)のそれぞれについて行い、最終的に1枚の、より高画質なSR画像を生成する。
【0095】
[眼底画像生成処理の流れ]
図2のフローチャートを参照して、このような眼底画像処理装置100により実行される眼底画像生成処理の流れの例を説明する。
【0096】
より高画質な眼底画像を得るために眼底画像生成処理が開始されると、撮像部101は、ステップS101において、光量を落として複数回、被験者の眼底(被写体)を撮像する。
【0097】
ステップS102において、画像処理部102は、ステップS101の処理により得られた撮像画像を入力画像バッファ111に記憶させる。ステップS103において、画像処理部102は、任意の方法で最初のSR画像である初期画像を生成し、それをSR画像バッファ113に記憶させる。例えば、画像処理部102は、最初に得られた撮像画像(LR画像)をSR画像と同じ解像度の画像にアップサンプリングすることによって初期画像を生成する。
【0098】
ステップS104において、入力画像バッファ111は、保持している未処理の撮像画像(LR画像)を1枚選択し、それを超解像処理部112に供給する。動きベクトル検出部121は、ステップS105において、SR画像とLR画像とから動きベクトルを検出する。その動きベクトルを用いて、動き補償部122は、ステップS106において、SR画像に動き補償を施す。
【0099】
ステップS107において、ダウンサンプリングフィルタ123は、動き補償を施したSR画像をLR画像と同じ解像度にダウンサンプリングする。ステップS108において、演算部124は、SR画像のダウンサンプリング結果と入力LR画像との差分画像を求める。
【0100】
ステップS109において、アップサンプリングフィルタ125は、その差分画像をアップサンプリングする。ステップS110において、逆方向動き補償部126は、ステップS105の処理により検出された動きベクトルを用いて、差分画像のアップサンプリング結果に逆方向の動き補償を施す。
【0101】
ステップS111において、演算部114は、ステップS110の処理により算出された差分画像のアップリング結果であるフィードバック値を、SR画像バッファ113により保持される過去に生成されたSR画像に加算する。画像処理部102は、ステップS112において、新たに生成されたSR画像を、記憶部103に記憶させたり、出力部104から出力させたりするとともに、SR画像バッファ113に記憶させる。
【0102】
ステップS113において、入力画像バッファ111は、全ての撮像画像(LR画像)を処理したか否かを判定し、未処理の撮像画像(LR画像)が存在すると判定された場合、処理をステップS104に戻し、新たな撮像画像を処理対象として選択し、その撮像画像について、それ以降の処理を繰り返させる。
【0103】
ステップS113において、撮像部101により複数回撮像され得られた複数の撮像画像の全てが処理され、1枚の、より高画質な眼底画像が得られたと判定された場合、入力画像バッファ111は、眼底画像生成処理を終了する。
【0104】
このようにすることにより、眼底画像処理装置100は、眼底への照射光の光量を増大させずに、より高画質な眼底画像を得ることが出来る。つまり、眼底画像処理装置100は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0105】
以上においては、超解像処理を行うことにより、より高画質な眼底画像として、撮像画像(LR画像)よりも高解像度のSR画像を得るように説明したが、これに限らず、解像度は撮像画像と同じであっても良い。その場合、
図1の眼底画像処理装置100において、ダウンサンプリングフィルタ123およびアップサンプリングフィルタ125は省略される。
【0106】
基本的に、撮像部101において得られる複数の眼底画像を重ね合わせることにより、ダイナミックレンジが拡張されるので、より高画質な眼底画像が得られる。ただし、この撮像部101において得られる複数の眼底画像は、撮像が複数回行われることにより得られるものであり、互いに全く同一な画像であるとは限らない。例えば、画像の一部または全部において、位置がずれたり、変形したりすることが考えられる。したがって、単純に、これら複数の眼底画像を重ね合わせると、位置ずれ等により画像がボケたり2重になったりする恐れがあり、高画質になるとは限らない。
【0107】
超解像処理部112は、動きベクトル検出部121において動き検出を行い、動き補償部122や逆方向動き補償部126により適宜動き補償を行うので、重ね合わせる画像間の差(位置ずれ等)を低減させることができる。したがって、眼底画像処理装置100は、超解像処理において解像度を上げるようにしなくても、より高画質な被写体の撮像画像を得ることが出来る。
【0108】
以上の超解像処理は、任意の単位で行うことができる。例えば、撮像画像全体で行うようにしてもよいし、マクロブロックと称される所定の大きさの部分画像毎に行うようにしてもよい。
【0109】
<2.第2の実施の形態>
[眼底画像処理装置の構成]
ところで、眼底画像は、基本的に画像全体が略均一な色により構成されることが多い。また、照射光の光量が落とされているので、眼底画像は比較的暗い画像である。さらに、一般的に、撮像部101による複数回の撮像は比較的短時間に、極力同条件下で行われる。したがって、画像間の動き量は比較的小さいことが多い。また、動きがある場合も、画像の一部が他の部分に比べて極端に大きく動くことは少なく、略全体が略均一に動くことが多い。
【0110】
したがって、眼底画像処理装置100のように、所定の単位毎に画像を比較し、動き検出を行う方法では、動き検出が困難になる恐れがあった。
【0111】
そこで、所定の領域毎に動きベクトルの検出を行う代わりに、画像全体について、被写体の生体情報を用いて画像の位置合わせを行うようにしてもよい。
【0112】
図3は、その場合の、眼底画像処理装置の主な構成例を示すブロック図である。
図3に示される眼底画像処理装置200は、
図1の眼底画像処理装置100と同様の装置であり、基本的に眼底画像処理装置100と同様の構成を有するが、画像処理部102の代わりに画像処理部202を有する。
【0113】
画像処理部202は、比較的低画質の複数の眼底画像を、被写体の生体情報を用いて位置合わせを行ってから重ね合わせを行うことにより、より高画質な1枚の眼底画像を生成する。
【0114】
図3に示されるように、画像処理部202は、入力画像バッファ111、生体情報位置合わせ処理部212、超解像処理部213、および超解像結果画像バッファ214を有する。
【0115】
生体情報位置合わせ処理部212は、被写体の生体情報を用いて、入力画像バッファ111から供給される眼底画像(入力画像)と、超解像結果画像バッファ214から供給される眼底画像(超解像処理部213により重ね合わせされた画像)との間で画像の位置合わせを行う。
【0116】
生体情報位置合わせ処理部212は、位置合わせに利用する生体情報として、例えば、血管、神経、若しくは視神経乳頭等を用いる。もちろん、この生体情報は、任意であり、これら以外のものであってもよい。例えば、組織や細胞を被写体とし、その観察を行う場合、被写体の生体情報として、細胞やその核の形状等を画像の位置合わせに利用するようにしてもよい。また、複数種類の生体情報(例えば血管と視神経乳頭等)が用いられるようにしてもよい。
【0117】
超解像処理部213は、超解像結果画像バッファ214から、過去に生成した超解像処理結果画像(超解像処理結果として得られる画像)を取得し、その超解像結果画像と、生体情報位置合わせ処理部212より位置合わせされた入力画像とを重ね合わせ、新たな超解像結果画像を生成する。超解像処理部213は、その超解像結果画像を記憶部103に記憶させたり、出力部104より出力させたりするとともに、超解像結果画像バッファ214に供給し、記憶させる。
【0118】
超解像結果画像バッファ214は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、超解像処理部213により生成された超解像結果画像を保持し、所定のタイミングにおいてその超解像結果画像を、生体情報位置合わせ処理部212や超解像処理部213に供給する。
【0119】
つまり、撮像部101は、
図1の場合と同様に、
図4の四角231に示されるように、光量を落として眼221の眼底を複数回撮像し、複数枚の眼底画像222を生成する。
図4の四角232に示されるように、入力画像バッファ111は、その暗くて低画質な複数枚の眼底画像222を記憶し、所定のタイミングで1枚ずつその眼底画像222を生体情報位置合わせ処理部212に提供する。
【0120】
生体情報位置合わせ処理部212は、
図4の四角233に示されるように、眼の情報(生体情報)を使って、その眼底画像222と超解像結果画像との位置合わせを行う。超解像処理部213は、
図4の四角234に示されるように、その位置合わせされた眼底画像222(入力画像)を用いて画像の重ね合わせによる超解像処理およびハイダイナミックレンジ処理を行い、超解像結果画像を生成する。
【0121】
このような位置合わせと超解像処理が繰り返されて生成された、より高解像度かつダイナミックレンジの大きな眼底画像223は、記憶部103に記憶されたり、出力部104より出力されたりする。なお、ここで高解像度とは、ボケが除去され、よりシャープな画像であることを示しており、実際に解像度が高くなくてもよい。
【0122】
つまり、眼底画像処理装置200は、被写体への負荷の増大を抑制しながら、撮像により得られた撮像画像よりも高画質な(ボケが抑制され、ダイナミックレンジが大きな)眼底画像を得ることができる。
【0123】
[生体情報位置合わせ処理部の構成]
図5は、
図3の生体情報位置合わせ処理部212の主な構成例を示すブロック図である。
図5に示されるように、生体情報位置合わせ処理部212は、入力画像血管抽出部241、超解像結果画像血管抽出部242、入力画像交叉点抽出部243、超解像結果画像交叉点抽出部244、交叉点位置合わせ処理部245、および血管位置合わせ処理部246を有する。
【0124】
入力画像血管抽出部241は、
図6に示されるように、入力画像バッファ111から供給される入力画像251(低画質の眼底画像)から血管の部分を抽出し(処理261)、それを血管位置合わせ処理部246に供給する。例えば、入力画像血管抽出部241は、入力画像から、“血管特徴を用いた眼底画像合成法”,田邊 勝義,壷内 鉄郎,奥田 英範,奥 雅博,2007(以下、非特許文献2と称する)に記載の方法のように、RGB成分のR成分を使って血管を抽出する。
【0125】
同様に、超解像結果画像血管抽出部242は、
図6に示されるように、超解像結果画像バッファ214から供給される、前回の超解像結果画像252(高画質の眼底画像)から血管の部分を抽出し(処理262)、それ(血管抽出結果253)を血管位置合わせ処理部246に供給する。
【0126】
血管位置合わせ処理部246は、
図6に示されるように、各画像から抽出された血管抽出結果を用いて、入力画像251と前回の超解像結果画像252との間で血管の位置合わせを行い(処理266)、その位置合わせされた入力画像254を血管抽出結果253とともに超解像処理部213に供給する。
【0127】
なお、血管抽出結果(血管全体の形状や位置)による位置合わせ処理(処理266)の前に、血管の交叉点の位置による簡易的な位置合わせを行うようにしてもよい。なお、血管の交叉点とは、撮像画像において血管が交わる(実際にはねじれの位置である場合も含む)部分や、分岐する部分である。
【0128】
その場合、入力画像血管抽出部241は、
図6に示されるように、処理261により得られる、入力画像251(低画質の眼底画像)からの血管抽出結果を、入力画像交叉点抽出部243に供給する。
【0129】
入力画像交叉点抽出部243は、
図6に示されるように、入力画像血管抽出部241から供給される血管抽出結果から交叉点を抽出し(処理263)、その交叉点抽出結果を交叉点位置合わせ処理部245に供給する。
【0130】
また、超解像結果画像血管抽出部242は、
図6に示されるように、処理262により得られる、前回の超解像結果画像252(高画質の眼底画像)からの血管抽出結果253を、超解像結果画像交叉点抽出部244に供給する。
【0131】
超解像結果画像交叉点抽出部244は、
図6に示されるように、超解像結果画像血管抽出部242から供給される血管抽出結果253から交叉点を抽出し(処理264)、その交叉点抽出結果を交叉点位置合わせ処理部245に供給する。
【0132】
交叉点位置合わせ処理部245は、
図6に示されるように、各画像から抽出された交叉点抽出結果を用いて、入力画像251と前回の超解像結果画像252との間で交叉点の位置合わせを行う(処理265)。そしてその交叉点位置合わせ結果が血管位置合わせ処理部246に供給される。
【0133】
血管位置合わせ処理部246は、交叉点位置合わせ処理部245から供給される、交叉点位置合わせ結果を初期状態とし、血管抽出結果を用いて血管を用いた入力画像の位置合わせ(処理266)を行う。つまり、交叉点位置合わせ結果にしたがって、交叉点の位置合わせと同様に位置合わせを行いながら各血管抽出結果を重畳し、それを初期状態とする。
【0134】
このようにすることにより、血管位置合わせ処理部246は、交叉点を用いて簡易的に位置合わせされた状態から、位置合わせを開始することができるので、より容易かつ高速に位置合わせを行うことができる。
【0135】
なお、さらに他の生体情報を用いた位置合わせを併用するようにしてもよい。例えば、最初に、視神経乳頭の位置で位置合わせを行いながら、入力画像251と前回の超解像結果画像252とを重畳し、その重畳画像を初期値として交叉点による位置合わせを行うようにしてもよい。
【0136】
[血管位置合わせ処理部の構成]
次に、血管全体の位置や形状等を用いた位置合わせについて説明する。
図7は、血管位置合わせ処理部246の主な構成例を示すブロック図である。
図7に示されるように、血管位置合わせ処理部246は、重畳処理部271、シフト処理部272、伸ばし処理部273、回転処理部274、拡大縮小処理部275、および収束判定部276を有する。
【0137】
重畳処理部271は、入力画像血管抽出部241と超解像結果画像血管抽出部242とから供給される各血管抽出結果を重畳する。交叉点による位置合わせを行う場合、重畳処理部271は、交叉点位置合わせ処理部245から供給される交叉点位置合わせ結果を用いて、交叉点の位置合わせと同様の位置合わせを行いながら、各血管抽出結果を重畳する。重畳処理部271は、重畳結果をシフト処理部272に供給する。
【0138】
なお、血管位置合わせ処理部246は、
図8に示されるように、入力画像血管抽出部241から供給される、入力画像から抽出された血管抽出結果291を基準(Source)とし、超解像結果画像血管抽出部242から供給される、前回の超解像結果画像から抽出された血管抽出結果292を目標(Target)として位置合わせを行う。つまり、血管抽出結果291を血管抽出結果292に近づけるように位置合わせが行われる。
【0139】
シフト処理部272は、
図8に示されるように、縦方向や横方向等任意の方向に、血管抽出結果291全体を移動(シフト)させる縦横シフト281を行い、血管抽出結果291が血管抽出結果292に最も近づいた状態で、重畳結果を伸ばし処理部273に供給する。血管抽出結果291と血管抽出結果292とがどれくらい近づいたかの判定方法は任意であるが、例えば、両画像の絶対値差分により判定する。つまり、シフト処理部272は、血管抽出結果291全体を移動(シフト)させ、血管抽出結果291と血管抽出結果292との絶対値差分が最小となる位置を検索する。この判定方法は以下の処理部においても同様である。
【0140】
伸ばし処理部273は、
図8に示されるように、縦方向や横方向等任意の方向に、血管抽出結果291を伸ばす(変形させる)縦横伸ばし282を行い、血管抽出結果291が血管抽出結果292に最も近づいた状態で、重畳結果を回転処理部274に供給する。例えば、伸ばし処理部273は、血管抽出結果291を任意の方向に伸ばし(変形させ)、血管抽出結果291と血管抽出結果292との絶対値差分が最小となる形状を検索する。
【0141】
回転処理部274は、
図8に示されるように、血管抽出結果291を左右に回転させる回転283を行い、血管抽出結果291が血管抽出結果292に最も近づいた状態で、重畳結果を拡大縮小処理部275に供給する。例えば、回転処理部274は、血管抽出結果291を左右に回転させ、血管抽出結果291と血管抽出結果292との絶対値差分が最小となる向きを検索する。
【0142】
拡大縮小処理部275は、
図8に示されるように、血管抽出結果291を拡大したり縮小したりする拡大縮小284を行い、血管抽出結果291が血管抽出結果292に最も近づいた状態で、重畳結果を収束判定部276に供給する。例えば、回転処理部274は、血管抽出結果291を拡大したり縮小したりし、血管抽出結果291と血管抽出結果292との絶対値差分が最小となる大きさを検索する。
【0143】
収束判定部276は、供給された重畳結果に基づいて、位置合わせが収束したか否かを判定する。例えば、収束判定部276は、上述した各処理を複数回繰り返し行わせ、今回得られた位置合わせ結果を、前回の位置合わせ結果と比較し、前回より血管抽出結果291が血管抽出結果292に近づいた場合、収束していないと判定し、前回より血管抽出結果291が血管抽出結果292に近づいていない場合(例えば、血管抽出結果291と血管抽出結果292との絶対値差分が前回より小さくならない場合)、収束したと判定する。
【0144】
収束していないと判定した場合(例えば、血管抽出結果291と血管抽出結果292との絶対値差分が前回より小さくなる場合)、収束判定部276は、その重畳結果をシフト処理部272に戻し、再度、位置合わせを行わせる。また、位置合わせが収束したと判定した場合、収束判定部276は、位置合わせ結果となる血管抽出結果の重畳結果(例えば、血管抽出結果291と血管抽出結果292との絶対値差分が最小となるときの重畳結果)に基づいて、入力画像251の位置合わせを行い、位置合わせされた入力画像251と、血管抽出結果とを超解像処理部213に供給する。
【0145】
なお、以上においては、位置合わせの具体例として、縦横シフト281、縦横伸ばし282、回転283、および拡大縮小284の4つの処理をこの順に行うように説明したが、これに限らず、上述した処理以外の処理をさらに行うようにしてもよいし、上述した処理の一部を省略するようにしてもよい。また、上述したように処理を複数行う場合、各処理の実行順は任意である。
【0146】
また、生体情報位置合わせ処理部212が、例えば、“Shape Matching and Object Recognition Using Shape Contexts”,Serge Belongie, Jitendra Malik, Jan Puzicha, 2002(以下、非特許文献3と称する)に記載されているような、エッジ部分のヒストグラムを使った位置合わせを行うようにしてもよい。
【0147】
さらに、収束したか否かの判定方法は、任意であり、上述した以外の方法であってもよい。例えば、血管抽出結果291と血管抽出結果292との絶対値差分が所定の閾値以下になる場合、収束したと判定されるようにしてもよい。
【0148】
なお、血管の交叉点による位置合わせも、この血管全体による位置合わせと基本的に同様に行われる。つまり、交叉点位置合わせ処理部245は、血管位置合わせ処理部246と基本的に同様の構成を有し、位置合わせに用いる生体情報が血管全体か、その交叉点かの違い以外は、基本的に同様の処理を行う。
【0149】
以上のように、眼底画像処理装置200は、眼底画像は生体の画像であるので、その画像の特徴を活かし、眼底画像に含まれる生体情報を用いて画像全体で位置合わせを行う。このようにすることにより、眼底画像処理装置200は、より容易かつ正確な位置合わせを実現することができる。
【0150】
[超解像処理部の構成]
図9は、超解像処理部213の主な構成例を示すブロック図である。この場合、位置合わせは、生体情報位置合わせ処理部212において行われるので、超解像処理部213は、入力画像のボケ除去と重ね合わせのみを行う。
【0151】
図9に示されるように、超解像処理部213は、PSF(Point Spread Function)推定部301、ボケ除去処理部302、および重ね合わせ処理部303を有する。
【0152】
PSF推定部301は、生体情報位置合わせ処理部212から供給される血管抽出結果を用いてPSF(点拡がり関数)の推定(
図10の処理311)を行う。このPSFの推定は、例えば、
図11に示されるような方法で行われる。
【0153】
つまり、PSF推定部301は、
図11の四角332に示されるように、予めガウス分布から求めたエッジ周辺の画素値のモデルを保持している。PSF推定部301は、四角331に示されるように、位置合わせされた血管抽出結果322からエッジ部分を特定し、その各エッジ周辺の画素値を取り出し、それを保持しているモデルと照合し、一致または近似するモデルを特定する。そして、PSF推定部301は、特定したモデルの中で一番多かったモデルを、推定したPSFとしてボケ除去処理部302に供給する。
【0154】
ボケ除去処理部302は、PSF推定部301から供給された、PSFの推定情報を用い、そのモデルに応じた方法で、位置合わせされた入力画像のボケ除去を行う。つまり、ボケ除去処理部302は、画像のボケ方(点拡がりのパターン)に応じた方法でそのボケ除去を行う。
【0155】
ボケ除去処理部302は、例えば、ウィナーフィルタを用いてボケ除去を行う。なお、“High-quality Motion Deblurring from a Single Image”, Qi Shan, Jiava Jia, Aseem Agarwala, 2008(以下、非特許文献4と称する)に記載されているような動きボケを除去する方法が用いられるようにしてもよい。
【0156】
ボケ除去処理部302は、ボケ除去を行った入力画像を重ね合わせ処理部303に供給する。
【0157】
重ね合わせ処理部303は、ボケ除去処理部302から供給された入力画像(位置合わせとボケ除去が行われた入力画像)を、超解像結果画像バッファ214から供給された前回の超解像結果画像に足し込むことにより両画像を重ね合わせ、その重ね合わせた結果を新たな超解像結果画像として出力し、記憶部103に記憶させたり、出力部104から外部に出力させたりするとともに、超解像結果画像バッファ214に記憶させる。
【0158】
眼底画像は、上述したように照射光の光量を落として撮像されるため、基本的に全体が暗くて赤い略均一な画像となる。また、撮像時に被写体が動くことも考えられる。したがって、合焦させることが容易ではなく、焦点ずれ(所謂ピンボケ)が発生し易い。しかも、画像全体が略均一であるため、ボケ具合も一様になりやすい。
【0159】
したがって、上述したようにPSF推定結果を利用してボケ除去を行うことにより、超解像処理部213は、効率よくボケを除去し、より高画質な眼底画像を容易に得ることができる。
【0160】
なお、例えば、PSF推定部301が、特開2009−169943号公報(以下、特許文献5と称する)に記載のようにエッジ部分のボケ具合を判定し、そのボケ具合に応じたPSFを適用するようにしてもよい。
【0161】
また、重ね合わせ処理部303は、入力画像と前回の超解像結果画像とを重ね合わせる際に、
図1の場合と同様にダウンサンプリングやアップサンプリングを行い、解像度を上げるようにしてもよい。
【0162】
なお、より厳密には、眼底は球状である。また、視神経乳頭が周囲に比べて盛り上がる等、眼底には凹凸も存在する。したがって、例えば眼底の一部の領域において合焦し、他の一部において合焦しない等、領域によってボケ具合が異なる可能性が高い。
【0163】
そこで、PSF推定部301が、PSF推定を、眼底画像の所定の部分領域毎に行い、ボケ除去処理部302が、その推定結果に基づいて、その部分領域毎にフィルタ関数を設定し、ボケ除去を行うようにしてもよい。つまり、眼底画像の場所(領域)や絵柄に応じたフィルタ関数でボケ除去が行われるようにしてもよい(領域の位置や眼底の形状等によってボケ除去の方法(例えばフィルタ関数)が異なるようにしてもよい)。
【0164】
このようにすることにより、より正確にボケ除去を行うことができるので、眼底画像処理装置200は、より高画質な眼底画像を得ることができる。
【0165】
[眼底画像生成処理の流れ]
次に、眼底画像処理装置200により実行される各処理について説明する。最初に、
図12のフローチャートを参照して、眼底画像生成処理の流れの例を説明する。
【0166】
眼底画像生成処理が開始されると、ステップS201乃至ステップS204の各処理が、
図2のステップS101乃至ステップS104の各処理と同様に実行される。ただし、ステップS203において、初期画像は超解像結果画像バッファ214に記憶される。また、ステップS204において、未処理の撮像画像が入力画像として1枚選択される。
【0167】
処理対象が決定されると、生体情報位置合わせ処理部212は、ステップS205において生体情報位置合わせ処理を行う。ステップS206において、超解像処理部213は、その位置合わせ結果を用いて、超解像処理を行う。
【0168】
ステップS207において、超解像処理部213は、超解像処理により得られた新たな超解像結果画像を記憶部103や出力部104に出力するとともに、超解像結果画像バッファ214に記憶させる。
【0169】
ステップS208において、入力画像バッファ111は、全ての撮像画像を処理したか否かを判定し、未処理の撮像画像が存在すると判定された場合、処理をステップS204に戻し、それ以降の処理を実行させる。
【0170】
ステップS208において、全ての撮像画像を処理したと判定された場合、入力画像バッファ111は、眼底画像生成処理を終了する。
【0171】
[生体情報位置合わせ処理の流れ]
次に、
図12のステップS205において実行される生体情報位置合わせ処理の流れの例を
図13のフローチャートを参照して説明する。
【0172】
生体情報位置合わせ処理が開始されると、入力画像血管抽出部241は、ステップS221において、入力画像から血管部分の画像を抽出する。ステップS222において、超解像結果画像血管抽出部242は、前回の超解像結果画像から血管部分の画像を抽出する。
【0173】
ステップS223において、生体情報位置合わせ処理部212は、交叉点の位置合わせを行うか否かを判定する。交叉点の位置合わせを行うと判定された場合、生体情報位置合わせ処理部212は、処理をステップS224に進める。
【0174】
ステップS224において、入力画像交叉点抽出部243は、入力画像の血管抽出結果から交叉点を抽出する。ステップS225において、超解像結果画像交叉点抽出部244は、前回の超解像結果画像の血管抽出結果から交叉点を抽出する。
【0175】
ステップS226において、交叉点位置合わせ処理部245は、ステップS224およびステップS225において生成された交叉点抽出結果を用いて、交叉点の位置合わせを行う。
【0176】
交叉点の位置合わせが終わると、交叉点位置合わせ処理部245は、処理をステップS227に進める。また、ステップS224において、交叉点の位置合わせを行わないと判定された場合、処理をステップS227に進める。
【0177】
ステップS227において、血管位置合わせ処理部246は、血管の位置合わせを行う。
【0178】
ステップS227の処理が終了すると、血管位置合わせ処理部246は、生体情報位置合わせ処理を終了し、処理を
図12のステップS205に戻し、ステップS206以降の処理を実行させる。
【0179】
[血管位置合わせ処理の流れ]
次に、
図14のフローチャートを参照して、
図13のステップS227において実行される血管位置合わせ処理の流れの例を説明する。
【0180】
血管位置合わせ処理が開始されると、ステップS241において、重畳処理部271は、交叉点位置合わせが行われたか否かを判定し、行われたと判定した場合、処理をステップS242に進め、交叉点位置合わせ結果を重畳結果とし、その重畳結果に従って、入力画像血管抽出部241において抽出された血管抽出結果と、超解像結果画像血管抽出部242において抽出された血管抽出結果とを重畳し、処理をステップS244に進める。
【0181】
ステップS241において、交叉点位置合わせを行っていないと判定された場合、重畳処理部271は、処理をステップS243に進め、入力画像血管抽出部241において抽出された血管抽出結果と、超解像結果画像血管抽出部242において抽出された血管抽出結果とを重畳し、処理をステップS244に進める。
【0182】
ステップS244において、シフト処理部272は、入力画像の血管抽出結果をシフトするシフト位置合わせを行う。ステップS245において、伸ばし処理部273は、入力画像の血管抽出結果を伸縮させる伸ばし位置合わせを行う。ステップS246において、回転処理部274は、入力画像の血管抽出結果を回転させる回転位置合わせを行う。ステップS247において、拡大縮小処理部275は、入力画像の血管抽出結果を拡大したり縮小したりする拡大縮小位置合わせを行う。
【0183】
ステップS248において、収束判定部276は、位置合わせが収束したか否かを判定し、収束していないと判定された場合、処理をステップS244に戻し、それ以降の処理を行う。ステップS248において収束したと判定された場合、収束判定部276は、ステップS249において、位置合わせ結果に基づいて入力画像の位置合わせを行い、その位置合わせされた入力画像と血管抽出結果とを超解像処理部213に出力する。
【0184】
ステップS249の処理が終了すると、収束判定部276は、血管位置合わせ処理を終了し、処理を
図13のステップS227に戻し、生体情報位置合わせ処理を終了し、処理を
図12のステップS205に戻し、ステップS206以降の処理を実行させる。
【0185】
なお、
図13のステップS226において実行される交叉点位置合わせ処理は、血管全体の代わりに血管の交叉点を位置合わせに利用すること以外、
図14を参照して説明した血管位置合わせ処理と同様に実行される。
【0186】
[超解像処理の流れ]
次に、
図15のフローチャートを参照して、
図12のステップS206において実行される超解像処理の流れの例を説明する。
【0187】
超解像処理が開始されると、PSF推定部301は、ステップS261において、血管抽出結果を用いて点拡がり関数(PSF)を推定する。ステップS262において、ボケ除去処理部302は、推定した点拡がり関数を用いて、位置合わせした入力画像のボケ除去を行う。
【0188】
ステップS263において、重ね合わせ処理部303は、前回の超解像結果に、ボケ除去後の位置合わせした入力画像を重ね合わせ、それを新たな超解像結果画像として出力する。
【0189】
ステップS263の処理が終了すると、重ね合わせ処理部303は、超解像処理を終了し、処理を
図12のステップS206に戻し、ステップS207以降の処理を実行させる。
【0190】
以上のように、各処理を実行することにより、眼底画像処理装置200は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0191】
<3.第3の実施の形態>
[眼底画像処理装置の構成]
図3は、眼底画像処理装置の他の構成例を示すブロック図である。
図3に示される眼底画像処理装置400は、眼底画像に含まれる生体情報(血管や視神経乳頭に関する情報等)を、トーンリプロダクション処理や超解像処理に利用し、より高画質な眼底画像を生成する。
【0192】
眼底画像処理装置400は、
図3の眼底画像処理装置200と同様の装置であり、基本的に眼底画像処理装置200と同様の構成を有し、同様の処理を行う。ただし、眼底画像処理装置400は、眼底画像処理装置200が有する画像処理部202の代わりに画像処理部402を有する。
【0193】
画像処理部402は、画像処理部202と基本的に同様の構成を有し、同様の処理を行うが、眼底画像処理装置200が有する超解像処理部213および超解像結果画像バッファ214の代わりに、ノイズ削減処理部413、ノイズ削減結果画像バッファ414、トーンリプロダクション処理部415、および超解像処理部416を有する。
【0194】
すなわち、画像処理部402は、
図17の四角431に示されるように、光量を落として眼221の眼底を複数回撮像し、複数枚の低画質な眼底画像222を生成する。
図17の四角432に示されるように、入力画像バッファ111は、その暗くて低画質な複数枚の眼底画像222を記憶し、生体情報位置合わせ処理部212の要求に基づいて、若しくは所定のタイミングにおいて、1枚ずつその眼底画像222を生体情報位置合わせ処理部212に提供する。
【0195】
生体情報位置合わせ処理部212は、
図17の四角233に示されるように、眼の情報(生体情報)を使って、その眼底画像222と超解像結果画像との位置合わせを行う。ノイズ削減処理部413は、
図17の四角434に示されるように、その位置合わせされた眼底画像222(入力画像)の重ね合わせを行うことにより、ノイズの低減やダイナミックレンジの拡張(ノイズリダクションおよびワイドダイナミックレンジ処理)を行う。ノイズ削減結果画像バッファ414を用いてこれらの処理が繰り返され、複数の低画質の眼底画像から1枚の眼底画像が生成される。
【0196】
生成された1枚の眼底画像は、トーンリプロダクション処理部415により、トーンリプロダクション処理(Tone Reproduction)435(
図17)される。トーンリプロダクション処理435の処理方法は任意である。例えば、特開2009−177558号公報(以下、特許文献6と称する)に記載の方法によりトーンリプロダクション処理435が行われるようにしてもよい。
【0197】
なお、トーンリプロダクション処理435における、トーンカーブ算出のためのパラメータの決定は、より明るくより高画質な画像が得られるように、生体としての特徴に適するように行われる。
【0198】
トーンリプロダクション処理435により補正された眼底画像は、超解像処理部416により、超解像処理436(
図17)される。この超解像処理436の処理方法は任意である。例えば、特開2010−102696号公報(以下、特許文献7と称する)に記載の方法や、特開2010−103981号公報(以下、特許文献8と称する)に記載の方法により超解像処理436が行われるようにしてもよい。ただし、この超解像処理436は、ノイズがより少ない、より高解像度な画像が得られるように、生体としての特徴に応じた処理が行われる。
【0199】
つまり、画像処理部402は、生体としての特徴に応じた処理を行うことにより、複数の低画質の眼底画像から、1枚の、より高画質かつ高解像度な眼底画像を生成する。
【0200】
このように、画像処理部402においては、トーンリプロダクション処理と超解像処理は、画像の重ね合わせ後に(生成された1枚の眼底画像に対して)行われる。
【0201】
以上のように、ノイズ削減処理部413は、生体情報位置合わせ処理部212により位置合わせが行われた眼底画像を、ノイズ削減結果画像バッファ414に保持される前回の重ね合わせ結果(つまり、ノイズ削減結果)の画像と重ね合わせることにより、眼底画像のダイナミックレンジを拡張し、ノイズを低減させる。画像の重ね合わせによるノイズリダクションの方法は、任意であるが、例えば、特開2008−294601号公報(以下、特許文献9と称する)や特開2009−165168号公報(以下、特許文献10と称する)に記載されている方法を用いるようにしてもよい。
【0202】
ノイズ削減結果画像バッファ414は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、ノイズ削減処理部413により生成されたノイズ削減結果画像(重ね合わせ結果画像)を記憶し、生体情報位置合わせ処理部212やノイズ削減処理部413の要求に基づいて、若しくは所定のタイミングにおいて、そのノイズ削減結果画像を、生体情報位置合わせ処理部212やノイズ削減処理部413に供給する。
【0203】
つまり、生体情報位置合わせ処理部212による位置合わせや、ノイズ削減処理部413による重ね合わせは、繰り返し行われる。生体情報位置合わせ処理部212およびノイズ削減処理部413は、入力画像バッファ111に蓄積される複数の眼底画像を1枚ずつ処理対象とし、その処理対象画像を、前回の処理結果に対して、位置合わせしたり重ね合わせしたりする。このようにして、撮像部101において撮像されて得られた複数の眼底画像が全て処理され、1枚の眼底画像が生成される。
【0204】
[トーンリプロダクション処理部]
図18は、トーンリプロダクション処理部の主な構成例を示すブロック図である。
図18に示されるように、トーンリプロダクション処理部415は、画像バッファ451、パラメータ決定部452、トーンカーブ算出部453、およびマッピング部454を有する。
【0205】
画像バッファ451は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、ノイズ削減処理部413から供給される眼底画像を記憶する。画像バッファ451は、パラメータ決定部452やマッピング部454の要求に基づいて、若しくは所定のタイミングにおいて、その眼底画像を、パラメータ決定部452やマッピング部454に供給する。
【0206】
パラメータ決定部452は、画像バッファ451から供給される眼底画像の生体としての特徴に基づいて、トーンリプロダクション処理に用いられるトーンカーブを算出するためのパラメータを決定する。トーンカーブは、例えば
図19に示されるような、輝度値の階調補正を行うための曲線である。
【0207】
なお、
図19のグラフの横軸方向は、階調補正する前の入力輝度の対数値を表し、縦軸方向は、トーンカーブCLによる階調補正後の出力輝度の対数値を表している。
【0208】
眼底画像は、トーンリプロダクション処理において、このようなトーンカーブに従って階調補正され、より明るくなるように処理される。その際、ノイズや白とびの発生はできるだけ抑制することが望ましい。つまり、パラメータ決定部452は、ノイズを出来るだけ低減し、白とびの発生をできるだけ抑制しながら、眼底画像をより明るくするように階調補正するトーンカーブが得られるように、眼底画像に含まれる生体としての特徴に応じてパラメータを設定する。
【0209】
例えば、眼底画像には、血管、神経、視神経乳頭等の、生体としての部位の画像が含まれるが、このような各部位の画像は、互いに異なる特徴を有する。例えば、一般的に、血管や神経等の部位ではエッジ成分が周囲よりも強く表れやすい。また、例えば、視神経乳頭は白色になりやすい。さらに、例えば、眼底の周縁部(眼底のより端に近い部分)は、中心部よりも暗くなりやすい。
【0210】
このように、眼底画像は、生体としての眼底の各部位の特徴を含む画像である。したがって、パラメータ決定部452は、このような各部位の特徴を考慮しながら、より望ましい(ノイズや白とびの発生を抑制しながら、画像をできるだけ明るくする)トーンカーブが得られるようにパラメータの設定を行う。
【0211】
このパラメータは、トーンカーブを算出するためのものであればどのようなパラメータであってもよい。例えば、トーンリプロダクション処理の入力や出力の、ノイズとされるレベルの設定値であってもよい。
【0212】
パラメータ決定部452は、値を決定したパラメータをトーンカーブ算出部453に供給する。トーンカーブ算出部453は、パラメータ決定部452から供給されたパラメータを用いてトーンカーブを算出し、それをマッピング部454に供給する。例えば、トーンカーブ算出部453は、
図19に示されるトーンカーブCLのコントロールポイント(
図19の例の場合、P1乃至P9)を設定し、それをマッピング部454に供給する。この場合、処理対象画素ごとのトーンカーブCLの形状は、例えば、コントロールポイントP1乃至コントロールポイントP9に基づいて、各入力輝度値に対する出力輝度値(トーンカーブ値)をB-Spline補間処理により求めることにより定められる。
【0213】
マッピング部454は、トーンカーブ算出部453から供給されたトーンカーブを用いて、画像バッファ451から供給される眼底画像をマッピングする(補正する)。マッピング部454は、補正後の眼底画像を、超解像処理部416に供給する。
【0214】
[パラメータ決定部]
図20は、パラメータ決定部452の主な構成例を示すブロック図である。
図20に示されるように、パラメータ決定部452は、調整対象パラメータ選択部461、パラメータ初期値記憶部462、パラメータ記憶部463、補正前明るさ値算出部464、および明るさ値記憶部465を有する。また、パラメータ決定部452は、部位認識部466、パラメータ調整部467、トーンカーブ算出部468、マッピング部469、部位別検査部470、補正後明るさ値算出部471、比較部472、およびデータ出力部473を有する。
【0215】
調整対象パラメータ選択部461は、今回調整を行うパラメータを選択する。例えばトーンカーブ算出のためのパラメータが複数存在する場合、パラメータ決定部452が、全てのパラメータを一度に調整するようにしてもよいが、複数回に分けて調整を行うようにしてもよい。例えば、パラメータ決定部452が、各パラメータを1つずつ調整するようにしてもよい。また、例えば、パラメータ決定部452が、複数のパラメータの値の組み合わせの集合を複数用意し、最適なパラメータの値の組み合わせを各集合について決定し、さらに、その選ばれた各集合の最適なパラメータの値の組み合わせの中で、最適なパラメータの値の組み合わせを求めるようにしてもよい。
【0216】
パラメータ初期値記憶部462は、例えば、ハードディスク、フラッシュメモリ、RAM、若しくは、ROM(Read Only Memory)等の任意の記憶媒体を有し、トーンカーブの算出に必要なパラメータの(パラメータが複数存在する場合はそれぞれの)初期値を記憶する。この初期値は任意の値であり、予め定められている。
【0217】
パラメータ記憶部463は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、調整対象パラメータ選択部461により選択されたパラメータ(調整対象パラメータ)の初期値を、パラメータ初期値記憶部462から取得し、記憶する。
【0218】
また、パラメータ記憶部463は、比較部472から供給される値を使って、保持する調整対象パラメータの値を更新する。つまり、パラメータ記憶部463は、比較部472から供給される調整対象パラメータの値を記憶する。
【0219】
さらに、パラメータ記憶部463は、パラメータ調整部467の要求に基づいて、若しくは所定のタイミングにおいて、各パラメータの、その時点において保持する値を、パラメータ調整部467に供給する。なお、パラメータ記憶部463は、調整対象でない非調整対象パラメータが存在する場合、調整対象パラメータの値だけでなく、その非調整対象パラメータの値もパラメータ調整部467に供給する。
【0220】
非調整対象パラメータの値を記憶していない場合、パラメータ記憶部463は、その非調整対象パラメータの値をパラメータ初期値記憶部462から取得して記憶し、パラメータ調整部467に供給する。また、過去にパラメータ初期値記憶部462から取得した非調整対象パラメータの値は、パラメータ記憶部463に既に記憶されているので、パラメータ記憶部463は、その値をパラメータ調整部467に供給する。さらに、過去に調整が行われた非調整対象パラメータ(過去に調整対象とされ、今回は非調整対象とされるパラメータ)の値は、その調整後の値がパラメータ記憶部463に既に記憶されているので、パラメータ記憶部463は、その調整後の値をパラメータ調整部467に供給する。
【0221】
また、パラメータ記憶部463は、データ出力部473の要求に基づいて、若しくは所定のタイミングにおいて、各パラメータの値(その時点で保持する値)をデータ出力部473に供給する。
【0222】
補正前明るさ値算出部464は、ノイズ削減処理部413から供給される眼底画像(複数の眼底画像が重ね合わせられて生成された1枚の眼底画像)について、その明るさを示すパラメータである明るさ値を算出する。明るさ値は、画像の明るさを示すことができるものであればどのような内容(算出方法)であってもよい。例えば、画像の全体若しくは一部の輝度値の総和や平均値等を明るさ値としてもよい。また、例えば、画像を複数の領域に分割し、各領域毎に輝度値の総和を算出し、各値に領域毎に定められる重み係数を乗算し、その各乗算結果の総和を明るさ値としてもよい。
【0223】
補正前明るさ値算出部464は、算出した明るさ値を明るさ値記憶部465に供給し、記憶させる。明るさ値記憶部465は、例えば、ハードディスク、フラッシュメモリ、若しくは、半導体メモリ等の任意の記憶媒体を有し、補正前明るさ値算出部464や比較部472から供給される明るさ値を記憶する。例えば、明るさ値記憶部465は、補正前明るさ値算出部464から供給される補正前の眼底画像の明るさ値を記憶し、補正後明るさ値算出部471により算出された補正後の眼底画像の明るさ値が比較部472から供給されると、その明るさ値を記憶する(保持する明るさ値を更新する)。
【0224】
明るさ値記憶部465は、比較部472の要求に基づいて、若しくは所定のタイミングにおいて、保持する明るさ値を比較部472に供給する。
【0225】
部位認識部466は、ノイズ削減処理部413から供給される眼底画像(複数の眼底画像が重ね合わせられて生成された1枚の眼底画像)を解析し、その眼底画像に含まれる、例えば、血管、神経、および視神経乳頭等の、生体(眼底)としての部位を認識する。
【0226】
この部位認識方法(画像解析方法)は任意である。例えば、生体情報位置合わせ処理部212が行う血管抽出等と同様の方法により行われるようにしてもよい。例えば、非特許文献2や、“眼底画像診断支援システムのための血管消去画像を用いた視神経乳頭の自動認識および疑似立体視画像生成への応用”,中川 俊明,林 佳典,畑中 裕司,青山 陽,水草 豊,藤田 明宏,加古川 正勝,原 武史,藤田 広志,山本 哲也,2006(以下、非特許文献5と称する)等に記載の方法で行われるようにしてもよい。
【0227】
例えば、血管や神経は、その周囲との境界にエッジ成分が強く検出される。また、例えば、視神経乳頭は、周囲よりも輝度が高く白色となる傾向がある。また、ある程度形状や大きさが限定される。部位認識部466は、例えばこのような画像の特徴を用いて、眼底画像内に含まれる各部位を特定する。
【0228】
部域認識部466は、眼底画像に含まれる生体としての部位を特定すると、その特定した各部位の領域、つまり、例えば血管や神経や視神経乳頭等がそれぞれ画像内の何処にあるかを示す情報を部位別検査部470に供給する。
【0229】
パラメータ調整部467は、パラメータ記憶部463から読み出したパラメータの値を予め定められた所定の方法で調整する。例えば、パラメータ調整部467は、パラメータの値を所定量増大させたり、減少させたりする。パラメータ調整部467は、調整後の値を、非調整対象パラメータの値とともにトーンカーブ算出部468に供給する。
【0230】
トーンカーブ算出部468は、トーンカーブ算出部453と同様に、供給されたパラメータを用いてトーンカーブを算出し、算出したトーンカーブを示す情報、および、調整対象パラメータをマッピング部469に供給する。
【0231】
マッピング部469は、トーンカーブ算出部468により算出されたトーンカーブを用いて、マッピング部454と同様に、ノイズ削減処理部413から供給される眼底画像(複数の眼底画像が重ね合わせられて生成された1枚の眼底画像)の輝度値を階調補正する。マッピング部469は、その補正後の画像と、トーンカーブ算出部468から供給された調整対象パラメータとを部位別検査部470に供給する。
【0232】
部位別検査部470は、部位認識部466から供給される各部位の領域を示す情報を用いて、マッピング部469から供給される補正後の画像に含まれる各部位を特定し、その各部位の画像を、各部位の画像の特徴に応じた方法で検査する。つまり、部位別検査部470は、各部位の画像の特徴の違いを考慮し、どの部位についても適切な階調補正となるように、補正後の画像に含まれる各部位の画像を、その部位用に定められた方法で検査する。
【0233】
例えば、一般的に、眼底の周縁部では画像が比較的暗い傾向がある。つまり、眼底の周縁部では、ノイズ成分が大きくなり易い。そこで、部位別検査部470は、例えば、眼底の周縁部においてノイズ成分が所定の許容量を超えたか否かを検査し、ノイズ成分が許容量以下であれば合格とし、許容量を超えていれば不合格とする。
【0234】
また、一般的に、視神経乳頭の画像は比較的明るくなる傾向がある。つまり、眼底画像を明るくすると視神経乳頭において白とびが発生し易い。そこで、部位別検査部470は、例えば、視神経乳頭において白とびが発生したか否かを検査し、白とびが発生していければ合格とし、白とびが発生していれば不合格とする。
【0235】
このように各部位の検査内容は互いに独立している。なお、この各部位の検査の内容や合否判定基準等は任意である。例えば、上述した例以外にも、周波数成分を検査するようにしてもよいし、所定のレベルより低い輝度値が検出されたか否か等を検査するようにしてもよい。また、1つの部位に対して、複数の項目について検査を行うようにしてもよい。
【0236】
部位別検査部470は、このような部位毎の判定結果を、マッピング部469から供給される補正後の画像および調整対象パラメータとともに、補正後明るさ値算出部471に供給する。
【0237】
補正後明るさ値算出部471は、部位別検査部470において各部位の検査が全て合格であった場合、補正後の画像について明るさ値を算出する。この明るさ値の算出方法は、補正前明るさ値算出部464による補正前の画像の明るさ値の算出方法と同様である。
【0238】
明るさ値を算出すると、補正後明るさ値算出部471は、算出したその明るさ値と、部位別検査部470から供給された調整対象パラメータとを比較部472に供給する。また、部位別検査部470による各部位の検査結果に不合格が含まれる場合、補正後明るさ値算出部471は、その検査結果を比較部472に供給する。
【0239】
比較部472は、補正後明るさ値算出部471から補正後の画像の明るさ値を取得すると、明るさ値記憶部465が保持する明るさ値を取得し、それらを比較する。
【0240】
補正後明るさ値算出部471から供給された明るさ値の方が、明るさ値記憶部465から供給された明るさ値より大きい場合、比較部472は、補正後明るさ値算出部471から供給された調整対象パラメータを、パラメータ記憶部463に供給し、記憶させる(保持する調整対象パラメータの値を更新させる)。また、この場合、比較部472は、補正後明るさ値算出部471から供給された明るさ値を、明るさ値記憶部465に供給し、記憶させる(明るさ値記憶部465が保持する明るさ値を更新させる)。
【0241】
このように、各パラメータの調整は、パラメータ記憶部463乃至比較部472のループにより繰り返し行われる(ループ処理される)。つまり、例えば、パラメータ初期値記憶部462が、眼底画像が最も暗くなるような値をパラメータの初期値として記憶し、パラメータ調整部467は、眼底画像がより明るくなるように調整対象パラメータの値を調整し、その調整後の値を利用して、トーンカーブ算出部468およびマッピング部469が眼底画像を補正し、部位別検査部470乃至比較部472が、その補正後の画像を検査する。部位毎の検査に合格しながらより明るい画像が得られる場合、このループ処理がさらに繰り返される。
【0242】
そして、部位毎の検査に合格しなくなった場合、若しくは、部位毎の検査に合格しても、より明るい画像が得られなかった場合、すなわち、補正後明るさ値算出部471を介して部位別検査部470による不合格を含む検査結果が供給された場合、若しくは、補正後明るさ値算出部471から供給された明るさ値が、明るさ値記憶部465から供給された明るさ値より大きくない場合、比較部472は、データ出力部473にその旨を通知する(パラメータ記憶部463および明るさ値記憶部465の情報は更新させない)。
【0243】
例えば、その値が大きいほどより明るい眼底画像が得られるパラメータを調整対象パラメータとする場合、パラメータ初期値記憶部462は、そのパラメータの最小値を初期値として記憶し、パラメータ調整部467は、入力されたそのパラメータの値を所定量増大させる。
【0244】
また、例えば、その値が小さいほどより明るい眼底画像が得られるパラメータを調整対象パラメータとする場合、パラメータ初期値記憶部462は、そのパラメータの最大値を初期値として記憶し、パラメータ調整部467は、入力されたそのパラメータの値を所定量減少させる。
【0245】
なお、パラメータの初期値や調整方法は任意であり、上述した例以外であってもよい。例えば、トーンリプロダクション処理に使用されるパラメータのとり得る値(若しくはその代表値)の全てについて補正が行われ、得られた全補正画像の中から最良の画像が選択され、その画像に対応する各パラメータの値が最良の値として選択されるようにしてもよい。この場合、得られた全補正画像について各部位の検査と明るさ値の算出が行われ、全ての検査結果と明るさ値が評価され、各部位の検査に全て合格し、かつ、最も明るい画像が得られる各パラメータの値が最良の値として選択される。
【0246】
また、画像が明るくなったか否かの判断は、単純にどちらの明るさ値が大きいかということで判断するようにしてもよいが、その他の基準に基づいて判断するようにしてもよい。例えば、今回の補正後の画像の明るさ値が、今回の補正前の画像の明るさ値に対して所定量以上大きい場合のみ、今回の補正により画像が明るくなったと判定されるようにしてもよい。また、例えば、今回の補正後の画像の明るさ値が、今回の補正前の画像の明るさ値より小さくても、予め定められた所定の範囲内であれば、今回の補正により画像が明るくなったと判定されるようにしてもよい。
【0247】
データ出力部473は、部位別検査部470による検査の不合格通知、若しくは、今回の階調補正後の画像が、その階調補正前の画像と比べて明るくならなかった旨の通知を比較部472から供給された場合、その旨を調整対象パラメータ選択部461に通知し、他のパラメータを調整対象パラメータとして選択させる。つまり、他のパラメータについての調整が開始される。
【0248】
このようにして調整すべきパラメータが全て調整されると、データ出力部473は、パラメータ記憶部463に記憶されている各パラメータの値を取得し、超解像処理部416に供給する。
【0249】
以上のようにして各パラメータの値を決定することにより、パラメータ決定部452は、各パラメータの値を、ノイズや白とびの発生等の不具合を抑制しながら、より明るい画像を得ることができる値に設定することができる。つまり、トーンリプロダクション処理部415は、トーンリプロダクション処理を、生体としての画像の特徴に応じてより適切に行うことができる。
【0250】
[超解像処理部]
図21は、
図16の超解像処理部416の主な構成例を示すブロック図である。
【0251】
図21に示されるように、超解像処理部416は、学習辞書記憶部481、画像処理部482、部位認識部483、部位別評価基準記憶部484、部位別画像評価部485、および画像選択部486を有する。
【0252】
学習辞書記憶部481は、例えば、ハードディスク、フラッシュメモリ、若しくは、半導体メモリ等の任意の記憶媒体を有し、超解像処理において行われる学習の方法を示す学習辞書を複数記憶する。学習辞書記憶部481は、画像処理部482の要求に基づいて、若しくは所定のタイミングにおいて、各学習辞書を、画像処理部482に供給する。
【0253】
画像処理部482は、トーンリプロダクション処理部415から供給される眼底画像に対して、学習辞書記憶部481から供給された学習辞書を用いて、学習により解像度を向上させる超解像処理を行う。つまり、画像処理部482により行われた超解像処理により得られる超解像結果画像は、学習辞書記憶部481から供給される学習辞書によって異なる。画像処理部482は、全ての学習辞書について超解像処理を行わせる。画像処理部482は、算出した、各学習結果に対応する超解像結果画像を、部位認識部483に供給する。
【0254】
部位認識部483は、部位認識部466の場合と同様に、供給された各超解像結果画像を解析し、各超解像結果画像に含まれる、例えば、血管、神経、および視神経乳頭等の、生体(眼底)としての部位を認識する。部位認識部483は、例えば、非特許文献2や非特許文献4に記載の方法で各部位を認識する。
【0255】
部位認識部483は、各超解像結果画像に含まれる生体としての部位を特定すると、その特定した各部位の領域、つまり、例えば血管や神経や視神経乳頭等がそれぞれ画像内の何処にあるかを示す情報を、その情報に対応する超解像結果画像とともに、部位別画像評価部485に供給する。
【0256】
部位別評価基準記憶部484は、例えば、ハードディスク、フラッシュメモリ、RAM、若しくは、ROM等の任意の記憶媒体を有し、部位別画像評価部485が行う部位別の画像評価の方法や基準を示す情報(例えば眼底画像の何処の部分のどのような情報をどのように評価するか等)を記憶する。
【0257】
部位別評価基準記憶部484は、部位別画像評価部485の要求に基づいて、若しくは所定のタイミングにおいて、保持する各部位の画像評価の基準を示す情報を、部位別画像評価部485に供給する。
【0258】
部位別画像評価部485は、部位別評価基準記憶部484から供給される画像評価の基準を示す情報を用いて、各超解像結果画像の、部位認識部483により認識された各部位の画像を評価する。
【0259】
例えば、部位別画像評価部485は、各超解像結果画像について、血管の画像を周波数成分解析し、その血管の画像に含まれる高周波成分量(所定の周波数帯域成分のスペクトルの大きさ)、および、その高周波成分量が予め定められた所定の目標範囲内に含まれるか否か等を評価する。
【0260】
また、例えば、部位別画像評価部485は、各超解像結果画像について、周縁部等の平坦部の画像を周波数成分解析し、その平坦部の画像に含まれるノイズ成分量(所定の周波数帯域成分のスペクトルの大きさ)の少なさを評価する。
【0261】
部位別画像評価部485は、各超解像結果画像について、このように求められた各部位の評価結果を、超解像結果画像とともに画像選択部486に供給する。
【0262】
画像選択部486は、部位別画像評価部485から供給された画像評価結果に基づいて、部位別画像評価部485から供給された超解像結果画像群の中から、最適な超解像結果画像を選択する。例えば、画像選択部486は、血管の画像の高周波成分が、予め定められた所定の目標範囲内で出来るだけ大きく、かつ、平坦部の画像のノイズ成分ができるだけ小さい超解像結果画像を選択する。
【0263】
なお、この画像選択方法や画像選択基準は任意である。例えば、血管の画像の評価結果のみに従って画像選択が行われるようにしてもよいし、上述した以外の評価結果も考慮して画像選択が行われるようにしてもよい。
【0264】
以上のように、画像選択部486は、互いに異なる学習辞書を用いて生成された複数の超解像結果画像の中から最適な超解像結果画像を選択する。つまり、画像選択部486は、超解像処理結果が最も良好となる学習辞書を選択する。
【0265】
画像選択部486は、選択した超解像結果画像を画像処理部402の外部(記憶部103や出力部104)に出力する。
【0266】
このように、超解像処理部416は、互いに異なる学習辞書を用いて学習を伴う超解像処理を行い、各超解像結果画像について、生体としての部位毎に画像評価を行い、その評価結果に基づいて、最適な学習辞書を用いて生成された超解像結果画像を選択することができる。
【0267】
一般に、超解像処理に用いられる適切な学習辞書は、画像の内容によって異なる。つまり、ある画像に対して最適な学習辞書が、その他の画像に対して最適となるとは限らない。しかしながら、超解像処理部416は、上述したように、生成された超解像結果画像を評価するので、任意の眼底画像に対して最適な学習辞書を選択することができる。また、超解像処理部416は、生体(眼底)としての部位毎に画像評価を行うので、眼底画像に対してより適切な学習辞書を選択することができる。
【0268】
つまり、超解像処理部416は、よりノイズ成分が少なく、かつ、より高解像度な眼底画像(より高画質かつ高解像度な眼底画像)を得ることができる。
【0269】
[眼底画像生成処理の流れ]
次に、
図22のフローチャートを参照して、眼底画像処理装置400により実行される眼底画像生成処理の流れの例を説明する。
【0270】
眼底画像生成処理が開始されると、ステップS401において、撮像部101は、
図12のステップS201の場合と同様に、光量を落として複数回眼底を撮像する。ステップS402において、入力画像バッファ111は、
図12のステップS202の場合と同様に、ステップS401の撮像により得られた撮像画像(眼底画像)を記憶する。
【0271】
ステップS403において、ノイズ削減結果画像バッファ414は、
図12のステップS203の場合と同様に、最初の撮像画像を初期画像として記憶する。
【0272】
ステップS404において、生体情報位置合わせ処理部212は、
図12のステップS204の場合と同様に、入力画像バッファ111に記憶される未処理の撮像画像を1枚選択する。ステップS405において、生体情報位置合わせ処理部212は、ステップS404において選択された撮像画像(眼底画像)と、ノイズ削減結果画像バッファ414から供給された前回の重ね合わせ結果となる撮像画像(眼底画像)との間で、
図12のステップS205の場合と同様に、生体情報を用いた位置合わせ処理(生体情報位置合わせ処理)を行う。この生体情報位置合わせ処理の詳細は、
図13および
図14のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0273】
ステップS406において、ノイズ削減処理部413は、ステップS405の処理により位置合わせされた両撮像画像(眼底画像)を重ね合わせ、ノイズを低減させる。
【0274】
ステップS407において、ノイズ削減処理部413は、全ての撮像画像(眼底画像)を処理したか否かを判定する。入力画像バッファ111に未処理の撮像画像が存在すると判定された場合、ノイズ削減処理部413は、処理をステップS408に進める。
【0275】
ステップS408において、ノイズ削減結果画像バッファ414は、ステップS406の処理により得られるノイズ削減処理結果画像、つまり、重ね合わせされた撮像画像を記憶する。撮像画像を記憶すると、ノイズ削減結果画像バッファ414は、処理をステップS404に戻し、それ以降の処理を繰り返す。
【0276】
ステップS404乃至ステップS408の処理が繰り返され、ステップS407において、全ての撮像画像を処理したと判定された場合、ノイズ削減処理部413は、処理をステップS409に進める。
【0277】
ステップS409において、トーンリプロダクション処理部415は、生成された1枚の撮像画像(眼底画像)に対してトーンリプロダクション処理を行う。ステップS410において、超解像処理部416は、トーンリプロダクション処理された画像について、超解像処理を行い、より高解像度な眼底画像を得、眼底画像生成処理を終了する。
【0278】
このように処理を行うことにより、眼底画像処理装置400は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0279】
[トーンリプロダクション処理の流れ]
次に、
図23のフローチャートを参照して、
図22のステップS409において実行されるトーンリプロダクション処理の流れの例を説明する。
【0280】
トーンリプロダクション処理が開始されると、ステップS431において、トーンリプロダクション処理部415の画像バッファ451は、1枚に重ね合わせられた撮像画像(眼底画像)を記憶する。
【0281】
ステップS432において、パラメータ決定部452は、生体情報に基づいてパラメータを決定する。ステップS433において、トーンカーブ算出部453は、ステップS432の処理により値が決定されたパラメータを用いてトーンカーブを算出する。ステップS434において、マッピング部454は、ステップS433において生成されたトーンカーブを用いて撮像画像(眼底画像)を補正する。
【0282】
ステップS434の処理を終了すると、マッピング部454は、トーンリプロダクション処理を終了し、処理を
図22のステップS409に戻し、ステップS410に処理を進める。
【0283】
[パラメータ決定処理の流れ]
次に、
図24のフローチャートを参照して、
図23のステップS432において実行されるパラメータ決定処理の流れの例を説明する。
【0284】
パラメータ決定処理が開始されると、調整対象パラメータ選択部461は、ステップS451において、調整するパラメータを選択する。ステップS452において、パラメータ記憶部463は、各パラメータの初期値をパラメータ初期値記憶部462から取得し、記憶する。
【0285】
ステップS453において、補正前明るさ値算出部464は、
図22のステップS406の処理により生成された撮像画像(眼底画像)の明るさ値を算出する。ステップS454において、明るさ値記憶部465は、ステップS453の処理により算出された明るさ値を記憶する。ステップS455において、部位認識部466は、
図22のステップS406の処理により生成された撮像画像(眼底画像)に含まれる生体としての各部位を認識する。
【0286】
ステップS456において、パラメータ調整部467は、調整対象パラメータの値を調整する。ステップS457において、トーンカーブ算出部468は、調整された調整対象パラメータを含む各種パラメータを用いて、トーンカーブを算出する。ステップS458において、マッピング部469は、ステップS457の処理により算出されたトーンカーブを用いて、
図22のステップS406の処理により生成された撮像画像(眼底画像)を補正する。
【0287】
ステップS459において、部位別検査部470は、ステップS458の処理により補正された撮像画像(眼底画像)について、ステップS455の処理により認識された生体としての部位毎の検査を行う。
【0288】
ステップS460において、部位別検査部470は、ステップS459において行われる各部位の検査を全て合格したか否か(すなわち、全ての条件を満たすか否か)を判定する。全ての条件を満たすと判定された場合、部位別検査部470は、処理をステップS461に進める。
【0289】
ステップS461において、補正後明るさ値算出部471は、ステップS458において補正された撮像画像(眼底画像)の明るさ値を算出する。ステップS462において、比較部472は、ステップS458において行われる今回の補正の前と後で、撮像画像の明るさ値を比較する。ステップS463において、比較部472は、補正後の撮像画像の明るさ値の方が明るいか否かを判定する。
【0290】
補正後の撮像画像の明るさ値の方が大きく、今回のステップS458の補正により撮像画像が明るくなったと判定された場合、比較部472は、処理をステップS464に進める。ステップS464において、パラメータ記憶部463は、調整対象パラメータの、今回のステップS456の調整後の値を記憶する(調整対象パラメータの値を更新する)。
【0291】
ステップS465において、明るさ値記憶部465は、今回のステップS458の補正後の撮像画像の明るさ値を記憶する(明るさ値を更新する)。ステップS465の処理を終了すると、明るさ値記憶部465は、処理をステップS456に戻し、それ以降の処理を繰り返す。
【0292】
ステップS460において、全ての条件を満たさないと判定された場合、部位別検査部470は、処理をステップS466に進める。また、ステップS463において、補正後の撮像画像の明るさ値が補正前の撮像画像の明るさ値以下であり、今回のステップS458の補正により撮像画像が明るくなっていないと判定された場合、比較部472は、処理をステップS466に進める。
【0293】
ステップS466において、データ出力部473は、調整すべきパラメータを全て処理したか否かを判定し、未処理のパラメータが存在すると判定された場合、処理をステップS451に戻し、新たな未処理のパラメータについて、それ以降の処理を繰り返す。つまり、調整対象パラメータ選択部461は、未処理のパラメータを新たに調整対象パラメータとして選択し、ステップS452以降の処理を実行させる。
【0294】
ステップS466において、調整すべきパラメータが全て処理されたと判定した場合、データ出力部473は、処理をステップS467に進め、パラメータ記憶部463に記憶されているパラメータを取得し、出力する。ステップS466の処理を終了すると、データ出力部473は、パラメータ決定処理を終了し、処理を
図23のステップS432に戻し、ステップS433以降の処理を実行させる。
【0295】
[超解像処理の流れ]
次に、
図22のステップS410において実行される超解像処理の流れの例を、
図25のフローチャートを参照して説明する。
【0296】
超解像処理が開始されると、画像処理部482は、ステップS481において、学習辞書記憶部481に記憶されている学習辞書の中から未処理の学習辞書を選択する。ステップS482において、画像処理部482は、学習により求めた係数を用いて画像を高解像度化する。
【0297】
ステップS483において、部位認識部483は、画像に含まれる生体としての部位を認識する。ステップS484において、部位別画像評価部485は、部位毎に画像を評価する。ステップS485において、部位別画像評価部485は、画像および評価結果を記憶する。
【0298】
ステップS486において、部位別画像評価部485は、全ての学習辞書について処理を行ったか否かを判定する。未処理の学習辞書が存在すると判定された場合、部位別画像評価部485は、処理をステップS481に戻し、新たな学習辞書についてそれ以降の処理を実行させる。すなわち、画像処理部482は、未処理の学習辞書を新たに選択し、ステップS482以降の処理を実行させる。
【0299】
ステップS486において、全ての学習辞書について処理を行ったと判定された場合、部位別画像評価部485は、処理をステップS487に進める。
【0300】
ステップS487において、画像選択部486は、以上のように各学習辞書を用いて生成された超解像結果画像群の中から、ステップS484において行われた評価において最も高評価であった超解像結果画像を選択する。超解像結果画像を選択すると、画像選択部486は、超解像処理を終了し、処理を
図22のステップS410に戻し、眼底画像生成処理を終了する。
【0301】
以上のように、各処理を実行することにより、眼底画像処理装置400は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0302】
[パラメータ決定部の他の構成例]
なお、以上においては、パラメータ決定部452において、撮像画像(眼底画像)全体が補正されるように説明したが、これに限らず、生体としての各部位の画像がそれぞれ補正されるようにしてもよい。このようにすることにより、部位別検査において不要な、撮像画像に含まれる眼底の部位として認識されない部分(例えば撮像画像の周縁部等)の処理を省略することができ、パラメータ決定に関する負荷を低減させることができる。
【0303】
図26は、その場合のパラメータ決定部の主な構成例を示すブロック図である。
図26に示される例の場合、パラメータ決定部452は、
図20に示される例の補正前明るさ値算出部464の代わりに補正前明るさ値算出部564を有し、明るさ値記憶部465の代わりに明るさ値記憶部465を有する。また、
図26に示されるパラメータ決定部452は、
図20に示される例の部位認識部466の代わりに部位認識部566を有し、マッピング部469の代わりにマッピング部569を有する。
【0304】
さらに、
図26に示されるパラメータ決定部452は、
図20に示される例の部位別検査部470の代わりに部位別検査部570を有し、補正後明るさ値算出部471の代わりに補正後明るさ値算出部571を有する。また、
図26に示されるパラメータ決定部452は、
図20に示される例の比較部472の代わりに比較部572を有する。
【0305】
部位認識部566は、部位認識部466と同様に、ノイズ削減処理部413から供給される眼底画像(複数の眼底画像が重ね合わせられて生成された1枚の眼底画像)に含まれる生体(眼底)としての部位を認識する。部位認識部566は、その眼底画像から、特定した各部位の画像を抽出し、抽出した各部位の画像を補正前明るさ値算出部564およびマッピング部569に供給する。
【0306】
補正前明るさ値算出部564は、供給された各部位の画像について、補正前明るさ値算出部464の場合と同様の方法で明るさ値をそれぞれ算出する。補正前明るさ値算出部564は、算出した各部位の明るさ値を明るさ値記憶部565に供給し、記憶させる。
【0307】
明るさ値記憶部565は、例えば、ハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体を有し、明るさ値記憶部465の場合と同様に、補正前明るさ値算出部564や比較部572から供給される各部位の画像の明るさ値を記憶する。
【0308】
マッピング部569は、トーンカーブ算出部468により算出されたトーンカーブを用いて、部位認識部566から供給される各部位の画像の輝度値を階調補正する。この補正方法は、マッピング部469の場合と同様である。マッピング部569は、その補正後の各部位の画像と、トーンカーブ算出部468から供給された調整対象パラメータとを部位別検査部570に供給する。
【0309】
部位別検査部570は、マッピング部569から供給される補正後の各部位の画像を、各部位の画像の特徴の違いを考慮し、どの部位についても適切な階調補正となるように、その部位の画像の特徴に応じた方法で検査する。各部位の検査の方法は、部位別検査部470の場合と同様である。
【0310】
部位別検査部570は、このような部位毎の判定結果を、マッピング部469から供給される補正後の各部位の画像および調整対象パラメータとともに、補正後明るさ値算出部571に供給する。
【0311】
補正後明るさ値算出部571は、部位別検査部570において各部位の検査が全て合格であった場合、補正後の各部位の画像について明るさ値を算出する。この明るさ値の算出方法は、補正前明るさ値算出部564の場合と同様である。明るさ値を算出すると、補正後明るさ値算出部571は、算出した各部位の画像の明るさ値と、部位別検査部570から供給された調整対象パラメータとを比較部572に供給する。
【0312】
また、部位別検査部570による各部位の検査結果に不合格が含まれる場合、補正後明るさ値算出部571は、補正後明るさ値算出部471の場合と同様に、その検査結果を比較部572に供給する。
【0313】
比較部572は、補正後明るさ値算出部571から補正後の各部位の画像の明るさ値を取得すると、明るさ値記憶部565が保持する各部位の画像の明るさ値を取得し、それらを比較する。
【0314】
各部位の画像について、補正後明るさ値算出部571から供給された明るさ値の方が、明るさ値記憶部565から供給された明るさ値より大きい場合、比較部572は、補正後明るさ値算出部571から供給された調整対象パラメータを、パラメータ記憶部463に供給し、記憶させる(パラメータ記憶部463が保持する調整対象パラメータの値を更新させる)。また、この場合、比較部572は、補正後明るさ値算出部571から供給された各部位の画像の明るさ値を、明るさ値記憶部565に供給し、記憶させる(明るさ値記憶部565が保持する最新の明るさ値を更新させる)。
【0315】
逆に、より明るい画像が得られなかった場合、すなわち、各部位の画像について、補正後明るさ値算出部571から供給された明るさ値が、明るさ値記憶部565から供給された明るさ値より大きくない場合、比較部572は、データ出力部473にその旨を通知する(パラメータ記憶部463および明るさ値記憶部565の情報は更新させない)。
【0316】
なお、比較部572は、今回の補正前後の各部位の画像の明るさ値の比較方法は任意である。例えば、比較部572は、今回の補正前後について、各部位の画像の明るさ値をそれぞれ比較するようにしてもよいし、各部位の画像の明るさ値の総和や平均値等の統計値を算出し、その総和を比較するようにしてもよい。また、比較部572は、今回の補正前後について、各部位の画像の明るさ値にそれぞれの部位用の重み係数を乗算し、その各乗算結果の総和を算出し、その総和を比較するようにしてもよい。
【0317】
[パラメータ決定処理の流れ]
図26に示されるパラメータ決定部452により実行されるパラメータ決定処理の流れの例を、
図27のフローチャートを参照して説明する。
【0318】
この場合も、パラメータ決定処理の流れは、基本的に、
図24のフローチャートを参照して説明した場合と同様である。ただし、
図27の例の場合、部位認識部566が、ステップS553において、撮像画像に含まれる生体としての各部位を認識し、各部位の画像を抽出する。
【0319】
そして、補正前明るさ値算出部564は、ステップS554において、抽出された各部位の画像の明るさ値を算出し、明るさ値記憶部565は、ステップS555において、算出された各明るさ値を記憶する。
【0320】
また、マッピング部569は、ステップS558において、各部位の画像を、ステップS557において算出されたトーンカーブを用いて補正する。
【0321】
さらに、補正後明るさ値算出部571は、ステップS561において、ステップS558において得られた補正後の各部位の画像の明るさ値を算出する。ステップS562において、比較部572は、今回の補正前の各部位の画像と、今回の補正後の各部位の画像とで明るさ値を比較する。
【0322】
以上のようにして各パラメータの値を決定することにより、パラメータ決定部452は、各パラメータの値を、ノイズや白とびの発生等の不具合を抑制しながら、より明るい画像を得ることができる値に設定することができる。
【0323】
なお、さらに、各部位の画像の補正に使用されるトーンカーブが、各部位毎に独立して設定されるようにしてもよい。すなわち、パラメータ決定部452が、生体としての部位毎にパラメータを決定するようにしてもよい。この場合、
図18のトーンカーブ算出部453は、各部位の画像毎にトーンカーブを算出する。また、マッピング部454は、画像バッファ451から供給される撮像画像から、その撮像画像に含まれる生体としての部位を認識し、各部位の画像を抽出する。そしてマッピング部454は、抽出した各部位の画像を、それぞれ、トーンカーブ算出部453が算出したその部位用のトーンカーブを用いて補正する。
【0324】
このようにすることにより、トーンリプロダクション処理部415は、生体としての画像の特徴に応じてより適切にトーンリプロダクション処理を行うことができる。
【0325】
なお、第3の実施の形態においては、トーンリプロダクション処理部415および超解像処理部416の両方が、被写体の生体情報(眼底に関する情報)を用いてそれぞれの処理を行うように説明したが、これに限らず、例えば、トーンリプロダクション処理部415若しくは超解像処理部416のいずれか一方が被写体の生体情報を用いて処理を行い、他方が被写体の生体情報を用いずに処理を行うようにしてもよい。また、例えば、トーンリプロダクション処理部415若しくは超解像処理部416のいずれか一方を省略するようにしてもよい。
【0326】
<4.第4の実施の形態>
[眼底画像処理装置の構成]
ところで、上述したように、撮像部101は、撮像の際に被写体に光を照射する。この場合の照射光は可視光であることから、被験者への影響等を考慮して、照射光の光量が落とされている。その結果、可視光を照射して撮像された眼底画像は比較的暗い画像となる。
【0327】
そこで、本実施の形態においては、撮像部は、可視光の他に赤外光を含む照射光を用いて、被写体を撮像する。赤外光は人間の眼には見えないので、撮像部は、位置合わせを行うのに十分な光量を被写体に照射して、撮像することができる。これにより、位置合わせを行うのに十分な明るさの眼底画像が得られる。なお、本明細書でいう赤外光とは、一般的にいう、波長帯域が略700乃至1000nmの波長帯域の赤外光のみならず、近赤外光等を含む広義な概念である。例えば、被験者が眩しいと感じない非侵襲の光も、本明細書でいう赤外光の一種である。
【0328】
図28は、本実施の形態の概要について説明する図である。
図28の枠600に示されるように、位置合わせを行うのに十分な光量で赤外光を照射して撮像された画像621に対して、位置合わせが行われる。なお、画像621のように、赤外光を照射して撮像された画像を、以下、赤外光画像と称する。そして、枠601に示されるように、赤外光画像621における位置合わせの結果(以下、位置合わせ情報と称する)を用いて、低光量で可視光を照射して撮像された画像622に対して、位置合わせが行われる。なお、画像622のように、低光量で可視光を照射して撮像された画像を、以下、可視光画像と称する。これにより、より高画質な被写体の撮像画像を得ることが出来るようになる。
【0329】
[眼底画像処理装置の構成]
図29は、眼底画像処理装置の構成例を示すブロック図である。
図29に示される眼底画像処理装置700は、
図3の眼底画像処理装置200と基本的に同様の構成を有し、同様の処理を行う。ただし、眼底画像処理装置700は、眼底画像処理装置200が有する撮像部101および画像処理部202の代わりに、撮像部701および画像処理部702を有する。したがって、以下では、撮像部701および画像処理部702についてのみ説明する。
【0330】
撮像部701は、可視光の他に赤外光を含む照射光を被写体に照射させながら、可視光と赤外光で同時に眼底の撮像を複数回繰り返す。撮像部701の構成について
図30を参照して説明する。
【0331】
[撮像部]
図30は、撮像部701の主な構成例を示す図である。
図30に示されるように、撮像部701は、光源731、ミラー732−1乃至732−3、レンズ733、可視光撮像部734、赤外光撮像部735、赤外光カットフィルタ736、および可視光カットフィルタ737を有する。
【0332】
光源731は、可視光の波長帯域および赤外光の波長帯域で発光する照明からなる。このとき、可視光は比較的低光量であり、赤外光は位置合わせを行うのに十分な光量であるとする。すなわち、赤外光は可視光よりも光量が高い。
【0333】
ミラー732−1乃至732−3は、可視光および赤外光を反射または透過する。
【0334】
レンズ733は、可視光撮像部734および赤外光撮像部735の受光面に被写体像を結像させる。
【0335】
すなわち、光源731からの可視光および赤外光は、ミラー732−1,732−2の各々で反射されて光路の方向を変えてレンズ733を通過し、眼221の眼底に入射し、眼底を照明する。
【0336】
眼221の眼底からの反射光すなわち眼底像は、ミラー732−3で反射して可視光撮像部734に入射すると共に、赤外光撮像部735に入射する。
【0337】
ただし、可視光撮像部734に装着された赤外光カットフィルタ736は、赤外光を透過させずに可視光のみを透過させる。従って、眼221の眼底からの反射光すなわち眼底像のうち、可視光の眼底像は、可視光撮像部734に装着された赤外光カットフィルタ736を透過して、可視光撮像部734の受光面に結像される。一方、眼221の眼底からの反射光すなわち眼底像のうち、赤外光の眼底像は、可視光撮像部734の赤外光カットフィルタ736を透過しないため、可視光撮像部734の受光面には結像されない。したがって、可視光撮像部734は、可視光の眼底像のみを撮像し、その結果可視光画像のみを出力する。
【0338】
また、赤外光撮像部735に装着された可視光カットフィルタ737は、可視光を透過させずに赤外光のみを透過させる。従って、眼221の眼底からの反射光すなわち眼底像のうち、赤外光の眼底像は、赤外光撮像部735に装着された可視光カットフィルタ737を透過して、赤外光撮像部735の受光面に結像される。一方、眼221の眼底からの反射光すなわち眼底像のうち、可視光の眼底像は、赤外光撮像部735の可視光カットフィルタ737を透過しないため、赤外光撮像部735の受光面には結像されない。したがって、赤外光撮像部735は、赤外光の眼底像のみを撮像し、その結果赤外光画像のみを出力する。
【0339】
撮像部701は、可視光の他に赤外光を含む照射光を照射させながら、可視光と赤外光で同時に眼底の撮像を複数回繰り返す。撮像部701による撮像は、撮像により得られる各眼底画像が互いに近似するように、できるだけ短時間に複数回行われる方が望ましい。撮像部701の撮像により得られた比較的低画質の複数の可視光画像および複数の位置合わせを行うのに十分な画質の赤外光画像は、画像処理部702に供給される。
【0340】
なお、撮像部701の構成は上述の例に限定されず、被写体の可視光画像および赤外光画像が得られる構成であればよい。例えば、可視光撮像部734および赤外光撮像部735のそれぞれに含まれる撮像素子に、可視光カットフィルタ736および赤外光カットフィルタ737の両方を配置して、可視光撮像部734および赤外光撮像部735のそれぞれで可視光画像と赤外光画像とが得られるようにしてもよい。
【0341】
画像処理部702は、撮像部701から供給された複数の位置合わせを行うのに十分な画質の赤外光画像に対して位置合わせを行う。そして、画像処理部702は、赤外光画像における位置合わせ情報(詳細については後述する)を用いて、比較的低画質の複数の可視光画像に対して位置合わせを行ってから重ね合わせを行うことにより、より高画質な1枚の眼底画像を生成する。
【0342】
図29に示されるように、画像処理部702は、入力画像バッファ711、赤外光画像位置合わせ処理部712、初期画像バッファ713、位置合わせ情報バッファ714、可視光画像位置合わせ処理部715、超解像処理部716、および超解像結果画像バッファ717を有する。
【0343】
入力画像バッファ711は、例えばハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体の少なくとも一部の領域に設けられ、撮像部701から供給される、比較的低画質の複数の可視光画像および複数の位置合わせを行うのに十分な画質の赤外光画像を入力画像として記憶する。そして、入力画像バッファ711は、必要に応じて適宜、赤外光画像を赤外光画像位置合わせ処理部712に供給し、可視光画像を可視光画像位置合わせ処理部715に供給する。
【0344】
赤外光画像位置合わせ処理部712は、被写体の生体情報を用いて、入力画像バッファ711から供給される赤外光画像と、後述する初期画像バッファ713から供給される赤外光画像の初期画像との間で、被写体の位置を合わせるように位置合わせを行う。赤外光画像位置合わせ処理部712は、位置合わせが収束した場合、位置合わせ情報を位置合わせ情報バッファ714に供給する。なお、赤外光画像位置合わせ処理部712の詳細な構成については、
図31,
図32を参照して後述する。
【0345】
位置合わせに利用する生体情報として、例えば、血管、神経、若しくは視神経乳頭等を採用することができる。もちろん、この生体情報は、任意であり、これら以外のものであってもよい。
【0346】
初期画像バッファ713は、例えばハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体の少なくとも一部の領域に設けられ、赤外光画像位置合わせ処理部712を介して入力画像バッファ711から最初に供給されてきた赤外光画像を初期画像として記憶する。初期画像バッファ713は、必要に応じて適宜その初期画像を、赤外光画像位置合わせ処理部712に供給する。
【0347】
位置合わせ情報バッファ714は、例えばハードディスク、フラッシュメモリ、若しくは、RAM等の任意の記憶媒体の少なくとも一部の領域に設けられ、赤外光画像位置合わせ処理部712から供給される位置合わせ情報を記憶する。
【0348】
可視光画像位置合わせ処理部715は、位置合わせ情報バッファ714から読み出した位置合わせ情報を、入力画像バッファ711から供給される可視光画像に適用して、画像の位置合わせを行う。位置合わせされた可視光画像は、超解像処理部716に供給される。
【0349】
超解像処理部716は、
図3の超解像処理部213と基本的に同様の構成を有し、同様の処理を行う。すなわち、超解像処理部716は、超解像結果画像バッファ717から、過去に生成した超解像処理結果画像(すなわち、超解像処理結果として得られる画像)を取得し、その超解像結果画像と、可視光画像位置合わせ処理部715より位置合わせされた可視光画像との重ね合わせによる超解像処理およびハイダイナミックレンジ処理を行い、超解像結果画像を生成する。超解像処理部716は、このような位置合わせと超解像処理が繰り返されて生成された、より高解像度かつダイナミックレンジの大きな超解像結果画像を記憶部103に記憶させたり、出力部104より出力させたりするとともに、超解像結果画像バッファ717に供給し、記憶させる。
【0350】
超解像結果画像バッファ717は、
図3の超解像結果画像バッファ214と基本的に同様の構成を有し、同様の処理を行う。すなわち、超解像結果画像バッファ717は、超解像処理部716により生成された超解像結果画像を記憶し、必要に応じて適宜その超解像結果画像を、超解像処理部716に供給する。なお、超解像結果画像バッファ717は、超解像処理部716を介して可視光画像位置合わせ処理部715から最初に供給されてきた可視光画像を初期画像として記憶する。超解像結果画像バッファ717は、必要に応じて適宜その初期画像を、超解像処理部716に供給する。
【0351】
[画像処理部の処理]
図31は、このような構成の画像処理部702による処理の流れについて説明する図である。
図31に示されるように、撮像部701により撮像された複数の赤外光画像621と複数の可視光画像622は、入力画像バッファ711に記憶される。入力画像バッファ711は、所定のタイミングで1枚ずつ赤外光画像621を赤外光画像位置合わせ処理部712に供給する。
【0352】
図31の枠741に示されるように、赤外光画像位置合わせ処理部712は、入力画像バッファ711から供給される赤外光画像621と、初期画像バッファ713から供給される初期画像との、眼の情報(すなわち、生体情報)を使った画像の位置合わせを行う。赤外光画像位置合わせ処理部712は、位置合わせが収束した場合、赤外光画像での位置合わせ情報を位置合わせ情報バッファ714に供給する。このような処理が繰り返され、入力画像バッファ711に記憶された全ての赤外光画像についての位置合わせ情報が、位置合わせ情報バッファ714に記憶される。
【0353】
そして、
図31の枠742に示されるように、可視光画像位置合わせ処理部715は、位置合わせ情報バッファ714から読み出した各赤外光画像についての位置合わせ情報を、入力画像バッファ711から供給される各赤外光画像に対応する可視光画像622に適用して、可視光画像の位置合わせを行う。その後、位置合わせされた可視光画像は、超解像処理部716に供給されて、画像の重ね合わせによる超解像処理が施される。
【0354】
[赤外光画像位置合わせ処理部の構成]
次に、赤外光画像位置合わせ処理部712の詳細な構成について
図32,
図33を参照して説明する。
【0355】
図32は、
図29の赤外光画像位置合わせ処理部712の主な構成例を示すブロック図である。
図32に示されるように、赤外光画像位置合わせ処理部712は、赤外光画像血管抽出部751、初期画像血管抽出752、赤外光画像交叉点抽出部753、初期画像交叉点抽出部754、交叉点位置合わせ処理部755、および血管位置合わせ処理部756を有する。
【0356】
赤外光画像血管抽出部751は、入力画像バッファ711から供給される赤外光画像から血管の部分を抽出し、血管位置合わせ処理部756に供給する。
【0357】
同様に、初期画像血管抽出部752は、初期画像バッファ713から供給される初期画像から血管の部分を抽出し、血管位置合わせ処理部756に供給する。
【0358】
血管位置合わせ処理部756は、各画像から抽出された血管抽出結果を用いて、赤外光画像と初期画像との間で血管の位置合わせを行い、位置合わせ情報を位置合わせ情報バッファ714に記憶させる。
【0359】
なお、血管抽出結果(すなわち、血管全体の形状や位置)による位置合わせ処理の前に、血管の交叉点の位置による簡易的な位置合わせを行うようにしてもよい。その場合、赤外光画像血管抽出部751は、赤外光画像からの血管抽出結果を、赤外光画像交叉点抽出部753に供給する。
【0360】
赤外光画像交叉点抽出部753は、赤外光画像血管抽出部751から供給される血管抽出結果から交叉点を抽出し、その交叉点抽出結果を交叉点位置合わせ処理部755に供給する。
【0361】
また、初期画像血管抽出部752は、初期画像からの血管抽出結果を、初期画像交叉点抽出部754に供給する。
【0362】
初期画像交叉点抽出部754は、初期画像血管抽出部752から供給される血管抽出結果から交叉点を抽出し、その交叉点抽出結果を交叉点位置合わせ処理部755に供給する。
【0363】
交叉点位置合わせ処理部755は、各画像から抽出された交叉点抽出結果を用いて、赤外光画像と初期画像との間で交叉点の位置合わせを行う。そしてその交叉点位置合わせ結果が血管位置合わせ処理部756に供給される。
【0364】
血管位置合わせ処理部756は、交叉点位置合わせ処理部755から供給される交叉点位置合わせ結果を初期状態とし、血管抽出結果を用いて赤外光画像の位置合わせを行う。つまり、血管位置合わせ処理部756は、交叉点位置合わせ結果にしたがって、交叉点の位置合わせと同様に位置合わせを行いながら各血管抽出結果を重畳し、それを初期状態とする。
【0365】
このようにすることにより、血管位置合わせ処理部756は、交叉点を用いて簡易的に位置合わせされた状態から、位置合わせを開始することができるので、より容易かつ高速に位置合わせを行うことができる。
【0366】
なお、血管位置合わせ処理部756は、さらに他の生体情報を用いた位置合わせを併用するようにしてもよい。例えば、血管位置合わせ処理部756は、最初に、視神経乳頭の位置で位置合わせを行いながら、赤外光画像と初期画像とを重畳し、その重畳画像を初期値として交叉点による位置合わせを行うようにしてもよい。
【0367】
[血管位置合わせ処理部の構成]
次に、血管全体の位置や形状等を用いた位置合わせについて
図33を参照して説明する。
【0368】
図33は、血管位置合わせ処理部756の主な構成例を示すブロック図である。
図33に示されるように、血管位置合わせ処理部756は、重畳処理部771、シフト処理部772、伸ばし処理部773、回転処理部774、拡大縮小処理部775、および収束判定部776を有する。
【0369】
重畳処理部771は、赤外光画像血管抽出部751による血管抽出結果(以下、赤外光画像血管抽出結果と称する)と、初期画像血管抽出部752による血管抽出結果(以下、初期画像血管抽出結果と称する)とを重畳する。交叉点による位置合わせを行う場合、重畳処理部771は、交叉点位置合わせ処理部755から供給される交叉点位置合わせ結果を用いて、交叉点の位置合わせと同様の位置合わせを行いながら、赤外光画像血管抽出結果と初期画像血管抽出結果とを重畳する。重畳処理部771は、重畳結果をシフト処理部772に供給する。
【0370】
なお、血管位置合わせ処理部756は、赤外光画像血管抽出結果を初期画像血管抽出結果に近づけるように位置合わせを行う。
【0371】
シフト処理部772は、赤外光画像血管抽出結果全体を移動(シフト)させ、赤外光画像血管抽出結果と初期画像血管抽出結果との差分の絶対値が最小となる位置を検索し、差分の絶対値が最小となった状態で、重畳結果を伸ばし処理部773に供給する。
【0372】
伸ばし処理部773は、赤外光画像血管抽出結果を任意の方向に伸ばし(変形させ)、赤外光画像血管抽出結果と初期画像血管抽出結果との差分の絶対値が最小となる形状を検索し、差分の絶対値が最小となった状態で、重畳結果を回転処理部774に供給する。
【0373】
回転処理部774は、赤外光画像血管抽出結果を左右に回転させ、赤外光画像血管抽出結果と初期画像血管抽出結果との差分の絶対値が最小となる向きを検索し、差分の絶対値が最小となった状態で、重畳結果を拡大縮小処理部775に供給する。
【0374】
拡大縮小処理部775は、赤外光画像血管抽出結果を拡大したり縮小したりし、赤外光画像血管抽出結果と初期画像血管抽出結果との差分の絶対値が最小となる大きさを検索し、差分の絶対値が最小となった状態で、重畳結果を収束判定部776に供給する。
【0375】
収束判定部776は、供給された重畳結果に基づいて、位置合わせが収束したか否かを判定する。例えば、収束判定部776は、上述した各処理を複数回繰り返し行わせ、今回得られた位置合わせ結果を、前回の位置合わせ結果と比較し、前回より赤外光画像血管抽出結果が初期画像血管抽出結果に近づいた場合、収束していないと判定し、前回より赤外光画像血管抽出結果が初期画像血管抽出結果に近づいていない場合、収束したと判定する。
【0376】
収束していないと判定した場合、収束判定部776は、その重畳結果をシフト処理部772に戻し、再度、位置合わせを行わせる。また、位置合わせが収束したと判定した場合、収束判定部776は、重畳結果(例えば、赤外光画像血管抽出結果と初期画像血管抽出結果との差分の絶対値が最小となるときの重畳結果)を位置合わせ情報として、位置合わせ情報バッファ714に記憶させる。
【0377】
なお、交叉点位置合わせ処理部755は、血管位置合わせ処理部756と基本的に同様の構成を有し、位置合わせに用いる生体情報が血管全体かその交叉点かの違い以外は、基本的に同様の処理を行う。
【0378】
全ての赤外光画像に対して位置合わせ処理が施され、各赤外光画像に対応する位置合わせ情報が位置合わせ情報バッファ714に記憶される。すると、可視光画像位置合わせ処理部715は、入力画像バッファ711から可視光画像を1枚ずつ読み出して、読み出した可視光画像に対応する赤外光画像の位置合わせ情報を、位置合わせ情報バッファ714から読み出す。そして、可視光画像位置合わせ処理部715は、可視光画像に位置合わせ情報を適用して位置合わせを行う。
【0379】
位置合わせされた可視光画像は、超解像処理部716に供給されて、画像の重ね合わせによる超解像処理が施される。全ての可視光画像に対して、このような位置合わせと超解像処理が繰り返されて生成された、より高解像度かつダイナミックレンジの大きな眼底画像は、記憶部103に記憶されたり、出力部104より出力されたりする。なお、ここで高解像度とは、ボケが除去され、よりシャープな画像であることを示しており、実際に解像度が高くなくてもよい。
【0380】
[眼底画像生成処理の流れ]
次に、
図34のフローチャートを参照して、このような眼底画像処理装置700により実行される眼底画像生成処理の流れの例について説明する。
【0381】
ステップS601において、撮像部701は、可視光と赤外光で同時に複数回、被験者の眼底(すなわち、被写体)を撮像する。このとき、可視光は低光量であり、赤外光は位置合わせを行うのに十分な光量である。
【0382】
ステップS602において、画像処理部702は、ステップS601の処理により得られた撮像画像、すなわち可視光画像と赤外光画像とを入力画像バッファ711に記憶させる。
【0383】
ステップS603において、赤外光画像位置合わせ処理部712は、最初の赤外光画像を初期画像として初期画像バッファ713に記憶させる。
【0384】
ステップS604において、赤外光画像位置合わせ処理部712は、入力画像バッファ711から、未処理の赤外光画像を1枚選択して読み出す。
【0385】
ステップS605において、赤外光画像位置合わせ処理部712は、位置合わせ処理を行う。なお、位置合わせ処理は、
図13および
図14のフローチャートを参照して説明した生体情報位置合わせ処理と基本的に同様である。ただし、
図13の生体情報位置合わせ処理においては、入力画像と前回の超解像結果画像とが用いられるのに対して、ステップS605の位置合わせ処理においては、赤外光画像と初期画像とが用いられる点が異なる。したがって、位置合わせ処理の説明は繰り返しになるので省略する。
【0386】
ステップS606において、赤外光画像位置合わせ処理部712は、位置合わせ情報を位置合わせ情報バッファ714に記憶させる。
【0387】
ステップS607において、赤外光画像位置合わせ処理部712は、全ての赤外光画像を処理したか否かを判定し、未処理の赤外光画像が存在すると判定した場合、処理をステップS604に戻し、それ以降の処理を実行させる。
【0388】
ステップS607において、全ての赤外光画像が処理されたと判定された場合、処理はステップS608に進む。
【0389】
ステップS608において、可視光画像位置合わせ処理部715は、最初の可視光画像を初期画像として超解像結果画像バッファ717に記憶させる。
【0390】
ステップS609において、可視光画像位置合わせ処理部715は、入力画像バッファ711から、未処理の可視光画像を1枚選択して読み出す。
【0391】
ステップS610において、可視光画像位置合わせ処理部715は、位置合わせ情報バッファ714に記憶された位置合わせ情報を読み出す。すなわち、可視光画像位置合わせ処理部715は、ステップS609で読み出した可視光画像に対応する赤外光画像の位置合わせ情報を読み出す。
【0392】
ステップS611において、可視光画像位置合わせ処理部715は、位置合わせ情報を用いて可視光画像の位置合わせ処理を行う。
【0393】
ステップS612において、超解像処理部716は、超解像処理を行う。なお、超解像処理は、
図15のフローチャートを参照して説明した超解像処理と基本的に同様である。ただし、
図15の超解像処理においては、位置合わせされた入力画像と前回の超解像結果画像とが重ね合わされるのに対して、ステップS612の超解像処理においては、位置合わせされた可視光画像と前回の超解像結果画像とが重ね合わされる点が異なる。したがって、超解像処理の説明は繰り返しになるので省略する。
【0394】
ステップS613において、超解像処理部716は、超解像処理により得られた新たな超解像結果画像を記憶部103や出力部104に出力するとともに、超解像結果画像バッファ717に記憶させる。
【0395】
ステップS614において、超解像処理部716は、全ての可視光画像を処理したか否かを判定し、未処理の可視光画像が存在すると判定された場合、処理をステップS609に戻し、それ以降の処理を実行させる。
【0396】
ステップS614において、全ての可視光画像が処理されたと判定された場合、眼底画像生成処理は終了する。
【0397】
以上のように、赤外光画像における位置合わせ情報を用いて、可視光画像に対して位置合わせが行われることより、より高画質な被写体の撮像画像を得ることが出来るようになる。
【0398】
<5.第5の実施の形態>
[眼底画像処理装置の他の構成]
次に、赤外光画像における位置合わせ情報を用いて、可視光画像に対して位置合わせが行われる場合の、眼底画像処理装置の他の構成例を説明する。
【0399】
図35は、眼底画像処理装置の他の構成例を示すブロック図である。
図35に示される眼底画像処理装置800は、赤外光画像における位置合わせ情報を用いて位置合わせが行われた可視光画像に含まれる生体情報を、トーンリプロダクション処理や超解像処理に利用し、より高画質な眼底画像を生成する。
【0400】
眼底画像処理装置800は、
図29の眼底画像処理装置700と基本的に同様の構成を有し、同様の処理を行う。ただし、眼底画像処理装置800は、眼底画像処理装置700が有する画像処理部702の代わりに、画像処理部802を有する。したがって、以下では、画像処理部802についてのみ説明する。
【0401】
画像処理部802は、画像処理部702と基本的に同様の構成を有し、同様の処理を行う。ただし、画像処理部802は、画像処理部702が有する超解像処理部716および超解像結果画像バッファ717の代わりに、ノイズ削減処理部811、ノイズ削減結果画像バッファ812、トーンリプロダクション処理部415、および超解像処理部416を有する。したがって、以下では、ノイズ削減処理部811、ノイズ削減結果画像バッファ812、トーンリプロダクション処理部415、および超解像処理部416についてのみ説明する。
【0402】
ノイズ削減処理部811は、
図16のノイズ削減処理部413と基本的に同様の構成を有し、同様の処理を行う。ただし、ノイズ削減処理部811は、可視光画像位置合わせ処理部715により位置合わせが行われた可視光画像を、ノイズ削減結果画像バッファ812に保持される前回の重ね合わせ結果(つまり、ノイズ削減結果)の画像と重ね合わせることにより、眼底画像のダイナミックレンジを拡張し、ノイズを低減させる。
【0403】
ノイズ削減結果画像バッファ812は、
図16のノイズ削減結果画像バッファ414と基本的に同様の構成を有し、同様の処理を行う。ただし、ノイズ削減結果画像バッファ812は、ノイズ削減処理部811により生成されたノイズ削減結果画像を記憶し、必要に応じて適宜そのノイズ削減結果画像を、ノイズ削減処理部811に供給する。なお、ノイズ削減結果画像バッファ812は、ノイズ削減処理部811を介して可視光画像位置合わせ処理部715から最初に供給されてきた位置合わせされた可視光画像を初期画像として記憶する。
【0404】
トーンリプロダクション処理部415および超解像処理部416は、それぞれ
図16のトーンリプロダクション処理部415および超解像処理部416と基本的に同様の構成を有し、同様の処理を行う。したがって、その説明は繰り返しになるので省略する。
【0405】
[眼底画像生成処理の流れ]
次に、
図36のフローチャートを参照して、このような眼底画像処理装置800により実行される眼底画像生成処理の流れの例について説明する。
【0406】
ステップS641乃至ステップS651の各処理は、
図34のステップS601乃至ステップS611の各処理と同様であるので、その説明は繰り返しになるので省略する。
【0407】
ステップS652乃至ステップS656の各処理は、
図22のステップS406乃至ステップS410と基本的に同様である。ただし、ステップS652において、ノイズ削減処理部811は、ステップS651の処理により位置合わせされた可視光画像を重ね合わせ、ノイズを低減させる。
【0408】
ステップS653において、ノイズ削減処理部811は、全ての可視光画像を処理したか否かを判定する。未処理の可視光画像が存在すると判定された場合、ノイズ削減処理部811は、処理をステップS654に進める。
【0409】
ステップS654において、ノイズ削減結果画像バッファ812は、ステップS652の処理により得られるノイズ削減処理結果画像、つまり、重ね合わせされた可視光画像を記憶する。可視光画像を記憶すると、ノイズ削減結果画像バッファ812は、処理をステップS649に戻し、それ以降の処理を繰り返す。
【0410】
ステップS649乃至ステップS654の処理が繰り返され、ステップS653において、全ての可視光画像が処理されたと判定された場合、ノイズ削減処理部811は、処理をステップS655に進める。
【0411】
ステップS655において、トーンリプロダクション処理部415は、生成された1枚の可視光画像に対してトーンリプロダクション処理を行う。なお、トーンリプロダクション処理の詳細は、
図23および
図24のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0412】
ステップS656において、超解像処理部416は、トーンリプロダクション処理が施された可視光画像について、超解像処理を行う。なお、超解像処理の詳細は、
図25のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0413】
これにより高解像度な眼底画像が得られ、眼底画像生成処理は終了する。
【0414】
以上のように、赤外光画像における位置合わせ情報を用いて、可視光画像に対して位置合わせが行われることより、より高画質な被写体の撮像画像を得ることが出来るようになる。
【0415】
[他の構成の眼底画像処理装置への適用]
ところで、撮像部により得られた可視光画像と赤外光画像との両画像を用いて、より高画質な被写体の撮像画像を得る第4,第5の実施の形態の手法は、上述した第1乃至第3の実施の形態の眼底画像処理装置100,200,400の各々に適用することができる。
【0416】
第4,第5の実施の形態の手法が適用された眼底画像処理装置100,200,400の各々の構成は、
図1,
図3,
図16のそれぞれに示す構成と基本的に同様の構成を有する。しかしながら、第4,第5の実施の形態の手法が適用された眼底画像処理装置100,200,400各々は、可視光画像と赤外光画像との両画像を用いるため、第1乃至第3の実施の形態における処理とは異なる処理を実行する。したがって、以下では、眼底画像処理装置100,200,400の順に、第4,第5の実施の形態の手法が適用された場合の処理について説明する。
【0417】
はじめに、可視光画像および赤外光画像の両方を用いる場合の
図1の眼底画像処理装置100について説明する。
【0418】
図1の眼底画像処理装置100の撮像部101は、可視光と赤外光で同時に眼底の撮像を複数回繰り返す。すなわち、撮像部101は、
図29の撮像部701と同様の構成を有し、同様の処理を行う。
【0419】
画像処理部102のうち、動きベクトル検出部121の処理においては、赤外光画像のみが用いられ、画像処理部102のその他の構成要素の処理においては、可視光画像および赤外光画像の両方が用いられる。
【0420】
すなわち、入力画像バッファ111は、撮像部101から供給される、可視光画像および赤外光画像を入力画像として記憶する。
【0421】
SR画像バッファ113は、生成された可視光画像および赤外光画像のSR画像を保持し、可視光画像および赤外光画像のSR画像を所定のタイミングで超解像処理部112や演算部114に供給する。
【0422】
SR画像バッファ113に保持された赤外光画像のSR画像は動きベクトル検出部121と動き補償部122に供給され、入力画像バッファ111に保持された赤外光画像のLR画像は動きベクトル検出部121と演算部124に供給される。一方、SR画像バッファ113に保持された可視光画像のSR画像は動き補償部122のみに供給され、入力画像バッファ111に保持された可視光画像のLR画像は演算部12のみに供給される。
【0423】
動きベクトル検出部121は、入力された赤外光画像のSR画像とLR画像に基づいて、赤外光画像のSR画像を基準とした動きベクトルを検出し、検出した赤外光画像の動きベクトルを動き補償部122と逆方向動き補償部126に供給する。
【0424】
動き補償部122は、動きベクトル検出部121から供給された赤外光画像の動きベクトルに基づいて、可視光画像および赤外光画像のSR画像に動き補償を施し、動き補償を施して得られた可視光画像および赤外光画像をダウンサンプリングフィルタ123に供給する。
【0425】
ダウンサンプリングフィルタ123は、動き補償部122から供給された可視光画像および赤外光画像をダウンサンプリングすることによってLR画像と同じ解像度の可視光画像および赤外光画像を生成し、生成した可視光画像および赤外光画像を演算部124に供給する。
【0426】
演算部124は、可視光画像および赤外光画像のそれぞれのLR画像と、ダウンサンプリングされた可視光画像および赤外光画像とのそれぞれの差分を表す差分画像を生成し、生成した可視光画像および赤外光画像のそれぞれの差分画像をアップサンプリングフィルタ125に供給する。
【0427】
アップサンプリングフィルタ125は、演算部124から供給された可視光画像および赤外光画像のそれぞれの差分画像をアップサンプリングすることによってSR画像と同じ解像度の画像を生成し、生成した可視光画像および赤外光画像を逆方向動き補償部126に出力する。
【0428】
逆方向動き補償部126は、動きベクトル検出部121から供給された赤外高画像の動きベクトルに基づいて、アップサンプリングフィルタ125から供給された可視光画像および赤外光画像に逆方向の動き補償を施し、逆方向の動き補償を施して得られた可視光画像および赤外光画像を表すフィードバック値を演算部114に供給する。
【0429】
演算部114は、逆方向動き補償部126から供給されるフィードバック値を、SR画像バッファ113から供給される、過去に生成した可視光画像および赤外光画像のSR画像に加算することにより、新たな可視光画像および赤外光画像のSR画像を生成する。演算部114は、生成した、新たな可視光画像および赤外光画像のSR画像をSR画像バッファ113に供給して保持させ、そのSR画像を次の超解像処理(すなわち、新たなSR画像の生成)に利用させる。また、演算部114は、生成した可視光画像のSR画像を、記憶部103に供給して記憶させたり、出力部104に供給して表示させたり、外部の装置等に出力させたりする。
【0430】
画像処理部102は、超解像処理部112を用いてこのような超解像処理を入力画像バッファ111に保持させた複数の可視光画像および赤外光画像の眼底画像(すなわち、LR画像)のそれぞれについて行い、最終的に1枚の、より高画質な可視光画像のSR画像を生成する。
【0431】
[眼底画像生成処理の流れ]
図37のフローチャートを参照して、このような眼底画像処理装置100により実行される可視光画像および赤外光画像の両方を用いた眼底画像生成処理の流れの例を説明する。
【0432】
ステップS681において、撮像部101は、可視光と赤外光で同時に複数回、被験者の眼底(すなわち、被写体)を撮像する。
【0433】
ステップS682において、画像処理部102は、ステップS101の処理により得られた可視光画像および赤外光画像を入力画像バッファ111に記憶させる。
【0434】
ステップS683において、画像処理部102は、任意の方法で最初の可視光画像および赤外光画像のSR画像である初期画像を生成し、それをSR画像バッファ113に記憶させる。
【0435】
ステップS684において、入力画像バッファ111は、保持している未処理の可視光画像および赤外光画像(すなわち、LR画像)を1枚ずつ選択し、それを超解像処理部112に供給する。
【0436】
ステップS685において、動きベクトル検出部121は、赤外光画像のSR画像とLR画像とから動きベクトルを検出する。
【0437】
ステップS686において、動き補償部122は、赤外光画像の動きベクトルを用いて、可視光画像および赤外光画像のSR画像に動き補償を施す。
【0438】
ステップS687において、ダウンサンプリングフィルタ123は、動き補償を施した可視光画像および赤外光画像のSR画像をLR画像と同じ解像度にダウンサンプリングする。
【0439】
ステップS688において、演算部124は、可視光画像および赤外光画像のSR画像のダウンサンプリング結果と、入力の可視光画像および赤外光画像のLR画像との差分画像を求める。
【0440】
ステップS689において、アップサンプリングフィルタ125は、可視光画像および赤外光画像のそれぞれの差分画像をアップサンプリングする。
【0441】
ステップS690において、逆方向動き補償部126は、ステップS685の処理により検出された赤外光画像の動きベクトルを用いて、可視光画像および赤外光画像のそれぞれの差分画像のアップサンプリング結果に逆方向の動き補償を施す。
【0442】
ステップS691において、演算部114は、ステップS690の処理により算出された可視光画像および赤外光画像のそれぞれの差分画像のアップリング結果であるフィードバック値を、SR画像バッファ113により保持される過去に生成された可視光画像および赤外光画像のそれぞれのSR画像に加算する。
【0443】
ステップS692において、画像処理部102は、新たに生成された可視光画像のSR画像を、記憶部103に記憶させたり、出力部104から出力させたりするとともに、可視光画像および赤外光画像をSR画像バッファ113に記憶させる。
【0444】
ステップS693において、入力画像バッファ111は、全ての可視光画像および赤外光画像(すなわち、LR画像)を処理したか否かを判定し、未処理の可視光画像および赤外光画像(すなわち、LR画像)が存在すると判定された場合、処理をステップS684に戻し、新たな可視光画像および赤外光画像を処理対象として選択し、その可視光画像および赤外光画像について、それ以降の処理を繰り返させる。
【0445】
ステップS693において、撮像部101により複数回撮像され得られた複数の可視光画像および赤外光画像の全てが処理され、1枚の、より高画質な可視光画像の眼底画像が得られたと判定された場合、眼底画像生成処理は終了する。
【0446】
このようにすることにより、眼底画像処理装置100は、眼底への可視光の照射光の光量を増大させずに、より高画質な眼底画像を得ることが出来る。つまり、眼底画像処理装置100は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0447】
次に、可視光画像および赤外光画像の両方を用いる場合の
図3の眼底画像処理装置200について説明する。
【0448】
図3の眼底画像処理装置200の撮像部101は、可視光と赤外光で同時に眼底の撮像を複数回繰り返す。すなわち、撮像部101は、
図29の撮像部701と同様の構成を有し、同様の処理を行う。
【0449】
画像処理部202のうち、生体情報位置合わせ処理部212の処理においては、赤外光画像のみが用いられ、画像処理部202のその他の構成要素の処理においては、可視光画像および赤外光画像の両方が用いられる。
【0450】
すなわち、入力画像バッファ111は、撮像部101から供給される、可視光画像および赤外光画像を入力画像として記憶する。
【0451】
生体情報位置合わせ処理部212は、被写体の生体情報を用いて、入力画像バッファ111から供給される赤外光画像(すなわち、入力画像)と、超解像結果画像バッファ214から供給される赤外光画像(すなわち、超解像処理部213により重ね合わせされた画像)との間で画像の位置合わせを行う。そして、生体情報位置合わせ処理部212は、赤外光画像の位置合わせ結果を入力画像バッファ111から供給される可視光画像に反映させる。
【0452】
超解像処理部213は、超解像結果画像バッファ214から、過去に生成した可視光画像および赤外光画像の超解像処理結果画像(すなわち、超解像処理結果として得られる画像)を取得し、その超解像結果画像と、生体情報位置合わせ処理部212より位置合わせされた可視光画像および赤外光画像の入力画像とを重ね合わせ、新たな可視光画像および赤外光画像の超解像結果画像を生成する。超解像処理部213は、可視光画像の超解像結果画像を記憶部103に記憶させたり、出力部104より出力させたりするとともに、可視光画像および赤外光画像を超解像結果画像バッファ214に供給し、記憶させる。
【0453】
超解像結果画像バッファ214は、超解像処理部213により生成された可視光画像および赤外光画像の超解像結果画像を保持し、所定のタイミングにおいてその超解像結果画像を、生体情報位置合わせ処理部212や超解像処理部213に供給する。
【0454】
[眼底画像生成処理の流れ]
図38のフローチャートを参照して、このような眼底画像処理装置200により実行される可視光画像および赤外光画像の両方を用いた眼底画像生成処理の流れの例を説明する。
【0455】
ステップS721乃至ステップS724の各処理が、
図37のステップS681乃至ステップS684の各処理と同様に実行される。ただし、ステップS723において、可視光画像および赤外光画像の初期画像は超解像結果画像バッファ214に記憶される。また、ステップS724において、未処理の可視光画像および赤外光画像が入力画像として1枚ずつ選択される。
【0456】
処理対象が決定されると、ステップS725において、生体情報位置合わせ処理部212は、赤外光画像に対して生体情報位置合わせ処理を行う。なお、生体情報位置合わせ処理の詳細は、
図13のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。ただし、
図13のフローチャートのうち、ステップS227の血管の位置合わせ処理の詳細についてのみ、
図39を参照して後述する。
【0457】
ステップS726において、超解像処理部213は、可視光画像および赤外光画像の位置合わせ結果を用いて、超解像処理を行う。なお、超解像処理の詳細は、
図15のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0458】
ステップS727において、超解像処理部213は、超解像処理により得られた新たな可視光画像の超解像結果画像を記憶部103や出力部104に出力するとともに、可視光画像および赤外光画像を超解像結果画像バッファ214に記憶させる。
【0459】
ステップS728において、入力画像バッファ111は、全ての可視光画像および赤外光画像を処理したか否かを判定し、未処理の可視光画像および赤外光画像が存在すると判定された場合、処理をステップS724に戻し、それ以降の処理を実行させる。
【0460】
ステップS728において、全ての可視光画像および赤外光画像を処理したと判定された場合、眼底画像生成処理は終了する。
【0461】
[血管位置合わせ処理の流れ]
次に、
図39のフローチャートを参照して、
図38のステップS725の生体情報位置合わせ処理(すなわち、
図13の生体情報位置合わせ処理)のうち、ステップS227の血管の位置合わせ処理の流れの例を説明する。
【0462】
ステップS741乃至ステップS748の各処理が、
図14のステップS241乃至ステップS248の各処理と同様に実行される。ただし、ステップS741乃至ステップS748の各処理は、処理対象の赤外光画像に対して行われる。
【0463】
ステップS748において収束したと判定された場合、ステップS749において、生体情報位置合わせ処理部212は、処理対象の赤外光画像に対応する可視光画像を入力画像バッファ111から読み出す。
【0464】
ステップS750において、生体情報位置合わせ処理部212は、処理対象の赤外光画像の位置合わせ結果をステップS749で読み出した可視光画像に反映させる。すなわち、可視光画像に対して位置合わせを行う。
【0465】
ステップS751において、生体情報位置合わせ処理部212は、赤外光画像の位置合わせ結果に基づいて赤外光画像の位置合わせを行い、位置合わせされた可視光画像および赤外光画像と血管抽出結果とを超解像処理部213に出力する。
【0466】
これにより、血管位置合わせ処理は終了する。
【0467】
このようにすることにより、眼底画像処理装置200は、眼底への可視光の照射光の光量を増大させずに、より高画質な眼底画像を得ることが出来る。つまり、眼底画像処理装置200は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0468】
次に、可視光画像および赤外光画像の両方を用いる場合の
図16の眼底画像処理装置400について説明する。
【0469】
図16の眼底画像処理装置400の撮像部101は、可視光と赤外光で同時に眼底の撮像を複数回繰り返す。すなわち、撮像部101は、
図29の撮像部701と同様の構成を有し、同様の処理を行う。
【0470】
画像処理部402のうち、生体情報位置合わせ処理部212の処理においては、赤外光画像のみが用いられ、画像処理部402のその他の構成要素の処理においては、可視光画像および赤外光画像の両方が用いられる。
【0471】
すなわち、入力画像バッファ111は、撮像部101から供給される、可視光画像および赤外光画像を入力画像として記憶する。
【0472】
生体情報位置合わせ処理部212は、被写体の生体情報を用いて、入力画像バッファ111から供給される赤外光画像(すなわち、入力画像)と、ノイズ削減結果画像バッファ414から供給される赤外光画像(すなわち、ノイズ削減処理部413により重ね合わせされた画像)との間で画像の位置合わせを行う。そして、生体情報位置合わせ処理部212は、赤外光画像の位置合わせ結果を入力画像バッファ111から供給される可視光画像に反映させる。
【0473】
ノイズ削減処理部413は、生体情報位置合わせ処理部212により位置合わせが行われた可視光画像および赤外光画像のそれぞれを、ノイズ削減結果画像バッファ414に保持される前回の重ね合わせ結果(つまり、ノイズ削減結果)の可視光画像および赤外光画像のそれぞれと重ね合わせることにより、可視光画像および赤外光画像のダイナミックレンジを拡張し、ノイズを低減させる。
【0474】
ノイズ削減結果画像バッファ414は、ノイズ削減処理部413により生成された可視光画像および赤外光画像のノイズ削減結果画像(すなわち、重ね合わせ結果画像)を記憶し、生体情報位置合わせ処理部212やノイズ削減処理部413の要求に基づいて、若しくは所定のタイミングにおいて、その可視光画像および赤外光画像のノイズ削減結果画像を、生体情報位置合わせ処理部212やノイズ削減処理部413に供給する。
【0475】
つまり、生体情報位置合わせ処理部212による赤外光画像の位置合わせや、ノイズ削減処理部413による重ね合わせは、繰り返し行われる。このようにして、撮像部101において撮像されて得られた複数の可視光画像および赤外光画像が全て処理され、1枚の可視光画像が生成される。
【0476】
トーンリプロダクション処理部415および超解像処理部416は、
図16と同様の構成を有し、同様の処理を行う。すなわち、トーンリプロダクション処理部415および超解像処理部416の生成された1枚の可視光画像は、トーンリプロダクション処理部415によりトーンリプロダクション処理が施され、その後、超解像処理部416により超解像処理が施される。
【0477】
[眼底画像生成処理の流れ]
図40のフローチャートを参照して、このような眼底画像処理装置400により実行される可視光画像および赤外光画像の両方を用いた眼底画像生成処理の流れの例を説明する。
【0478】
ステップS771乃至ステップS774の各処理が、
図38のステップS721乃至ステップS724の各処理と同様に実行される。ただし、ステップS773において、可視光画像および赤外光画像の初期画像はノイズ削減結果画像バッファ414に記憶される。
【0479】
処理対象が決定されると、ステップS775において、生体情報位置合わせ処理部212は、赤外光画像に対して生体情報位置合わせ処理を行う。なお、生体情報位置合わせ処理の詳細は、
図13のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。また、
図13のフローチャートのうち、ステップS227の血管の位置合わせ処理の詳細は、
図39のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0480】
ステップS776において、ノイズ削減処理部413は、ステップS775の処理により位置合わせされた可視光画像および赤外光画像のそれぞれの画像を重ね合わせ、ノイズを低減させる。
【0481】
ステップS777において、ノイズ削減処理部413は、全ての可視光画像および赤外光画像を処理したか否かを判定する。入力画像バッファ111に未処理の可視光画像および赤外光画像が存在すると判定された場合、ノイズ削減処理部413は、処理をステップS778に進める。
【0482】
ステップS778において、ノイズ削減結果画像バッファ414は、ステップS776の処理により得られる可視光画像および赤外光画像のノイズ削減処理結果画像、つまり、重ね合わせされた可視光画像および赤外光画像のそれぞれを記憶する。可視光画像および赤外光画像を記憶すると、ノイズ削減結果画像バッファ414は、処理をステップS774に戻し、それ以降の処理を繰り返す。
【0483】
ステップS774乃至ステップS778の処理が繰り返され、ステップS777において、全ての可視光画像および赤外光画像を処理したと判定された場合、ノイズ削減処理部413は、処理をステップS779に進める。
【0484】
ステップS779において、トーンリプロダクション処理部415は、生成された1枚の可視光画像に対してトーンリプロダクション処理を行う。なお、トーンリプロダクション処理の詳細は、
図23のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0485】
ステップS780において、超解像処理部416は、トーンリプロダクション処理された画像について、超解像処理を行う。なお、超解像処理の詳細は、
図25のフローチャートを参照して説明したのと基本的に同様であるので、その説明を省略する。
【0486】
ステップS780の処理が終了すると、眼底画像生成処理は終了する。
【0487】
このようにすることにより、眼底画像処理装置400は、眼底への可視光の照射光の光量を増大させずに、より高画質な眼底画像を得ることが出来る。つまり、眼底画像処理装置400は、被写体への負荷の増大を抑制しながら、より高画質な被写体の撮像画像を得ることができる。
【0488】
<6.第6の実施の形態>
上述した眼底画像処理装置を、観察者が持ち運べるように小型化することにより、例えば、医師による被験者の眼底の遠隔診察が可能となる。この場合、眼底画像処理装置による眼底画像生成処理のうちの一部が、ネットワーク上で行われることにより、眼底画像処理装置の小型化が可能となる。
【0489】
図41は、遠隔診察システムの構成例について説明する図である。
図41に示されるように、遠隔診察システム900は、小型眼底カメラ911、医師用端末装置912、看護師用端末装置913、患者用端末装置914、ネットワーク915、画像処理装置916、およびデータベース917を有する。
【0490】
小型眼底カメラ911は、被験者(すなわち患者)の眼底を被写体として複数回撮像し、その結果得られる複数の眼底画像のデータをネットワーク915に送信する。小型眼底カメラ911は、本実施の形態ではCCD撮像素子やCMOS撮像素子、撮像した眼底画像をネットワークに送信する送信部等を有する構成を有している。しかしながら、小型眼底カメラ911は、特に本実施形態の構成をとる必要はなく、撮像した複数の眼底画像のデータをネットワーク915に送信することが可能な構成であれば足りる。
【0491】
なお、小型眼底カメラ911は、より高画質な眼底画像を出力するために、撮影中の被写体に光を照射する機能を有している。すなわち、小型眼底カメラ911は、上述した撮像部101または撮像部701と同様の構成を有し、同様の処理を実行することができる。小型眼底カメラ911は、観察者が持ち運び可能なサイズとなっており、看護師または患者自身により操作される。
【0492】
医師用端末装置912は、ネットワーク915を介して、データベース917から眼底画像のデータおよび付加情報のデータを、診察用データとして取得する。データベース917からは、後述する画像処理装置916により生成された高画質な眼底画像のデータが取得される。また、データベース917から取得される付加情報には、例えば、眼底画像中の注目部位を示す情報、類似症例の情報等、医師による診察を補助する情報が含まれる。また、付加情報には、例えば、患者に関する他の情報、すなわち患者の体質、病歴等の情報が含まれてもよく、さらには任意の情報が含まれてもよい。
【0493】
医師用端末装置912は、医師による撮像箇所の指示、診察結果、再撮像の指示等を、必要に応じて、ネットワーク915を介して看護師用端末装置913および患者用端末装置914に送信する。
【0494】
看護師用端末装置913は、ネットワーク915を介して、医師用端末912から撮像箇所の指示、診察結果、再撮像の指示等を受信する。また、看護師用端末装置913は、ネットワーク915を介して、データベース917から眼底画像のデータ、および必要に応じて付加情報のデータを取得する。
【0495】
患者用端末装置914は、ネットワーク915を介して、必要に応じて医師用端末912から撮像箇所の指示、診察結果、再撮像の指示等を受信する。また、患者用端末装置914は、ネットワーク915を介して、データベース917から眼底画像のデータを取得する。また、患者用端末装置914は、ネットワーク915を介して、データベース917から健康情報等を取得してもよい。
【0496】
ネットワーク915は、クラウド型ネットワークであり、例えば本実施の形態ではインターネットである。
【0497】
画像処理装置916は、上述した眼底画像装置100,200,400,700,800のそれぞれにおける画像処理部102,202,402,702,802のいずれかと同様の構成を有し、同様の処理を実行することができる。すなわち、画像処理装置916は、ネットワーク915を介して小型眼底カメラ911から取得した複数の撮像画像から、より高画質な眼底画像を生成する。生成された眼底画像のデータは、ネットワーク915を介してデータベース917に記憶されたり、医師用端末装置912、看護師用端末装置913、または患者用端末装置に供給される。
【0498】
データベース917は、画像処理装置916により生成された眼底画像のデータを記憶する。また、データベース917は、付加情報や、その他の情報を記憶する。その他の情報の内容は特に限定されず、例えば、健康情報等が含まれてもよい。なお、ネットワーク915を介して接続される機器の数は、
図41の例に限定されない。
【0499】
[遠隔診察処理]
次に、
図42のフローチャートを参照して、このような遠隔診察システム900により実行される遠隔診察処理の流れの例について説明する。
【0500】
ステップS881において、小型眼底カメラ911は、看護師または患者の操作に従って、眼底を複数回撮像する。すなわち、小型眼底カメラ911は、低光量の可視光の照射光、または低光量の可視光および位置合わせを行うのに十分な光量の赤外光を含む照射光で眼底を複数回撮像する。
【0501】
ステップS882において、小型眼底カメラ911は、ステップS881で得られた眼底の撮像画像のデータをネットワーク915に送信する。
【0502】
ステップS883において、画像処理装置916は、ネットワーク915を介して取得した眼底の撮像画像から、より高画質な眼底画像を生成する眼底画像生成処理を行う。なお、ステップS883の眼底画像生成処理は、
図2,
図12,
図22,
図34,または
図36のフローチャートを参照して説明した眼底画像生成処理と基本的に同様である。ただし、
図2,
図12,
図22,
図34,または
図36の各眼底画像生成処理の1番目に行われる眼底の撮像処理は、ステップS881で小型眼底カメラ911により行われるので、各眼底画像生成処理の2番目以降の処理が行われる。
【0503】
ステップS884において、画像処理装置916は、生成した眼底画像のデータを、ネットワーク915を介してデータベース917に記憶させる。
【0504】
ステップS885において、医師用端末装置912は、ネットワーク915を介して、眼底画像のデータと付加情報のデータを診察用データとしてデータベース917から取得する。その後、医師用端末装置912は、必要に応じて診察結果等をネットワーク915を介して、看護師用端末装置913や患者用端末装置914に送信する。
【0505】
ステップS886において、医師用端末装置912は、再撮像の指示がされたか否かを判定する。再撮像の指示がされた場合、処理はステップS881に戻され、それ以降の処理が繰り返される。
【0506】
ステップS886において、再撮像の指示がされなかった場合、遠隔診察処理は終了する。
【0507】
このような遠隔診察システム900によれば、看護師または患者により小型眼底カメラ911を用いて撮像された眼底の撮像画像を用いて、遠隔地にいる医師が診察を行うことができる。この場合、小型眼底カメラ911により撮像された撮像画像から、ネットワーク915上の画像処理装置916により高画質な被写体の撮像画像が生成されるので、医師は高画質な被写体の撮像画像を見ながら、遠隔診察を行うことができる。
【0508】
<7.第7の実施の形態>
[パーソナルコンピュータ]
上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。この場合、例えば、
図43に示されるようなパーソナルコンピュータとして構成されるようにしてもよい。
【0509】
図43において、パーソナルコンピュータ1000のCPU(Central Processing Unit)1001は、ROM1002に記憶されているプログラム、または記憶部1013からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
【0510】
CPU1001、ROM1002、およびRAM1003は、バス1004を介して相互に接続されている。このバス1004にはまた、入出力インタフェース1010も接続されている。
【0511】
入出力インタフェース1010には、キーボード、マウスなどよりなる入力部1011、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部1012、ハードディスクなどより構成される記憶部1013、モデムなどより構成される通信部1014が接続されている。通信部1014は、インターネットを含むネットワークを介しての通信処理を行う。
【0512】
入出力インタフェース1010にはまた、必要に応じてドライブ1015が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア1021が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部1013にインストールされる。
【0513】
上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
【0514】
この記録媒体は、例えば、
図43に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア1021により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM1002や、記憶部1013に含まれるハードディスクなどで構成される。
【0515】
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0516】
また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。各ステップを異なる装置で処理してもよい。また、1つのステップを異なる処理で分担してもよい。
【0517】
また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
【0518】
また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。