(58)【調査した分野】(Int.Cl.,DB名)
周波数変調される送信信号に係る送信波を射出し、前記送信波が物標において反射することによって到来する反射波を受信信号として受信し、前記受信信号に基づいて前記物標の少なくとも位置情報を導出するレーダ装置であって、
前記物標のうちの静止物標に対して前記受信信号に関する信号レベルの変動値を導出する導出手段と、
前記変動値を積算した値である変動積算値を算出する算出手段と、
前記変動積算値が所定の閾値を下回る場合に、前記静止物標を制御対象外の物標と判定する判定手段と、
を備え、
前記変動値は前記信号レベルの極大値および極小値から導出される値であり、
前記導出手段は、前記静止物標が所定距離を上回る位置に存在する場合は、前記極大値から前記極小値への変動値を導出し、前記静止物標が前記所定距離以下の位置に存在するときは、前記極小値から極大値への変動値を導出すること、
を特徴とするレーダ装置。
【発明を実施するための形態】
【0033】
以下、図面を参照しつつ本発明の実施の形態について説明する。以下に示す実施の形態は例示であり、本願発明の技術的範囲をこれらに限定するものではない。
【0034】
<第1の実施の形態>
<1.構成等>
<1−1.車両全体図>
図1は、車両CRの全体図である。車両CRは本実施形態の車両制御システム10に含まれるレーダ装置1と、車両制御装置2とを主に備える。車両CRはレーダ装置1を車両前方のバンパー近傍に備えている。このレーダ装置1は、一回の走査で所定の走査範囲を走査して、車両CRと物標との車両進行方向に対応する距離、つまり、物標から反射した反射波がレーダ装置1の受信アンテナに到達するまでの距離である縦距離を導出する。また、レーダ装置1は車両CRと物標との車両横方向(車幅方向)の距離である横距離を導出する。この横距離は、具体的には、車両CRの進行方向に仮想的に延伸する基準軸BLに対して略直交する方向の車両にCR対する物標の距離であり、例えば、基準軸BLを±0mとした場合、車両CRの左方向を−(マイナス)、車両CRの右方向を+(プラス)の値とする距離である。なお、横距離は車両CRに対する物標の角度および縦距離の情報に基づいて三角関数の演算を行うことで導出される。このように、レーダ装置1は車両CRに対する物標の位置情報を導出する。また、レーダ装置1は、車両CRの速度に対する物標の速度である相対速度を導出する。
【0035】
なお、
図1にはレーダ装置1の後述する2つの送信アンテナ(
図2に示す送信アンテナ13aおよび送信アンテナ13b)から送信される送信波のビームパターンが示されている。基準軸BLを角度±0度とした場合、送信アンテナ13aから出力される送信波のビームパターンNAは、送信アンテナ13bから出力される送信波のビームパターンBAと比べて角度範囲が狭く(例えば、±6度)、縦距離が大きい比較的シャープなビームパターンで出力される。縦距離が大きいのは送信波を出力する出力レベルが比較的大きいためである。
【0036】
また、これとは逆に送信アンテナ13bから出力される送信波のビームパターンBAは、送信アンテナ13aから送信される送信波のビームパターンNAと比べて角度範囲が広く(例えば±10度)、縦距離が小さい比較的ブロードなビームパターンで出力される。縦距離が小さいのは送信波を出力する出力レベルが比較的小さいためである。そして、送信アンテナ13aで送信波を出力する送信期間と、送信アンテナ13bと送信波を出力する送信期間とのそれぞれの送信期間において異なるビームパターンの送信波を出力することで、物標からの反射波の位相折り返しによる角度導出の誤りを防止できる。物標の角度導出処理については後述する。
【0037】
また、
図1のレーダ装置1はその搭載位置を車両前方のバンパー近傍としているが、前方のバンパー近傍に限らず、車両CRの後方バンパー近傍、および、車両CRの側方のサイドミラー近傍等、後述する車両制御装置2の車両CRの制御目的に応じて物標を導出できる搭載位置であれば他の部分であってもよい。
【0038】
また、車両CRは、車両CRの内部に車両制御装置2を備える。この車両制御装置2は、車両CRの各装置を制御するECU(Electronic Control Unit)である。
【0039】
<1−2.システムブロック図>
図2は、車両制御システム10のブロック図である。車両制御システム10は、レーダ装置1と車両制御装置2とが電気的に接続され、主にレーダ装置1で導出された位置情報および相対速度の物標情報を車両制御装置2に出力する。つまり、レーダ装置1は、車両CRに対する物標の縦距離、横距離、および、相対速度の情報である物標情報を車両制御装置2に出力する。そして、車両制御装置2が物標情報に基づき車両CRの各種装置の動作を制御する。また、車両制御システム10の車両制御装置2は、車速センサ40、および、ステアリングセンサ41などの車両CRに設けられる各種センサと電気的に接続されている。さらに、車両制御装置2はブレーキ50、および、スロットル51などの車両CRに設けられる各種装置と電気的に接続されている。
【0040】
レーダ装置1は、主に信号生成部11、発振器12、送信アンテナ13、受信アンテナ14、ミキサ15、LPF(Low Pass Filter)16,AD(Analog to Digital)変換器17、および、信号処理部18により構成される。
【0041】
信号生成部11は、後述する送信制御部107の制御信号に基づいて、例えば三角波状に電圧が変化する変調信号を生成する。
【0042】
発振器12は、電圧で発振周波数を制御する電圧制御発振器であり、信号生成部11で生成された変調信号に基づき所定周波数信号(例えば、76.5GHz)を周波数変調し、76.5GHzを中心周波数とする周波数帯の送信信号として送信アンテナ13に出力する。
【0043】
送信アンテナ13は、送信信号に係る送信波を車両外部に出力する。本実施の形態のレーダ装置1は送信アンテナ13a、および、送信アンテナ13bの2本の送信アンテナを有している。送信アンテナ13a、および、13bは、切替部131のスイッチングにより所定の周期で切替えられ、発振器12と接続された送信アンテナ13から送信波が連続的に車両外部に出力される。そして、送信アンテナ13aと送信アンテナ13bとはアンテナ素子の配置(アンテナパターン)が異なる。これにより、
図1に示したように送信アンテナ13aおよび13bから送信される送信波のビームパターンが異なるものとなる。
【0044】
切替部131は、発振器12と送信アンテナ13との接続を切替えるスイッチであり、送信制御部107の信号により送信アンテナ13a、および、送信アンテナ13bのいずれかの送信アンテナと発振器12とを接続する。
【0045】
受信アンテナ14は、送信アンテナ13から連続的に送信される送信波が物標に反射した反射波を受信する複数のアレーアンテナである。本実施の形態では、受信アンテナ14a(ch1)、14b(ch2)、14c(ch3)、および、14d(ch4)の4本の受信アンテナが設けられている。なお、受信アンテナ14a〜14dのそれぞれのアンテナは等間隔に設けられている。
【0046】
ミキサ15は、各受信アンテナに設けられている。ミキサ15は、受信信号と送信信号とを混合する。そして、受信信号と送信信号との混合により送信信号と受信信号との両方の信号の差の信号であるビート信号が生成されて、LPF16に出力される。
【0047】
ここで、ビート信号を生成する送信信号と受信信号について、
図3を用いてFM−CW(Frequency Modulated Continuous Wave)の信号処理方式を例に説明する。なお、本実施形態では、以下にFM−CWの方式を例に説明を行うが、送信信号の周波数が上昇するUP区間と、送信信号の周波数が下降するDOWN区間のような複数の区間を組み合わせて物標を導出する方式であれば、このFM−CWの方式に限定されない。
【0048】
また、下記に記載の数式や
図3に示すFM−CWの信号やビート周波数等についての各記号は以下に示すものである。f
r:距離周波数、f
d:速度周波数、f
o:送信波の中心周波数、△F:周波数偏移幅、f
m:変調波の繰り返し周波数、c:光速(電波の速度)、T:車両CRと物標との電波の往復時間、f
s:送信/受信周波数、R:縦距離、V:相対速度、θ
m:物標の角度、θ
up:UP区間のピーク信号に対応する角度、θ
dn:DOWN区間のピーク信号に対応する角度。
【0049】
<2.FM−CWの信号処理>
物標の導出処理に用いられる信号処理の一例としてFM−CW(Frequency Modulated Continuous Wave)方式における信号処理について説明する。なお、本実施形態では、FM−CWの方式を例に説明を行うが、周波数が上昇する区間と周波数が下降する区間のような複数の区間を組み合わせて物標の位置等を検出する方式であれば、FM−CW方式に限定されない。
【0050】
図3は、FM−CW方式の信号を示す図である。
図3上段の図はFM−CW方式の送信信号TX、および、受信信号RXの信号波形を示す図である。また、
図3の中段の図は送信信号TXと受信信号RXとの差分により生じるビート周波数を示す図である。さらに、
図3下段の図はビート周波数に対応するビート信号を示す図である。
【0051】
図3上段の図は、縦軸が周波数[GHz]、横軸が時間[msec]を示す図である。図中の送信信号TXは、中心周波数をf
0(例えば、76.5GHz)として、所定周波数(例えば76.6GHz)まで上昇した後に所定周波数(例えば、76.4GHz)まで下降をするように200MHzの間で一定の変化を繰り返す。このように所定周波数まで周波数が上昇する区間(以下、「UP区間」ともいい、例えば、
図2に示す、区間U1、U2、U3、および、U4がUP区間となる。)と、所定周波数まで上昇した後に所定の周波数まで下降する区間(以下、「DOWN区間」ともいい、例えば、区間D1、D2、D3、および、D4がDOWN区間になる。)がある。また、送信アンテナ13から送信された送信波が物体にあたって反射波として受信アンテナ14に受信されると、受信アンテナ14を介して受信信号RXがミキサ15に入力される。この受信信号RXについても送信信号TXと同じように所定周波数まで周波数が上昇する区間と、所定周波数まで周波数が下降する区間とが存在する。
【0052】
なお、本実施の形態のレーダ装置1では、一つのUP区間と一つのDOWN区間の組み合わせを送信信号TXの1周期として、送信信号TXの2周期分に相当する送信波を車両外部に送信する。例えば、1周期目(時刻t0〜t1のUP区間の区間U1と、時刻t1〜t2のDOWN区間の区間D1)では送信アンテナ13aからビームパターンNAの送信波が出力される。次の周期の2周期目(時刻t2〜t3のUP区間の区間U2と、時刻t3〜t4のDOWN区間の区間D2)では送信アンテナ13bからビームパターンBAの送信波が出力される。そして、信号処理部18が送信信号TXと受信信号RXとにより物標情報を導出するための信号処理を行う(時刻t4〜t5の信号処理区間)。その後、3周期目(時刻t5〜t6のUP区間の区間U3と、時刻t6〜t7のDOWN区間の区間D3)では送信アンテナ13aからビームパターンNAの送信波が出力され、4周期目(時刻t7〜t8のUP区間U4と、時刻t8〜t9のDOWN区間D4)では送信アンテナ13bからビームパターンBAの送信波が出力され、その後、信号処理部18が物標情報を導出するための信号処理を行う。そして、以降は同様の処理が繰り返される。
【0053】
なお、車両CRに対する物標の距離に応じて、送信信号TXに比べて受信信号RXに時間的な遅れ(時間T)が生じる。さらに、車両CRの速度と物標の速度との間に速度差がある場合は、送信信号TXに対して受信信号RXにドップラーシフト分の差が生じる。
【0054】
図3中段の図は縦軸が周波数[kHz]、横軸が時間[msec]を示す図であり、図中にはUP区間およびDOWN区間の送信信号と受信信号との差を示すビート周波数が示されている。例えば、区間U1ではビート周波数BF1が導出され、区間D1ではビート周波数BF2が導出される。このように各区間において、ビート周波数が導出される。
【0055】
図3下段の図は、縦軸が振幅[V]、横軸が時間[msec]を示す図である。図中には、ビート周波数に対応するアナログ信号のビート信号BSが示されており、当該ビート信号BSが後述するLPF16でフィルタリングされた後、AD変換器17によりデジタルデータに変換される。なお、
図2では1つの反射点から受信した場合の受信信号RXに対応するビート信号BSが示されているが、送信信号TXに対応する送信波が複数の反射点に反射し、複数の反射波として受信アンテナ14に受信された場合は、受信信号RXは複数の反射波に応じた信号が発生する。また、1つの物標からの反射波において、車両の存在する路面に対する物標の存在する路面の傾斜に応じて、直接波のみが受信される場合と、直接波およびマルチパス波が受信されるときがある。そして、送信信号TXとの差分を示すビート信号BSは、複数の受信信号RXと送信信号TXとのそれぞれの差分が合成したものとなる。
【0056】
図2に戻り、LPF(Low Pass Filter)16は、所定周波数より低い周波数の成分を減少させることなく、所定周波数より高い周波数の成分を減少させるフィルタである。即ち、少なくとも制御対象となる物標の周波数成分を通過させるようカットオフ周波数が設定されている。なお、LPF16もミキサ15と同様に各受信アンテナに設けられている。
【0057】
AD変換器17は、アナログ信号であるビート信号を所定周期でサンプリングして、複数のサンプリングデータを導出する。そして、サンプリングされたデータを量子化することで、アナログデータのビート信号をデジタルデータに変換して、デジタルデータを信号処理部18に出力する。なお、AD変換器17もミキサ15と同様に各受信アンテナに設けられている。
【0058】
次に、ビート信号BSがAD変換器17によりデジタルデータに変換された後、信号処理部18によりFFT処理されることでビート信号BSの周波数ごとの信号レベルの値や位相情報を有するFFTデータが取得される。
【0059】
信号処理部18は、CPU181、および、メモリ182を備えるコンピュータであり、AD変換器17から出力されたデジタルデータのビート信号をFFT処理してFFTデータを取得し、FFTデータのビート信号の中から信号レベルの値が所定の閾値を超える信号をピーク信号として抽出する。そして、信号処理部18は、UP区間のピーク信号とDOWN区間のピーク信号とをペアリングしてペアデータを導出する。
【0060】
ここで、ペアデータの縦距離は(1)式により導出され、ペアデータの相対速度は(2)式により導出される。また、ペアデータの角度は(3)式により導出される。そして、(3)式により導出された角度と縦距離の情報から三角関数を用いた演算により、ペアデータの横距離が導出される。
【0063】
【数3】
また、信号処理部18は、今回処理の物標情報を導出する場合に、今回処理のペアデータの物標情報と予測情報とを所定のフィルタ定数でフィルタリングして今回処理の物標情報を導出する(例えば、(ペアデータの物標情報×フィルタ定数0.25)+(予測情報×フィルタ定数0.75)=今回処理の物標の物標情報)。そして、信号処理部18は、フィルタ処理の対象となる物標に対応するペアデータが所定の条件を満たすことで、当該ペアデータのフィルタ処理における所定のフィルタ定数を変更してフィルタリングの処理を行う。
【0064】
また、信号処理部18は、静止物標の受信信号に関する信号レベルに基づいて、制御対象外の静止物標の判定を行なう。具体的には、信号処理部18は、静止物標に対して、当該静止物標の受信信号に関する信号レベル(例えば、角度信号の信号レベル)の変動値を導出し、この変動値を積算した値(以下、「変動積算値」という。)が所定の閾値を下回る場合に、車両制御装置2の制御対象外の静止物標と判定する。この変動値は絶対値で積算される。なお、信号処理部18は、このように制御対象外の静止物標と判定された静止物標が路上物標であることを示すフラグ(以下、「路上物標フラグ」という。)をON状態とする。その結果、レーダ装置1は路上物標フラグがON状態の静止物標の物標情報を車両制御装置2に出力することなく、制御対象の静止物標(停止物標)と制御対象外の静止物標(路上物標)とを確実に判別でき、不必要な制御の実行を防止できる。また、角度信号の変動積算値に基づいて判定することで、複数の静止物標のうち判定の対象となる静止物標に対して制御対象か否かの判定を行える。
【0065】
なお、静止物標とは、時間が経過しても移動することなく同じ位置に存在している物標であり、車両CRの速度と略同じ相対速度を有する物標をいう。これに対して、移動物標とは、特定速度で移動し、車両CRの速度と異なる相対速度を有する物標をいう。
【0066】
メモリ182は、CPU181により実行される各種演算処理などの実行プログラムを記憶する。また、メモリ182は、信号処理部18が導出した複数の物標の物標情報を記憶する。詳細には、今回処理を含む各処理(例えば、前回処理や前回処理以前の処理)の物標の物標情報を記憶する。また、メモリ182は、物標の物標情報を導出する際に用いられるフィルタ定数の値を記憶する。さらに、メモリ182は後述する物標の相対横距離と縦距離とにより、物標が車両CRの走行する車線内に存在する度合いを示す自車線存在値である自車線確率のマップデータを記憶する。
【0067】
送信制御部107は信号処理部18と接続され、信号処理部18からの信号に基づき、変調信号を生成する信号生成部11に制御信号を出力する。また送信制御部107は、信号処理部18からの信号に基づき、送信アンテナ13a、および、送信アンテナ13bのいずれかの送信アンテナと発振器12とが接続する切替部131に制御信号を出力する。
【0068】
車両制御装置2は、車両CRの各種装置の動作を制御する。つまり、車両制御装置2は、車速センサ40、および、ステアリングセンサ41などの各種センサから情報を取得する。そして、車両制御装置2は、各種センサから取得した情報、および、レーダ装置1の信号処理部18から取得した物標情報に基づき、ブレーキ50、および、スロットル51などの各種装置を作動させて車両CRの挙動を制御する。
【0069】
車両制御装置2による車両制御の例としては次のようなものがある。車両制御装置2は、車両CRが走行する自車線内の移動物標である前方車両を追従対象として走行する制御を行う。具体的には、車両制御装置2は、車両CRの走行に伴いブレーキ50、および、スロットル51の少なくとも一の装置を制御して、車両CRと前方車両との間で所定の車間距離を確保した状態で車両CRを前方車両に追従走行させるACCの制御を行う。
【0070】
また、車両制御装置2は、車両CRの障害物への衝突に備え、車両CRの乗員を保護する制御である。詳細には、車両CRが障害物(例えば、車両CRの走行する車線上の車両CRの前方に停止している車両である停止車両に対応する静止物標である停止物標)に衝突する危険性がある場合に、車両CRのユーザに対して図示しない警報器を用いて警告の表示を行ったり、ブレーキ50を制御して車両CRの速度を低下させるPCSの制御を行う。さらに、車両制御装置2は車室内のシートベルトにより乗員を座席に固定、または、ヘッドレストを固定して衝突時の車両CRのユーザへの衝撃を軽減するPCSの制御を行う。
【0071】
車速センサ40は、車両CRの車軸の回転数に基づいて車両CRの速度に応じた信号を出力する。車両制御装置2は、車速センサ40からの信号に基づいて、現時点の車両速度を取得する。
【0072】
ステアリングセンサ41は、車両CRのドライバーの操作によるステアリングホイールの回転角を検知し、車両CRの車体の角度の情報を車両制御装置2に送信する。なお、このステアリングセンサ41から入力された車両CRの車体の角度の情報に基づいて、車両制御装置2は演算した車両CRの走行する車線のカーブ半径の情報をレーダ装置1に出力する。
【0073】
ブレーキ50は、車両CRのドライバーの操作により車両CRの速度を減速させる。また、ブレーキ50は、車両制御装置2の制御により車両CRの速度を減速させる。例えば、車両CRと前方車両との縦距離を一定の距離に保つように車両CRの速度を減速させる。
【0074】
スロットル51は、車両CRのドライバーの操作により車両CRの速度を加速させる。また、スロットル51は、車両制御装置2の制御により車両CRの速度を加速させる。例えば、車両CRと前方車両との縦距離を一定の距離に保つように車両CRの速度を加速させる。
【0075】
<2.処理フローチャート>
<2−1.全体処理>
図4〜
図6は、信号処理部18が行う物標情報の導出の処理フローチャートである。最初に信号処理部18は、送信波を生成する指示信号を送信制御部107に出力する(ステップS101)。そして、信号処理部18から指示信号が入力された送信制御部107により信号生成部11が制御され、送信信号TXに対応する送信波が生成される。生成された送信波は、車両外部に出力される。
【0076】
次に、送信波が物体に反射することによって到来する反射波を受信アンテナ14が受信し、反射波に対応する受信信号RXと送信信号TXとがミキサ15によりミキシングされ、送信信号TXと受信信号RXとの差分の信号であるビート信号BSが生成される。そして、アナログ信号であるビート信号BSが、LPF16によりフィルタリングされ、AD変換器17によりデジタルデータに変換され、信号処理部18に入力される。
【0077】
信号処理部18は、デジタルデータのビート信号に対してFFT処理を行い(ステップS102)、周波数ごとのビート信号の信号レベルの値を有するFFTデータを取得する。
【0078】
次に、信号処理部18は、FFTデータのビート信号のうち信号レベルの値が所定の閾値を超えるビート信号をピーク信号として抽出する(ステップS103)。これにより、今回処理で信号処理部18が処理するピーク信号数が確定する。
【0079】
そして、信号処理部18はピーク抽出処理で抽出された今回処理のピーク信号の中から、前回処理で導出された物標の物標情報から今回処理のピーク信号の周波数を予測した予測ピーク信号に対して、例えば±3BIN(1BINは、周波数約468Hzに相当)以内に存在する今回処理のピーク信号を前回処理の物標に対応するピーク信号と時間的な連続性を有する履歴ピーク信号として抽出する(ステップS104)。
【0080】
次に、信号処理部18は、車速センサ40の車両CRの速度情報からUP区間のピーク信号とDOWN区間のピーク信号との周波数差が、車両CRの速度に対応する周波数差となる各区間のピーク信号を静止物標に対応するピーク信号として抽出する処理を行う(ステップS105)。
【0081】
なお、このように履歴ピーク抽出(ステップS104)、および、静止物ピーク抽出(ステップS105)の処理を行うのは、信号処理部18が車両制御装置2に対して優先的に出力する必要性のある物標に対応するピーク信号を選択するためである。例えば、前回処理で導出された物標と時間的な連続性を有する今回処理の物標のピーク信号は、前回処理で導出されていない新規に導出された物標と比べて物標が実際に存在する確率が高いため優先順位が高い場合がある。また、静止物標でも車両との距離および相対速度に応じて、衝突の危険性のある停止物標の物標情報は、車両制御装置2に出力して車両を制御する必要があるため優先順位が高い場合がある。
【0082】
そして、信号処理部18はUP区間およびDOWN区間のそれぞれの区間において、ピーク信号に基づいて方位演算を行う(ステップS106)。詳細には信号処理部18は、所定の方位演算アルゴリズムによって物標の方位(角度)を導出する。例えば、方位演算アルゴリズムは、ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)であり、各受信アンテナ14a〜14dにおける受信信号の位相情報から相関行列の固有値、および、固有ベクトル等が演算されて、UP区間のピーク信号に対応する角度θ
upと、DOWN区間のピーク信号に対応する角度θ
dnとが導出される。そして、UP区間およびDOWN区間の各ピーク信号がペアリングされた場合に、上述の(3)式によりペアデータの角度が導出される。
【0083】
また、1つのピーク信号の周波数の情報は、物標の縦距離と相対速度の情報に対応しているが、1つのピーク信号の周波数に複数の物標の情報が含まれているときがある。例えば、車両CRに対する物標の位置情報において、縦距離が同じ値で角度が異なる値の複数の物標の情報が、同じ周波数のピーク信号に含まれている場合がある。このような場合、異なる角度から到来する複数の反射波の位相情報はそれぞれ異なる位相情報となる。そのため、信号処理部18は各反射波の位相情報に基づいて1つのピーク信号に対して異なる角度に存在する複数の物標の物標情報を導出する。
【0084】
ここで、方位演算を行う場合、物標の角度によっては、位相が360度回転して物標が存在する本来の角度とは異なる角度情報が導出される場合がある。例えば、受信アンテナで受信した物標からの反射波の位相情報が420度の場合、実際の物標は、
図1で示したビームパターンNA以外のビームパターンBAの領域に物標が存在するときでも、位相折り返しにより位相情報が60度(420度-360度)と判定され、ビームパターンBAには含まれないビームパターンNAの領域に物標が存在するとする誤った角度情報が導出されるときがある。そのため、送信アンテナ13aおよび13bの2つの送信アンテナからそれぞれ異なるビームパターンの送信波を出力し、同一物標に対する各送信アンテナでの受信レベルを比較することで物標の正確な角度を導出する。
【0085】
具体的には各ビームパターンの送信波に対する反射波に基づいて、次のように角度を導出する。反射波の位相情報が60度の場合に、送信アンテナ13aの送信波の反射波と、送信アンテナ13bの送信波の反射波とに対応するそれぞれの角度スペクトラムの信号レベルの値を比べて、送信アンテナ13aの送信波の反射波に対応する角度スペクトラムの信号レベルの値が大きい場合は、ビームパターンBAの領域を除くビームパターンNAの領域内の位相情報60度に対応する角度を物標の角度として導出する。また、送信アンテナ13bの送信波の反射波に対応する角度スペクトラムの信号レベルの値の方が大きい場合は、ビームパターンNAの領域を除くビームパターンBAの領域内の位相情報420度に対応する角度を物標の角度として導出する。このように送信信号TXの2周期分の送信波で各周期ごとに異なるビームパターンの送信波を出力することで、方位演算を行う場合の位相折り返しによる物標の誤った角度情報の導出を防止する。
【0086】
次に、信号処理部18は、
図5に示すUP区間のピーク信号とDOWN区間のピーク信号とをペアリングするペアリング処理を行う(ステップS107)。このペアリング処理は、ステップS103の処理で導出された全ピーク信号のうち履歴ピーク抽出処理(ステップS104)で抽出された履歴ピーク信号については、UP区間の履歴ピーク信号とDOWN区間の履歴ピーク信号とでペアリング処理が行われる。また、静止物ピーク抽出処理(ステップS105)で抽出された静止物ピーク信号については、UP区間の静止物ピーク信号とDOWN区間の静止物ピーク信号とでペアリング処理が行われる。さらに、ピーク抽出処理で抽出された全ピーク信号のうち履歴ピーク信号と静止物ピーク信号とを除く残りのピーク信号については、UP区間の残りのピーク信号とDOWN区間の残りのピーク信号とでペアリングの処理が行われる。
【0087】
なお、UP区間のピーク信号とDOWN区間のピーク信号とのペアリング処理は、例えば、マハラノビス距離を用いた演算を用いて行われる。具体的には、レーダ装置1を車両CRに搭載する前に試験的にUP区間のピーク信号とDONW区間のピーク信号とをペアリングする中で正しい組み合わせでペアリングされた正常ペアデータと、誤った組み合わせでペアリングされたミスペアデータとのデータを複数取得し、複数の正常ペアデータにおけるUP区間のピーク信号とDOWN区間のピーク信号との「信号レベルの値の差」、「角度の値の差」、および、「角度スペクトラムの信号レベルの値の差」の3つのパラメータ値から、複数の正常ペアデータの3つのパラメータごとの平均値を導出し、予めメモリ182に記憶する。
【0088】
そして、レーダ装置1を車両CRに搭載した後に、信号処理部18が物標の物標情報を導出する場合、今回処理で取得されたFFTデータのピーク信号のうちUP区間のピーク信号とDOWN区間のピーク信号のすべての組み合わせの3つのパラメータ値と、複数の正常ペアデータの3つのパラメータごとの平均値とを用いて以下に示す(4)式によりマハラノビス距離を導出する。信号処理部18は、マハラノビス距離が最小の値となる今回処理のペアデータを正常ペアデータとして導出する。つまり、マハラノビス距離の値が小さい程、正常ペアデータである確率が高くなる。
【0089】
ここで、マハラノビス距離は、平均がμ=(μ1, μ2, μ3)
T で、共分散行列がΣであるような多変数ベクトルx=(x1, x2, x3)で表される一群の値に対するもので(4)式により導出される。なお、μ1, μ2, μ3は正常ペアデータの3つのパラメータの値を示し、x1, x2, x3は今回処理のペアデータの3つのパラメータの値を示す。
【0090】
【数4】
そして、信号処理部18は、このペアリング処理において正常ペアデータのパラメータの値と上述の(1)式〜(3)式とを用いて、正常ペアデータと判定されたペアデータの縦距離、相対距離、および、角度に基づく横距離を導出する。ここで、横距離は、絶対横距離と相対横距離とがある。絶対横距離とは、基準軸BLを±0mとした車両CRの車幅方向の左方向を−(マイナス)、右方向が+(プラス)とする横距離である。また、相対横距離とは、車両CRの走行する自車線のカーブ半径の情報と、物標の縦距離、および、絶対横距離の情報とから、カーブ半径に応じた物標の横距離として導出される距離である。詳細には車両CRのステアリングホイールを車両CRのドライバが操作することでステアリングセンサ41から入力されるステアリングホイールの回転角の情報に応じて直線および曲線に仮想的に変化する基準軸BLを±0mとした車両CRの車幅方向の左方向を−(マイナス)、右方向が+(プラス)とする横距離である。
【0091】
このような相対横距離を物標情報として用いるのは、横距離の算出において自車線のカーブの状態を考慮する必要があるときである。以下では、単に横距離と記載した場合は、上述の絶対横距離および相対横距離の少なくともいずれか一方として説明を行ない、特に必要な場合には一方のみの横距離を記載するが、その横距離(例えば、相対横距離)に限定されるのもではなく、他方の横距離(例えば、絶対横距離)を用いてもよいものとする。
【0092】
次に、信号処理部18は、今回処理のペアデータの物標情報と、予測物標との間に時間的に連続する関係が存在するか否かの判定(連続性判定)処理を行う(ステップS108)。ここで、予測情報は、信号処理部18が前回処理の物標の物標情報における相対速度やこれまでの物標情報の値の変化等から、今回処理のペアデータの物標情報に含まれる縦距離、横距離、および、相対速度等を予測した情報である。
そして、今回処理のペアデータの物標情報と、予測情報とに時間的に連続する関係がある場合とは、例えば、今回処理のペアデータの物標情報と、予測情報との縦距離、横距離、および、相対速度のそれぞれの差の値が所定値以内の場合である。なお、信号処理部18は、所定値以内に複数の予測物標情報が存在する場合、今回処理のペアデータの物標情報との差の値が最も小さい所定値以内の予測情報が、今回処理のペアデータの物標情報と時間的に連続する関係を有するものと判定し、予測情報と時間的な連続性を有する今回処理のペアデータ(以下、「過去対応ペアデータ」という。)に対して後述するステップS110の処理のフィルタ処理を行う。
【0093】
また、信号処理部18は、今回処理のペアデータの物標情報と、予測情報の縦距離、横距離、および、相対速度等のそれぞれの差の値が所定値以内ではない場合に、今回処理のペアデータの物標情報と予測情報とに時間的に連続する関係がないと判定する。そして、このように予測情報と時間的な連続性がないと判定された今回処理のペアデータ(以下「新規ペアデータ」という。)は、今回処理において初めて導出された物標に対応するペアデータとなる。なお、新規ペアデータの場合は、以下で説明するステップS110の処理のフィルタ処理では、時間的な連続性を有する前回処理の物標が存在しないため予測情報が導出されず、新規ペアデータの縦距離、横距離、および、相対速度が今回処理の物標の物標情報となる。
【0094】
次に信号処理部18は、車両CRの速度とペアデータの相対速度の情報から移動物標に対応するペアデータを導出(ステップS109)し、移動物標に対応するペアデータの移動物標フラグをON状態とする。この処理を行うことで優先的に処理する必要性のあるペアデータを導出できる。
【0095】
そして、信号処理部18は、今回処理のペアデータの物標情報と予測情報とに時間的に連続する関係が存在する場合は、今回処理のペアデータの物標情報と予測情報との縦距離、横距離、および、相対速度のフィルタリングを行い(ステップS110)、今回処理のフィルタ処理により導出される物標の物標情報を今回処理の物標の物標情報として導出する。
【0096】
信号処理部18は、例えば、移動物標に対応する今回処理のペアデータの横距離である今回横距離にフィルタ定数0.25の値の重み付けを行い、前回処理の物標の横距離である前回確定横距離から今回処理の物標の横距離を予測した予測横距離にフィルタ定数0.75の値の重み付けを行なう。そして重み付けを行なった後の両方の横距離を足し合わせたものを今回確定横距離として導出する(例えば、(今回横距離×フィルタ定数0.25)+(予測横距離×フィルタ定数0.75)=今回確定横距離)。また、縦距離、相対速度については、各所定のフィルタ定数を用いたフィルタ処理が行なわれる。
【0097】
そして、信号処理部18は、今回処理の次に行われる処理(以下、「次回処理」という。)において、次回処理の履歴ピーク抽出処理(ステップS104)に用いる物標情報の予測値(予測縦距離、予測相対速度、予測横距離等)を導出する(ステップS111)。具体的には、信号処理部18は、車両制御を行う上で優先順位の高い20個の物標情報を導出して、UP区間、DOWN区間のそれぞれの今回処理のピーク信号の周波数等の予測値を算出しておくことで、次回処理における履歴ピークの導出処理に用いる。優先順位については、ACC制御を行う場合は、車両CRの走行している自車線上に相当する横距離を有し、車両CRとの縦距離が比較的小さい物標が優先順位が高く、隣接車線に相当する横距離で、車両CRとの縦距離が比較的大きい物標が優先順位が低い。また、PCSの場合は、衝突余裕時間(Time-To-Collision、以下「TTC」という。)の比較的短い物標の優先順位が高く、TTCの比較的長い物標の優先順位が低い。
【0098】
次に、
図6に示すように信号処理部18は予めメモリ182に記憶された相対横距離と縦距離とをパラメータとする二次元の自車線確率のマップデータから物標が自車線内に存在する確率を導出する(ステップS112)。そして、物標の相対横距離の絶対値が大きくなる程、自車線確率の値は低下する。また、物標の縦距離の値が大きくなる程、自車線確率の値は低下する。なお、この自車線確率の値が高い程、車両CRの走行する自車線内に物標が存在することとなるので、車両制御装置2は、そのような物標を対象に例えばACCの車両制御を実行する。
【0099】
そして、信号処理部18は、これまでの処理で導出された静止物標に対して、車両制御装置2への出力が不要な静止物標となる路上物標の判定処理を行う(ステップS113)。具体的には、信号処理部18は、静止物標に対して車両CRの存在する路面(つまり、路上物標の存在する上り坂の路面に対して平坦な路面)を基準とする高さ方向である基準方向において、比較的低い位置に存在する路上物標(例えば、道路の中央分離帯やカーブに設置されている反射板の付いたチャッターバーなどの道路鋲、車線上に設けられたマンホール、道路と道路とを接続する接合部材などの車両の走行する車線の路面上に設けられた物体である路上物体に対応する静止物標)か否かの判定処理を行なう。このような静止物標に対する路上物標の判定処理については、後に詳述する。
【0100】
次に、信号処理部18は、複数の物標情報に対して一つの物体に対応する物標情報にまとめる処理を行う(ステップS114)。例えば、レーダ装置1の送信アンテナ13から送信波を射出した場合、送信波が物標に反射するとき、受信アンテナ14に受信される反射波は複数存在する。つまり、同一物体における複数の反射点からの反射波が受信アンテナ14に到来する。その結果、信号処理部18はそれぞれの反射波に基づき位置情報の異なる物標を複数導出するが、もともとは一つの物体の物標なので、各物標を一つにまとめて同一物体の物標の情報として取り扱う。そのため、複数の物標の各相対速度が略同一で、各物標の縦距離および横距離が所定範囲内であれば、信号処理部18は複数の物標を同一物体における物標とみなし、当該複数の物標を一つの物体に対応する物標にまとめる結合処理を行う。
【0101】
そして、信号処理部18は、ステップS114の処理で結合処理された物標情報から、路上物標フラグがON状態となっている静止物標を除いて、車両制御装置2に出力する優先順位の高い物標の物標情報を車両制御装置2に出力する(ステップS115)。
【0102】
<2−2.路上物標判定処理>
次に、
図6の路上物標判定処理(ステップS113)について説明する。最初に
図7および
図8を用いて、路上物標判定処理が行なわれる場面の例について説明する。
図7は、車両CRと停止車両FCおよび路上物体RFとが第1距離(例えば、縦距離70m)離れている場合の反射波について説明する図である。つまり、
図7上段は車両CRと停止車両FCとが第1距離離れている場合の反射波を示し、
図7下段は車両CRと路上物体RFとが第1距離離れている場合の反射波を示す。
【0103】
具体的には、
図7上段は、車両CRのレーダ装置1の送信アンテナ13aからビームパターンNAの送信波が出力され、その送信波が停止車両FCの後部に反射し、直接波dr1とマルチパス波mr1とがレーダ装置1の受信アンテナ14に受信される状態を示している。なお、車両CRに対する停止車両FCの縦距離は第1距離であり、車両CRの存在する路面R1に対して、停止車両FCの存在する路面R2は所定の角度を有する。つまり、車両CRの存在する路面R1に対して、停止車両FCの存在する路面R2は上り坂となっている。言い換えると、基準方向において路面R1の高さを0(ゼロ)とした場合、車両CRの位置は車両CRの基準方向において高さ0(ゼロ)であり、停止車両FCの位置は基準方向において高さh2となり、両者の高さの差はh2である。
【0104】
また、
図7下段は、車両CRのレーダ装置1の送信アンテナ13aからビームパターンNAの送信波が出力され、その送信波が路上物体RFに反射し、直接波dr11とマルチパス波mr11とがレーダ装置1の受信アンテナ14に受信される状態を示している。なお、車両CRに対する路上物体RFの縦距離は第1距離であり、車両CRの存在する路面R1に対して、路上物体RFの存在する路面R2は所定の角度を有する。つまり、車両CRの存在する路面R1に対して、路上物体RFの存在する路面R2は上り坂となっている。言い換えると、基準方向において路面R1の高さを0(ゼロ)とした場合、車両CRの位置は高さ0(ゼロ)であり、路上物体RFの位置は高さh2となり、両者の高さの差はh2である。
【0105】
そして、複数回の物標導出処理が行われて、車両CRと停止車両FCおよび路上物体RFの静止物標(静止物標fc1、および、静止物標rf1)とが接近して車両CRと停止車両FCとの距離が第2距離(例えば、縦距離50m)を経て、第3距離(例えば、縦距離30m)となった場合の反射波について
図8を用いて説明する。
図8は車両CRと停止車両FCおよび路上物体RFとが第3距離離れている場合の反射波について説明する図である。
【0106】
つまり、
図8上段は車両CRと停止車両FCとが第3距離の位置関係を有する場合の反射波を示し、
図8下段は車両CRと路上物体RFとが第3距離の位置関係を有する場合の反射波を示す。具体的には、
図8上段は、車両CRのレーダ装置1の送信アンテナ13aからビームパターンNAの送信波が出力され、その送信波が停止車両FCの後部に反射し、直接波dr2とマルチパス波mr2とがレーダ装置1の受信アンテナ14に受信される。なお、車両CRの停止車両FCへの接近に伴い、車両CRに対する停止車両FCの縦距離は第3距離となっており、車両CRの存在する路面は、縦距離が第1距離のときの路面R1とは異なり路面R2となっている。このため、車両CRは第1距離のときの路面R1の位置よりも高い位置に存在する。言い換えると、基準方向において路面R1の位置を0(ゼロ)とした場合、車両CRの位置は高さh1であり、停止車両FCの位置は高さh2となり、両者の高さの差はh2−h1である。
【0107】
また、
図8下段は、車両CRのレーダ装置1の送信アンテナ13aからビームパターンNAの送信波が出力され、その送信波が路上物体RFに反射し、直接波dr12とマルチパス波mr12とがレーダ装置1の受信アンテナ14に受信される。なお、車両CRの路上物体RFへの接近に伴い、車両CRに対する路上物体RFの縦距離は第3距離となっており、車両CRの存在する路面は、縦距離が第1距離のときの路面R1とは異なり路面R2となっている。このため、車両CRは第1距離のときの路面R1の位置よりも高い位置に存在する。言い換えると、基準方向において路面R1の位置を0(ゼロ)とした場合、車両CRの位置は高さh1であり、路上物体RFの位置は高さh2となり、両者の高さの差はh2−h1である。
【0108】
ここで、車両CRに対する停止車両FCの縦距離は、車両CRの停止車両FCへの接近に伴い、第1距離よりも近い第3距離となり、両者の高さの差がh2からh2−h1へと小さくなる。そして、停止車両FCの車体がある程度の高さを有しているため、直接波dr2とマルチパス波mr2との反射経路は異なる経路となり、
図8上段の直接波dr2とマルチパス波mr2とのそれぞれの受信信号に関する信号レベルの値は両者の距離が近づくにつれて強まっていく。そのため直接波dr2の直接信号と、マルチパス波mr2のマルチパス信号とが合成され、縦距離が近づくのに伴い停止車両FCの静止物標fc1に関して振幅変動の大きい角度信号が得られる。
【0109】
これに対して、車両CRが路上物体RFに近づくにつれて、路上物体RFの静止物標rf1のマルチパス波mr12の信号レベルは小さくなる。車両CRに対する路上物体RFの縦距離は、車両CRの路上物体RFへの接近に伴い、第1距離よりも近い第3距離となり、両者の高さの差がh2からh2−h1へと小さくなる。その結果、直接波dr12とマルチパス波mr12との反射経路が略同じ経路となることで、マルチパス波mr12のマルチパス信号に関する信号レベルが小さくなる。その結果、直接波dr12の直接信号と、マルチパス波mr12のマルチパス信号とが合成され、縦距離が近づくのに伴い路上物体RFの静止物標rf1に関して振幅変動の小さい角度信号が得られる。
【0110】
次に、静止物標(静止物標fc1、および、静止物標rf1)が路上物標か否かの判定に用いられる角度信号について、縦距離ごとの角度信号推移グラフを用いて説明する。
図9の縦軸は信号レベルの値(dB)を示し、横軸は車両に対する静止物標の縦距離(m)とその時点の物標導出処理の処理タイミングを示し、タイミングは所定周期(例えば50msec)となる。
【0111】
図9上段では、停止車両FCの静止物標fc1の縦距離(所定の処理タイミング(例えば50msecごと))に応じた角度信号の信号レベルの推移をグラフ線L1で示している。角度信号の信号レベルは静止物標fc1からの直接波とマルチパス波の影響により距離に応じて落ち込み(振幅変動)が生じるため、距離に応じて極大値と極小値が生じる。例えば、
図7上段に示した第1距離(縦距離70m)の処理タイミングtaでは、グラフ線L1が増加傾向から減少傾向に変化する極大値を示す極大b1に対応する信号レベルが角度信号の信号レベルの値となる。
【0112】
ここで、極大は信号レベルの値が増加傾向から減少傾向へと転じる部分であり、その値を極大値という。また、極小は信号レベルの値が減少傾向から増加傾向へと転じる部分であり、その値を極小値という。このため、例えば、第1距離における信号レベルの値が極大値と判定されるのは、少なくとも処理タイミングtaの直前の処理タイミングの信号レベルの値と、処理タイミングtaの信号レベルの値と、処理タイミングtaの次の処理タイミングの信号レベルの値との3つ処理タイミングの信号レベル値が必要である。そして、これら3つの信号レベルの値の変化に基づき処理タイミングtaの次の処理タイミングで極大b1の値が極大値であると判明する。以下で示す極大値および極小値はこのようにして少なくとも3つの処理タイミングの信号レベルの値により導出される。
【0113】
そして、車両CRが停止車両FCに近づくにつれて、車両CRの停止車両FCに対する距離が第2距離(縦距離50m、処理タイミングtb)、第3距離(縦距離30m、処理タイミングtc)となる。そして、
図8上段に示した第3距離の処理タイミングtcでは、極小s2に対応する信号レベルが角度信号の信号レベルの値となる。なお、グラフ線L1の第1距離から第3距離までの間には極大b1およびb2と、極小s1およびs2の2つの極大と2つの極小とが示され、第3距離から第4距離(縦距離15m、処理タイミングtd)の間には極大b3およびb4と、極小s3の2つの極大と1つの極小とが示されている。そして、車両CRと停止車両FCとの距離が近づくにつれて、グラフ線L1の振幅が大きくなり、信号レベルの値も大きくなっている
図9下段では、路上物体RFの静止物標rf1の縦距離(所定の処理タイミング)に応じた角度信号の信号レベルの推移をグラフ線L2で示している。この場合も角度信号の信号レベルは、静止物標fc1からの直接波とマルチパス波の影響により距離に応じて落ち込み(マルチパス波の信号レベルの減少)が生じるため、距離に応じて極大値と極小値が生じる。ただし、路上物体RFの場合、停止車両FCに比べて高さが小さいため、マルチパス波の落ち込み量は停止車両FCのときよりも小さくなり、更に車両CRの存在する路面と路上物体RFの存在する路面との基準方向の高さの差がより小さくなるような車両CRと路上物体RFとの距離がある縦距離(例えば、30m)以下になると信号レベルおよび落ち込み量(振幅変動量)が小さくなる。例えば、
図7下段に示した第1距離の処理タイミングtaでは、グラフ線L2の極大b11から少し減少した信号レベルが角度信号の信号レベルの値となる。
【0114】
そして、車両CRが路上物体RFに近づくにつれて、車両CRの路上物体RFに対する距離が第2距離、第3距離となる。そして、
図8下段に示した第3距離の処理タイミングtcでは、グラフ線L2が極大値を示す極大b15に対応する信号レベルが角度信号の信号レベルの値となる。なお、グラフ線L2の第1距離から第3距離までの間には極大b12、b13、b14、および、b15と、極小s11、s12、s13、および、s14の4つの極大と4つの極小とが示されている。そして、グラフ線L2の第3距離から第4距離の間には極大b16およびb17と、極小s15およびs16の2つの極大と2つの極小とが示されている。車両CRと静止物標rfとの距離が近づく中で第3距離までは、グラフ線L2の振幅が比較的大きくなり、信号レベルの値も大きくなっている。そして、第3距離から更に車両CRと路上物体RFとの距離が近づくにつれて、グラフ線L2の振幅が比較的小さくなり、信号レベルの値も小さくなっている。
【0115】
ここで、第3距離を境にグラフ線L2の振幅が比較的小さくなるのは、
図7下段および
図8下段の図を用いて説明したように、車両CRが路上物体RFに近づくにつれて、車両CRの位置と路上物体RFの位置とにおける基準方向の高さの差が小さくなることで、マルチパス波の経路が直接波の経路と重なり、マルチパス波が少なくなるため、つまりマルチパス波を受信することがほとんどなくなるためである。また、グラフ線L2の信号レベルの値が小さくなるのは、停止車両FCと比べて高さの低い路上物体RFに車両CRが近づくと送信波のビームパターンNAの領域から路上物体RFが外れて直接波も少なくなるため、つまり直接波を受信することがほとんどなくなるためである。
【0116】
本発明は、登坂路上に路上物体RFが存在する場合にマルチパスの影響で生じる受信信号の落ち込み量(振幅変動量)が停止車両FCの場合に生じる落ち込み量よりも小さいという現象に着目したものであり、受信信号に関する信号レベルの変動値を積算することで停止車両FCの停止物標と路上物体RFの路上物標とを区別するようにしている。
【0117】
次に、路上物標の判定処理の処理内容を説明する。
図10〜
図12は、路上物標の判定処理の処理フローチャートである。
【0118】
図10において、信号処理部18は、物標導出処理で導出された複数の静止物標のうち路上物標判定の処理対象の静止物標の縦距離が今回の処理タイミングで第1距離(例えば、縦距離70m)以下か否かを判定する(ステップS201)。
【0119】
静止物標の縦距離が第1距離以下の場合(ステップS201でYes)、角度信号レベルの極大および極小の数を導出する(ステップS202)。つまり、ステップS202の処理は、静止物標の縦距離が第1距離以下となった場合に開始される。なお、極大、極小の数は、ステップS207で路上物体RFか否かを判定するために用いられる。
図9上段の停止車両FCの静止物標fc1において、例えば処理タイミングtcの次の処理タイミングを今回の処理タイミングとすると、処理タイミングta〜tcまでは、極大の数が2個(極大b1およびb2)、極小の数が2個(極小s2およびs2)となる。また、
図9下段の路上物体RCの静止物標rf1において、同様に処理タイミングtcの次の処理タイミングを今回の処理タイミングとすると、処理タイミングta〜tcまでは、極大の数が4個(極大b12、b13、b14、および、b15)、極小の数が4個(極小s11、s12、s13、および、s14)となる。
【0120】
なお、
図10のステップS201の処理において、静止物標の縦距離が第1距離を上回る場合(ステップS201でNo)、信号処理部18は全ての静止物標に対して路上物標の判定処理が終了したか否かを判定する(
図12に示すステップS211)。信号処理部18が、全ての静止物標に対する処理が終了したと判定した場合(ステップS211でYes)、処理は終了する。なお、信号処理部18は全ての静止物標に対する処理が終了していないと判定した場合(ステップS211でNo)、
図10のステップS201の処理に戻り、繰り返し処理を行なう。
【0121】
図10のステップS203に戻り、信号処理部18は静止物標の縦距離が第2距離(例えば、縦距離50m)以下か否かを判定する(ステップS203)。信号処理部18は、静止物標が第2距離以下の場合(ステップS203でYes)、角度信号の信号レベルの値を導出する(ステップS204)。つまり、ステップS204の処理は、静止物標の縦距離が第2距離以下となった場合に開始され、今回の処理タイミングに最も近い処理タイミングで導出された信号レベルの値を導出する。なお、この処理は後述するステップS208で路上物体RFか否かを判定するために用いられる。
図9上段の静止物標fc1のグラフ線L1では、例えば処理タイミングtbを今回の処理タイミングとすると、信号レベルの値は極大b1に対応する値となる。また、処理タイミングtcを今回の処理タイミングとすると、信号レベルの値は極大b2に対応する値となる。
【0122】
また、
図9下段の静止物標rf1のグラフ線L2では、例えば処理タイミングtbを今回の処理タイミングとすると、信号レベルの値は極大b12に対応する値となる。また、処理タイミングtcを今回の処理タイミングとすると信号レベルの値は極大b14に対応する値となる。なお、
図10のステップS203の処理において、静止物標の縦距離が第2距離を上回る場合(ステップS203でNo)、信号処理部18は全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。
【0123】
図11のステップS205に戻り、信号処理部18は、角度信号の変動積算値を導出する(ステップS205)。このステップS205の処理について、
図13の角度信号の変動値を示すグラフ、および、
図14の角度信号の変動積算値導出の処理フローチャートを用いて詳細に説明する。なお、このステップS205の処理もステップS204の処理と同様に静止物標の縦距離が第2距離(例えば、縦距離50m以下)となった場合に開始される。
【0124】
図13は、主に
図9に示した角度信号の信号レベルの推移グラフの極大と極小との間の変動値ついて説明する図である。極大と極小の変動値の導出は、静止物標の縦距離において基準距離(例えば、縦距離20m、処理タイミングtj)を境にその導出方法が変更される。つまり、信号処理部18は、静止物標が基準距離を上回る位置に存在する場合は、極大値から極小値への変動値を導出する。これは静止物標が基準距離を上回る位置に存在する場合、縦距離が短くなるにつれ信号レベルが増加傾向になるため、極小から極大より変動値が小さくなる極大から極小への変動値を採用することで、路上物体RFと停止車両FCとを区別しやくするためである。そして、信号処理部18は、静止物標が基準距離以下の位置に存在するときは、極小値から極大値への変動値を導出する。これは路上物体RFが基準距離以下の位置に存在するときは、縦距離が短くなるにつれ信号レベルが減少傾向になるため、極大から極小より変動値が小さくなる極小から極大への変動値を採用することで、路上物体RFと停止車両FCとを区別しやすくするためである。これにより、車両CRが静止物標に対して所定距離以上接近した場合に制御対象外の静止物標の信号レベルに現れる特徴に基づいて正確な判定を行える。
【0125】
具体的には、信号処理部18は、静止物標の縦距離が基準距離を上回る場合、直近の処理タイミングで導出された極小(以下、「直近極小」という。)の値と直近極小が導出された処理タイミングよりも過去の処理タイミングで導出された極大(以下、「過去極大」という。)の値との変動値を導出する。つまり、第2距離(縦距離50m)〜基準距離の間の積算区間ad1の間は、直近極小の値と過去極大の値との変動値が導出される。そして、信号処理部18は、導出された変動値を積算して変動積算値を導出する。例えば、処理タイミングtcの次の処理タイミングを今回の処理タイミングとすると、信号処理部18は、グラフ線L1の今回処理タイミングで極小s2を直近極小とし、極大b2を過去極大とする。そして、信号処理部18は、極小s2と極大b2との変動値df1を導出する。この変動値df1は、積算区間ad1において最初に導出された変動値であるため、変動積算値は、変動値df1と同じ値となる。
【0126】
また、処理タイミングtcの次の処理タイミングを今回の処理タイミングとすると、信号処理部18はグラフ線L2の今回処理タイミングで極小s14を直近極小とし、極大b14を過去極大とする。そして、信号処理部18は、極小s14と極大b14との変動値df12を導出する。この変動値df12よりも前の処理では、積算区間ad1内で極小s13と極大b13との変動値df11が導出されている。そのため、処理タイミングtcの時点においては、変動値df11およびdf12を積算した変動積算値(df11+df12)が導出される。また、処理タイミングtc以降も極小s15を直近極小とし、極大b15を過去極大として、極小s15と極大b15との変動値df13が導出される。そして、変動値df13がそれまでに積算された変動積算値(df11+df12)に積算される。このように、信号処理部18は、静止物標の縦距離が基準距離を上回る場合、直近極小の値と過去極大の値との変動値を導出し、導出された変動値を積算した変動積算値を導出する。
【0127】
次に、信号処理部18は、静止物標の縦距離が基準距離以下の場合、直近の処理タイミングで導出された極大(以下、「直近極大」という。)の値と直近極大が導出された処理タイミングよりも過去の処理タイミングで導出された極小(以下、「過去極小」という。)の値との変動値を導出する。つまり、基準距離〜縦距離0mの間の積算区間ad2の間は、直近極大の値と過去極小の値との変動値が導出される。そして、信号処理部18は、導出された変動値を積算して変動積算値を導出する。
【0128】
例えば、停止物標の処理タイミングtdの次の処理タイミングを今回処理タイミングとすると、信号処理部18はグラフ線L1の今回処理タイミングで極大b4を直近極大とし、極小s3を過去極大とする。そして、信号処理部18は、極大b4と極小s3との変動値df2を導出する。この変動値df2は、それまでに導出された変動積算値(変動値df1)に積算され、新たな変動積算値(df1+df2)が導出される。
【0129】
また、停止物標の処理タイミングtdの次の処理タイミングを今回処理タイミングとすると、信号処理部18は静止物標rfのグラフ線L2の今回処理タイミングで極大b17を直近極大とし、極小s16を過去極小として導出する。そして、信号処理部18は、極大b17と極小s16との変動値d14を導出する。この変動値d14よりも以前の処理の積算区間ad1では変動値df11、df12、および、df13が導出されている。そのため、処理タイミングtdの次の処理タイミングでは、変動値df11、df12、df13、および、d14を積算した変動積算値(df11+df12+df13+df14)が導出される。このように、信号処理部18は、静止物標の縦距離が基準距離以下の場合、直近極大の値と過去極小の値との変動値を導出し、導出された変動値を積算した変動積算値を導出する。
【0130】
ここで、基準距離を境に変動値の導出方法を切替えるのは、次のような理由による。静止物標が基準距離を上回る位置に存在する場合は、縦距離が短くなるにつれ信号レベルが増加傾向にあるため、極小から極大より変動値が小さくなる極大から極小への変動値を採用することで、路上物体RFと停止車両FCとを区別しやすくなる。また、路上物体である静止物標rf1の縦距離が第3距離(縦距離30m)以下となった場合に、静止物標rf1の角度信号レベルを示すグラフ線L2の振幅がこれまでよりも比較的小さくなり、かつ、信号レベルの値も比較的低下する。
【0131】
これは、
図8下段で示したように、車両CRの位置が路面R1から路面R2へと移動し、車両CRの位置と路上物体RFの位置との基準方向の高さの差が小さくなることで、マルチパス波の経路が直接波の経路と重なり、マルチパス波を受信することが少なくなるためである。また、車両CRが路上物体RFに接近して両者の距離が第3距離以下となった場合、路上物体RFが送信波のビームパターンNAの領域から外れて直接波を受信することが少なくなるためである。その結果、
図13下段に示す積算区間ad2では、直近極小と過去極大との変動値よりも、直近極大と過去極小との変動値のほうが小さくなる。具体的には、グラフ線L2における極大b16と極小s16との変動値(極大値から極小値への変動値)よりも、極大b17と極小s16との変動値(極小値から極大値への変動値df14)のほうが小さくなる。
【0132】
また、これとは逆に
図8上段で示したように、車両CRの位置が路面R1から路面R2へと移動し、車両CRの位置と停止車両FCの位置との基準方向の高さの差が小さくなっても、停止車両FCがある程度の車体の高さを有するため、マルチパス波の経路が直接波の経路と重ならない。つまり、直接波と共にマルチパス波がある程度の信号レベルで受信アンテナ14に受信される。
【0133】
また、車両CRが停止車両FCに接近して両者の距離が第3距離以下となった場合、停止車両FCが送信波のビームパターンNAの領域から外れることもない。つまり、直接波が縦距離が近づくにつれて比較的強い信号レベルで受信アンテナ14に受信される。その結果、
図13上段に示す積算区間ad2では、直近極小と過去極大との変動値よりも、直近極大と過去極小との変動値のほうが変動値が大きくなる。具体的には、グラフ線L1における極大b3と極小s3との変動値(極大値から極小値への変動値)よりも、極大b4と極小s3との変動値(極小値から極大値への変動値df2)のほうが変動値が大きくなる。
【0134】
これにより、車両CRが静止物標に対して所定距離以上接近した場合に制御対象外の静止物標の信号レベルに現れる特徴に基づいて正確な判定を行える。
【0135】
次に、
図13で説明した変動値および変動積算値の導出の処理を
図14の処理フローチャートを用いて説明する。
図14は角度信号レベルの変動値および変動積算値の導出処理フローチャートである。信号処理部18は、静止物標の縦距離が基準距離(縦距離20m)を上回るか否かを判定する(ステップS211)。信号処理部18は、静止物標の縦距離が基準距離を上回る場合(ステップS211でYes)、ステップS201で導出された極小値と極大値に基づき、今回の処理タイミングにおいて、直近極小および過去極大の値が導出されているか否かを判定する(ステップS212)。なお、この直近極小および過去極大は、既に変動値の導出に用いられたものは除く。つまり、これまでの処理で変動値が導出されていない直近極小および過去極大を意味する。そして、信号処理部18は、角度信号の直近極小の値および過去極大の値が導出されている場合(ステップS212がYes)、直近極小の値と過去極大の値との変動値を導出する(ステップS213)。
【0136】
信号処理部18は、変動値を積算して変動積算値を算出する(ステップS214)。なお、ステップS212において、直近極小の値および過去極大の値の両方が導出されていない場合(ステップS212でNo)、信号処理部18は処理を終了する。
【0137】
また、ステップS211の処理に戻り、静止物標の縦距離が基準距離以下の場合(ステップS211でNo)、今回の処理タイミングにおいて、直近極大および過去極小の値が導出されているか否かを判定する(ステップS215)。なお、この直近極大および過去極小は、既に変動値の導出に用いられたものは除く。そして、信号処理部18は、直近極大の値および過去極小の値が導出されている場合(ステップS215がYes)、直近極大の値と過去極小の値との変動値を導出する(ステップS216)。
【0138】
信号処理部18は、変動値を積算して変動積算値を算出する(ステップS214)。このように変動値および変動積算値を算出することで、制御対象の静止物標における信号レベルの特徴と制御対象外の静止物標における信号レベルの特徴とを明確にできる。また、これにより、車両CRが静止物標に対して所定距離以上接近した場合に制御対象外の静止物標の信号レベルに現れる特徴に基づいて正確な判定を行える。なお、ステップS215において、直近極大の値および過去極小の値の両方が導出されていない場合(ステップS215でNo)、信号処理部18は処理を終了する。
【0139】
次に、
図11の処理フローチャートに戻り、ステップS206の処理を説明する。信号処理部18は、静止物標の縦距離が第3距離〜第4距離か否かを判定する。信号処理部18はこの第3距離〜第4距離の間に、ステップS201の第1距離から所定の処理タイミングごとに導出した極大・極小の数の判定や、ステップS203の第2距離から開始した角度信号の信号レベルの判定を行う。つまり、静止物標の縦距離が第3距離〜第4距離の場合(ステップS206でYes)、信号処理部18は第1距離から導出した極大、および、極小の数が所定数以上か否かを判定する(ステップS207)。
【0140】
例えば、極大および極小の所定数を各2個とした場合に、静止物標の角度信号の極大および極小の数が各1個以下ときは(ステップS207がNo)、静止物標の路上物標フラグがON状態となり(ステップS210)、その後、信号処理部18は全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。また、ステップS206で静止物標の縦距離が第3距離〜第4距離の間ではない場合、信号処理部18は全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。
【0141】
例えば、
図7下段および
図8下段で説明した車両CRの存在する路面R1に対して傾斜を有する路面R2に存在する路上物体RFとは異なり、車両CRの路面R1と同じ高さの路面に存在する路上物体は基準方向において路面の傾斜による高さを有さないため、送信波に対する反射波の経路は直接波の経路とマルチパス波の経路とが同じ経路となる。つまり、送信波に対する反射波はほとんど直接波となり、マルチパス波は発生しないことから、角度信号には振幅変動がほとんど生じない。このため、車両CRがある程度離れた位置(第1距離)から極小および極大の数を数えることで、角度信号において極小および極大が所定数以下の静止物標は平坦な路面に存在する路上物体であると判定できる。
【0142】
しかし、
図7下段および
図8下段に示したような車両CRの存在する路面R1に対して、傾斜を有する路面R2に存在する路上物体RFの
図9下段に示す静止物標rf1の角度信号においては、振幅変動が発生して極小および極大の数が所定数を上回るため、極小および極大を数える処理では正確な判定ができないときがある。その結果、路上物標であっても極大および極小の数が所定数を上回り(ステップS207でYes)、次の処理であるステップS208の処理に進むこととなる。つまり、車両CRの存在する路面に対して傾斜を有する路面に存在する路上物体の静止物標については、このステップS207の判定処理では、路上物標と判定できない場合がある。
【0143】
ステップS208の処理に戻り、信号処理部18は、第2距離から所定の処理タイミングごとにステップS204で導出した角度信号の信号レベル値が所定値を超えるか否かを判定する(ステップS208)。例えば、角度信号の信号レベルの所定値を-35dBとした場合、角度信号の信号レベルの値が-35dB以下の場合(ステップS208でNo)、静止物標の路上物標フラグがON状態となり(ステップS210)、その後、信号処理部18は、全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。
【0144】
例えば、
図7下段および
図8下段で説明した車両CRの存在する路面R1に対して傾斜を有する路面R2に存在する路上物体RFとは異なり、車両CRの路面R1と同じ高さの路面に存在する路上物体は基準方向において路面の傾斜による高さを有さないため、送信波のビームパターンNAの領域内に路上物体が存在していても、角度信号の信号レベルの値は小さい。そして、車両CRの路上物体への接近に伴い、路上物体が送信波のビームパターンNAの領域から外れていくため、角度信号の信号レベルの値は更に小さい値となる。このため、車両CRがある程度離れた位置(第2距離)から角度信号の信号レベルの値が所定値以下の静止物標は平坦な路面に存在する路上物標であると判定できる。
【0145】
しかし、
図7下段および
図8下段に示したような車両CRの存在する路面R1に対して傾斜を有する路面R2に存在する路上物体RFは、基準方向において比較的高い位置に存在するため、角度信号の信号レベルの値が所定値を上回る場合がある。このため、角度信号の信号レベルの値に基づく処理では正確な判定ができないときがある。その結果、路上物標の角度信号の信号レベルの値が所定値を上回り(ステップS208でYes)、次の処理であるステップS209の処理に進むこととなる。つまり、車両CRの存在する路面に対して傾斜を有する路面に存在する路上物体の静止物標については、このステップS208の判定処理では、路上物標と判定できない場合がある。
【0146】
ステップS208の処理の後、信号処理部18は、第2の距離から所定の処理タイミングごとに導出した変動値を積算した変動積算値が第1閾値(例えば、50dB)を上回るか否かを判定する(ステップS209)。そして、信号処理部18は、変動積算値が第1閾値を上回れば、その静止物標は路上物標ではない制御対象の停止物標であると判定する。例えば、
図13上段に示した静止物標fc1の角度信号の場合は、基準距離以下の変動値が基準距離を上回る場合の変動値よりも大きくなり、変動値が積算され(変動値df1+df2)、変動積算値が第1閾値を上回る場合(ステップS209でYes)、信号処理部18は、全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。
【0147】
また、
図13下段に示した静止物標rf1の場合は、基準距離以下の変動値が基準距離を上回る変動値よりも小さくなり、変動値が積算され(変動値df11+df12+df13+df14)、変動積算値が第1閾値以下の場合(ステップS209でYes)、信号処理部18は、その静止物標が路上物標であると判定し、静止物標の路上物標フラグをON状態とする(ステップS210)。また、信号処理部18は、全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。
【0148】
なお、路上物標フラグがON状態となった静止物標は、
図6で示した物標出力処理において、車両制御装置2への出力対象とはしない。つまり、車両制御装置2の制御対象外の静止物標と判定される。なお、一旦、路上物標フラグがON状態となった静止物標に対して、信号処理部18は、車両CRとの縦距離が所定距離の間(例えば、30m〜0m)でも、継続して変動値を積算し、この所定距離の間に変動積算値が第1の閾値を上回った場合は、その静止物標の路上物標フラグをON状態からOFF状態に切替える処理を行う。
【0149】
<第2の実施の形態>
次に、第2の実施の形態について説明する。第2の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に
図10〜
図12を用いて説明した路上物標判定処理に対して、路上物標と停止物標との判別をより正確に行うために、新たな処理を追加したものである。
【0150】
第2の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、路上物標判定処理の処理内容が一部異なる。以下、
図15〜
図17を用いて相違点を中心に説明する。
【0151】
<3.処理フローチャート>
図15〜
図17は路上物標判定処理の処理フローチャートである。
図15〜
図17は第1の実施の形態で説明した
図10〜
図12の処理フローチャートに、ステップS301〜ステップS303の処理を追加したものである。具体的には、静止物標が路上物標か否かの判定を正確に行うため、車両CRの前方で、かつ、静止物標の手前に前方車両のような移動物標が存在する場合は、静止物標が路上物標と判定しやすくするため、変動積算値の判定閾値を第1の閾値(例えば、50dB)よりも大きい第2の閾値(例えば、65dB)に変更する。これにより、停止物標のような制御対象の静止物標における信号レベルの特徴と近似する特徴を有する路上物標のような制御対象外の静止物標に対する判定を正確に行える。
【0152】
図16のステップS208において、信号処理部18は、第2距離から所定の処理タイミングごとに導出した角度信号の信号レベルの値が所定値を超えるか否かを判定する(ステップS208)。そして、静止物標の角度信号の信号レベルの値が所定値を上回る場合(ステップS208でYes)、
図17に示すS301処理に進む。
【0153】
信号処理部18は、車両CRの前方に特定移動物標が存在する場合(ステップS301でYes)、変動積算値の第1の閾値(例えば、50dB)を当該第1の閾値よりも大きい値の第2の閾値(例えば、65dB)に変更する(ステップS302)。ここで、特定移動物標とは、例えば、車両CRの前方に存在する移動物標で、静止物標を基準とした場合に横距離が±1.5m以内、かつ、静止物標よりも車両CRに対する縦距離が小さい値の物標である。
【0154】
信号処理部18は、静止物標の変動積算値が第2閾値を以下の場合(ステップS303でYes)、静止物標の路上物標フラグをON状態とする(ステップS210)。
【0155】
そして、信号処理部18は、静止物標の変動積算値が第2閾値を上回る場合(ステップS303でYes)、全ての静止物標に対する処理が終了したか否かを判定する(ステップS211)。このように、車両CRの前方に存在する静止物標に対して車両CRよりも前方に存在する特定移動物標が走行続けているということは、前方に存在する静止物標は路上物標である可能性が高いとして、変動積算値の閾値を大きくする。つまり、静止物標よりも近い距離に移動物標が存在する場合に、静止物標を制御対象外の物標と判定しやすくすることで、静止物標が制御対象外の静止物標と判定し易くしている。換言すれば静止物標が制御対象物標であると判定し難くしている。仮に静止物標が制御対象外の物標であるにもかかわらず、制御対象の物標と誤判定し、その静止物標の手前に移動物標が存在している場合、制御対象となる物標は車両CRにより近い移動物標であるが、移動物標が静止物標を通過した時点で静止物標を対象に減速等の誤った制御が行なわれてしまう。もし、静止物標が真の制御対象となる静止物標であれば、車両CRの前方の移動物標は減速等、静止物標を回避する行動を起こすため、移動物標を対象に車両CRを制御すれば問題はない。従って、静止物標の手前に移動物標が存在する場合は、静止物標が制御対象物標であると判定し難くすることで誤判定に起因する誤った制御を防止することができる。
【0156】
<第3の実施の形態>
次に、第3の実施の形態について説明する。第3の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に
図14を用いて説明した路上物標判定処理に対して、路上物標と停止物標との判別をより正確に行うために、新たな処理を追加したものである。
【0157】
第3の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、路上物標判定処理の処理内容が一部異なる。以下、
図18を用いて相違点を中心に説明する。
<4.処理フローチャート>
図18は、角度信号レベルの変動値および変動積算値の導出処理フローチャートである。
図18は第1の実施の形態で説明した
図14の処理フローチャートに、ステップS401の処理を追加したものである。具体的には、信号処理部18は、角度信号の信号レベル値(極大値)に応じた係数を変動値に乗算する。言い換えると、角度信号の信号レベルが大きいほど変動値の積算割合を増加させるものである。ここで、角度信号の極大値は、例えば今回の処理タイミングに最も近い処理タイミングで導出された極大値である。
【0158】
図18のステップS213の処理で直近極小の値と過去極大の値との変動値を導出された後、または、ステップS216の処理で直近極大の値と過去極小の値との変動値を導出された後、信号処理部18は、変動値に角度信号の信号レベルの極大値に応じた係数を乗算する。この係数は角度信号の信号レベルの極大値が大きいほど大きくなる。例えば、信号処理部18は、極大値が-35dBの場合は変動値に係数1.5を乗算し、極大値が-30dBの場合は変動値に係数2.0を乗算する。つまり、変動値の積算割合を増加させる。これにより、停止物標のような制御対象の静止物標の信号レベルと、路上物標のような制御対象外の静止物標の信号レベルとの違いが明確になり、路上物標の判定を正確に行える。
そして、ステップS401の処理が終了した後、信号処理部18は、変動値を積算して変動積算値を導出する(ステップS214)。
【0159】
<第4の実施の形態>
次に、第4の実施の形態について説明する。第4の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に
図10〜
図12を用いて説明した路上物標判定処理に対して、路上物標と停止物標との判別をより正確に行うために、新たな処理を追加したものである。
【0160】
第4の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、路上物標判定処理の処理内容が一部異なる。以下、
図19〜
図21を用いて相違点を中心に説明する。
【0161】
<5.処理フローチャート>
図19〜
図21は、路上物標判定処理の処理フローチャートである。
図19〜
図21は第1の実施の形態で説明した
図10〜
図12の処理フローチャートに、ステップS501〜ステップS505の処理を追加したものである。具体的には、信号処理部18は、静止物標が路上物標か否かの判定を正確に行うため、静止物標と同一の物体に属する他の静止物標である割れ物標が存在するか否かを判定する。そして、信号処理部18は割れ物標が存在する場合、所定カウント値以上となったときに静止物標に対する路上物標の判定処理が実施されるカウンタのカウント値をインクリメントする。そして、信号処理部18はカウント値が所定のカウント値以上の場合に、次回以降の物標導出処理において、静止物標の路上物標判定を行わない。これにより、路上物標のような制御対象外の静止物標を制御対象の静止物標として判定する誤判定を防止でき、制御対象外の静止物標か否かの判定を行うことにより生じる処理負荷を削減できる。
【0162】
図19のステップS204において、信号処理部18は、静止物標が第2距離以下の場合に、角度信号の信号レベルの値を導出し(ステップS204)、
図20に示すS501処理に進む。信号処理部18は、静止物標と同一の物体に属する割れ物標が存在するか否かの判定処理を行う(ステップS501)。
【0163】
ここで、
図22、および、
図23を用いて割れ物標の説明を行った後、
図24および
図25を用いて割れ物標の判定処理について詳細に説明する。
図22は、車両CRの前方の停止車両FTの割れ物標について説明する図である。
図22には静止物標fc2と静止物標fc3とが導出されている。そして、静止物標fc3は、静止物標fc2の割れ物標である。言い換えると、一つの静止物標fc2を基準静止物標とした場合、その近傍の位置で、かつ、相対速度差が略0km/hの静止物標が割れ物標となる。前方の停止車両FTは例えば、トラックであり、この停止車両FTのように車両CRの進行方向にある程度の大きさを有する物体では、後端部からの反射波に基づく物標(静止物標fc2)が導出されるとともに、車体と路面との間に送信波が入り込み、車体底部からの反射波に基づく物標(静止物標fc3)が導出される場合がある。
【0164】
図22を用いて具体的に説明すると、車両CRの前方の送信波のビームパターンNA内には、停止車両FTが含まれている。そして、この停止車両FTの後端部からの反射波に基づいて導出された静止物標fc2は、車両CRに対する縦距離が40m、横距離が0m、および、相対速度が車両CRの速度と略同じ速度(例えば60km/h)の物標である。そして、この静止物標fc2と同一の物体(停止車両FT)に属する他の静止物標fc3は、静止物標fc2に対する縦距離差が3.0m、横距離差が0.6m、相対速度差が0km/hの物標であり、後述する割れ物標の判定条件を満たすため、割れ物標と判定される。そして、信号処理部18は、割れ物標(静止物標fc3)が存在する静止物標fc2については、路上物標判定処理を行わない。
【0165】
これに対して、
図23に示すように道路と道路との接合部材のような路上物体RFは、停止車両FTと比べて車両CRの進行方向にほとんど大きさを有さず、路上物体と路面との間に送信波が入り込むことのないため、静止物標fr1に対する割れ物標は発生しない。
図23は、車両CRの前方の路上物体RFに関する物標について説明する図である。
図23には路上物体RFに対応する静止物標rf1が示されている。ここで、路上物体RFは、上述のように停止車両FTと比べて車両CRの進行方向においてほとんど大きさを有さず、路上物体RFと路面との間に送信波が入り込むこともないため、静止物標rf1を基準物標とした場合でも、静止物標rf1の近傍には略同じ相対速度を有する静止物標は存在しない。信号処理部18は、このように割れ物標が存在しない静止物標rf1については、路上物標判定処理を行う。
【0166】
次に、
図24および
図25の処理フローチャートを用いて割れ物標の存在判定処理について説明する。
図24および
図25は、割れ物標判定処理の処理フローチャートである。信号処理部18は、車両CRに対する静止物標の縦距離が50m以下か否かを判定する(ステップS511)。信号処理部18は、静止物標の縦距離が50m以下の場合(ステップS511がYes)、車両CRに対する静止物標の横距離が±0.7m以下か否かを判定する(ステップS512)。信号処理部18は、静止物標の横距離が±0.7m以下の場合(ステップS512でYes)、当該静止物標を基準物標に設定する(ステップS513)。なお、信号処理部18はステップS511の処理で、静止物標の縦距離が50mを上回る場合や、ステップS512の処理で、静止物標の横距離が0.7mを上回る場合は、処理を終了する。
【0167】
ステップS514の処理に戻り、信号処理部18は基準物標に対して縦距離差が0〜4.0mの範囲内に他の静止物標が存在するか否かを判定する(ステップS514)。信号処理部18は、基準物標に対して縦距離差が0〜4.0mの範囲内に静止物標が存在する場合(ステップS514でYes)、縦距離差が0〜4.0mの範囲内に存在する静止物標のうち基準物標に対して横距離差が±1.0mの範囲内に静止物標が存在するか否かを判定する(ステップS515)。信号処理部18は、縦距離差の条件(ステップS514の条件)を満たす静止物標のうち、横距離差が±1.0mの範囲内に静止物標が存在する場合(ステップS515でYes)、縦距離差の条件および横距離差の条件(ステップS515の条件)を満たす静止物標のうち基準物標との相対速度差が±1.0m/s
2の範囲内に静止物標が存在するか否かを判定する(
図25に示すステップS516)。
【0168】
信号処理部18は、縦距離差、横距離差、および、相対速度差の条件(ステップS516の条件)を満たす静止物標が存在する場合(ステップS516でYes)、基準物標である静止物標の割れ物標存在フラグをON状態とする(ステップS517)。なお、基準物標に対して縦距離差の条件が満たされない場合(ステップS514でNo)、横距離差の条件が満たされない場合(ステップS515でNo)、相対速度差の条件が満たされない場合(ステップS516でNo)のいずれかの場合は、信号処理部18は処理を終了する。
【0169】
図20のステップS502の処理に戻り、信号処理部18は、
図24および
図25の説明で基準物標となった静止物標に対して割れ物標存在フラグがON状態、つまり、静止物標と同一の物体に属する割れ物標が存在する場合(ステップS502がYes)、カウンタのカウント値をインクリメントする(ステップS503)。そして、信号処理部18はカウンタのカウント値が所定のカウント値以上の場合(ステップS504でYes)に、静止物標の路上物標判定不要フラグをON状態する(ステップS505)。
【0170】
その結果、信号処理部18は、次回以降の物標導出処理において、路上物標判定不要フラグをON状態とした静止物標の路上物標判定を行わない。これにより、路上物標のような制御対象外の静止物標を制御対象の静止物標として判定する誤判定を防止でき、制御対象外の静止物標か否かの判定を行うことにより生じる処理負荷を削減できる。ステップS505の処理の後、信号処理部18は、信号処理部18は全ての静止物標に対して路上物標の判定処理が終了したか否かを判定する(ステップS211)。なお、ステップS504の処理において、カウンタのカウント値が所定カウント値を下回る場合、信号処理部18は変動積算値の導出処理を実施する(ステップS205)。
【0171】
<第5の実施の形態>
次に、第5の実施の形態について説明する。第5の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に
図10〜
図12を用いて説明した路上物標判定処理に対して、路上物標と停止物標との判別をより正確に行うために、新たな処理を追加したものである。
【0172】
第5の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、路上物標判定処理の処理内容が一部異なる。以下、
図26〜
図29を用いて相違点を中心に説明する。
【0173】
<5.処理フローチャート>
図26〜
図29は、路上物標判定処理の処理フローチャートである。
図26〜
図29は第1の実施の形態で説明した
図10〜
図12の処理フローチャートに、ステップS601〜ステップS604と、第4の実施の形態で説明したステップS503〜ステップS505の処理を追加したものである。具体的には、信号処理部18は、静止物標が路上物標か否かの判定を正確に行うため、静止物標の左および右の少なくともいずれかの側方に存在する壁やガードレール等の静止物標であって、車両CRの進行方向に連続して存在する複数の静止物標(以下、「連続静止物標」という。)が存在する場合に、静止物標が連続静止物標を介して他の静止物標と略対
称な位置関係を有するか否かを判定する。
【0174】
そして、信号処理部18は、静止物標が連続静止物標を介して他の静止物標と略対
称な位置関係を有する場合は、所定カウント値以上となったときに静止物標に対する路上物標の判定処理が実施されるカウンタのカウント値をインクリメントする。信号処理部18はカウント値が所定のカウント値以上の場合に、次回以降の物標導出処理において、当該静止物標の路上物標判定を行わない。これにより、制御対象外の静止物標を制御対象の静止物標として判定する誤判定を防止でき、制御対象外の静止物標か否かの判定を行うことにより生じる処理負荷を削減できる。
【0175】
図26のステップS204において、信号処理部18は、静止物標が第2距離以下の場合に、角度信号の信号レベルの値を導出し(ステップS204)、
図27に示すS601処理に進む。信号処理部18は、連続静止物標の導出処理を行う(ステップS601)。そして、信号処理部18は、連続静止物標が存在する場合(ステップS602でYes)、連続静止物標を介した位置に導出される静止物標(以下、「反射物標」という。)が存在するか否かの判定処理を行う(ステップS603)。
【0176】
ここで、レーダ装置1の送信波が前方の停止車両FCなどの物体に反射し、その反射波が直接レーダ装置1の受信アンテナ14に受信されずに、連続静止物標である壁等に反射した場合、受信アンテナ14に受信される受信信号からは、本来の前方の停止車両の存在する壁などの連続静止物標に対して車両CRの存在する側の位置ではなく、車両CRの存在する側とは反対側、つまり、連続静止物標を介した位置に物標が導出される。
【0177】
以下では、
図30、および、
図31を用いて連続静止物標および反射物標の説明を行った後、
図32および
図33を用いて反射物標の存在判定処理について詳細に説明する。
【0178】
図30は、連続静止物標、および、車両CRの前方の停止車両FCに関する反射物標について説明する図である。また、
図31は、車両CRの前方の路上物体RFに関する反射物標について説明する図である。
図30は、車両CRが車線ro1上を走行しており、その前方に停止車両FCが存在する。そして、車線ro1の右側方には、車両CRの進行方向に壁WAに対応する複数の静止物標(静止物標w1、w2、w3、w4)が導出されている。信号処理部18はこの複数の静止物標である連続静止物標の横距離を平均した位置(以下、「代表位置」という。)を導出する。なお、代表位置の横距離は代表横距離sw0となる。
【0179】
図30に示すように停止車両FCの側方に壁WAが存在する場合、停止車両FCからの反射波は、静止物標fc4の反射波で直接受信アンテナ14に受信される直接波dr1と、静止物標fc5の反射波で壁WAに反射した後に、受信アンテナ14に受信されるマルチパス波mr3とが発生する場合がある。ここで、停止車両FCの反射波のうち静止物標fc4、および、静止物標fc5(fc6)に基づく複数の経路の反射波が発生するのは次のような理由による。つまり、停止車両FCの後部は比較的表面積の大きい部分であり、その表面は複数の凹凸を有する形状であるため、複数の経路の反射波が発生する。
【0180】
そして、受信アンテナ14に直接波dr1が受信され、物標情報が導出される静止物標fc4は、実際の位置の物標情報が取得されるが、受信アンテナ14にマルチパス波mr3が受信され、物標情報が導出される静止物標fc5は、実際の位置の物標情報ではなく、静止物標fc6に示す位置の物標情報が導出される。つまり、信号処理部18は、マルチパス波mr3の物標情報を直接波dr3の物標情報として導出することで、本来静止物標f5が存在する位置とは異なる位置の物標情報を導出することとなる。
【0181】
これに対して、
図31に示す路上物体RFの場合は、直接波dr2のみ受信アンテナ14に受信されマルチパス波は発生しない。このため、受信アンテナ14にマルチパス波が受信されることはない。路上物体RFは停止車両FCとは異なり車体の高さと比べるとほとんど高さを有さず、比較的表面積も小さい。また、路上物体RFの表面は比較的一定の形状であることから、複数の経路の反射波が発生することはなく、
図31に示すような直接波dr2のみの経路が発生する。
【0182】
そして、停止車両FCの場合は、
図30に示すように信号処理部18が、代表位置saに基づいて、直接波dr1の静止物標fc4の横距離sw1と、直接波dr3の静止物標fc6の横距離sw2とを導出する。そして、信号処理部18は横距離sw1と横距離sw2との差が所定範囲内(例えば、±0.5m以内)であれば、静止物標fc4には反射物標(静止物標fc6)が存在するとして、静止物標fc4の反射物標存在フラグをON状態とする。そして、信号処理部18は、反射物標が存在する静止物標fc4については、路上物標判定処理を行わない。
【0183】
なお、
図31に示した静止物標rf1に対する反射物標は存在しない。信号処理部18は、このように反射物標が存在しない静止物標rf1については、路上物標判定処理を行う。
【0184】
次に、
図32および
図33の処理フローチャートを用いて反射物標の存在判定処理について説明する。
図32および
図33は、反射物標の存在判定処理の処理フローチャートである。信号処理部18は、車両CRに対する静止物標の縦距離が50m以下か否かを判定する(ステップS611)。信号処理部18は、静止物標の縦距離が50m以下の場合(ステップS611がYes)、車両CRに対する静止物標の横距離が±0.7m以下か否かを判定する(ステップS612)。信号処理部18は、静止物標の横距離が±0.7m以下の場合(ステップS612でYes)、当該静止物標を基準物標に設定する(ステップS613)。例えば、路上物標判定処理の対象である
図30の静止物標fc4や
図31の静止物標rf1が縦距離および横距離の条件を満たす場合、信号処理部18は、これらの静止物標を基準物標に設定する。なお、信号処理部18はステップS611の処理で、静止物標の縦距離が50mを上回る場合や、ステップS512の処理で、静止物標の横距離が0.7mを上回る場合は、処理を終了する。
【0185】
ステップS614の処理に戻り、信号処理部18は基準物標との縦距離が略同一の静止物標(以下、「縦近似静止物標」という。)が存在するか否かを判定する(ステップS614)。そして、縦近似静止物標が存在する場合(ステップS614でYes)、信号処理部18は、代表位置saを基準(例えば、0m)とする基準物標の横距離sw1と、代表位置saを基準とする縦近似物標の横距離sw2との差が±0.5m以内か否かを判定する(ステップS615)。
【0186】
信号処理部18は、代表位置saに対する基準物標の横距離sw1と、代表位置saに対する縦近似物標の横距離sw2との差が±0.5m以内の場合(ステップS615でYes)、基準物標の静止物標に対して反射物標が存在することを示す反射物標存在フラグをON状態として(
図33に示すステップS616)処理を終了する。
【0187】
なお、
図32のステップS614の処理で、縦近似静止物標が存在しない場合(ステップS614でNo)や、ステップS615の処理で、代表位置saを基準(例えば、0m)として、代表位置saに対する基準物標の横距離と代表位置saに対する縦近似物標の横距離との差が±0.5m以内ではない場合(ステップS615でNo)、信号処理部18は処理を終了する。
【0188】
図27のステップS604の処理に戻り、信号処理部18は、静止物標に対して反射物標存在フラグがON状態、つまり、静止物標に対する反射物標が存在する場合(ステップS604でYes)カウンタのカウント値をインクリメントする(ステップS503)。そして、信号処理部18はカウント値が所定のカウント値以上の場合(ステップS504でYes)に、静止物標の路上物標判定不要フラグをON状態とする(ステップS505)。
【0189】
その結果、信号処理部18は、次回以降の物標導出処理において、路上物標判定不要フラグがON状態の静止物標の路上物標判定を行わない。これにより、レーダ装置1は、制御対象外の静止物標を制御対象の静止物標として判定する誤判定を防止でき、制御対象外の静止物標か否かの判定を行うことにより生じる処理負荷を削減できる。
【0190】
ステップS505の処理の後、信号処理部18は全ての静止物標に対して路上物標の判定処理が終了したか否かを判定する(ステップS211)。なお、ステップS504の処理において、カウンタのカウント値が所定カウント値を下回る場合、信号処理部18は変動積算値の導出処理を実施する(ステップS205)。また、ステップS604の処理において、信号処理部18は対象の静止物標の反射物標フラグがOFF状態の場合(ステップS604でNo)、変動積算値を導出する(ステップS205)。
【0191】
<第6の実施の形態>
次に、第6の実施の形態について説明する。第6の実施の形態のレーダ装置1の信号処理部18は、第4の実施の形態の主に
図19〜
図21を用いて説明した路上物標判定処理に対して、路上物標と停止物標との判別をより正確に行うために、新たな処理を追加したものである。
【0192】
第6の実施の形態のレーダ装置1の構成および処理は、第4の実施の形態とほぼ同様であるが、路上物標判定処理の処理内容が一部異なる。以下、
図34〜
図36を用いて相違点を中心に説明する。
【0193】
<5.処理フローチャート>
図34〜
図36は、路上物標判定処理の処理フローチャートである。
図34〜
図36は第4の実施の形態で説明した
図19〜
図21の処理フローチャートに、第5の実施の形態で説明したステップS601〜ステップS602処理と、新たな処理であるステップS701の処理とを追加したものである。具体的には、信号処理部18は、連続静止物標が存在する場合に、所定カウント値以上となったときに静止物標に対する路上物標の判定処理が実施されるカウンタの閾値を変更する。例えば、信号処理部18がカウンタの閾値を1以上に設定していた場合に、連続静止物標が存在する場合は、2以上に設定を変更する。この閾値の変更により、基準物標に対する割れ物標の条件を満たしたことで、カウンタのカウント値がインクリメントされてカウント値が1となっても、次回以降の物標導出処理では路上物標の判定処理が継続して行われる。言い換えると、カウンタのカウント値が1の場合に、次の処理でカウント値がインクリメントされて2以上となったときは、信号処理部18は、次回以降の物標導出処理においてカウント値が2となった静止物標の路上物標判定を行わないこととなる。
【0194】
これは第5実施の形態で説明した
図31を用いて説明すると、静止物標rf1は路上物体RFに対する路上物標である。しかし、壁WAに対応する静止物標が静止物標rf1の近傍に複数存在し、壁WAに対応する静止物標(例えば、静止物標w2)が静止物標rf1に対する割れ物標の条件を満たした場合は、カウンタのカウント値がインクリメントされる。その結果、停止物標ではない静止物標rf1が停止物標と誤って判断される場合がある。このため、カウンタの閾値を増加させて、路上物標の判定を正しく行う。これにより、車両の走行環境に関わらず制御対象外の静止物標を制御対象の静止物標として判定する誤判定を防止できる。
【0195】
図34のステップS204において、信号処理部18は、静止物標が第2距離以下の場合に、角度信号の信号レベルの値を導出し(ステップS204)、ステップS601の処理に進む。ステップS601の処理において、信号処理部18は、静止物標が第2距離以下の場合に、角度信号の信号レベルの値を導出し(ステップS204)、ステップS601処理に進む。この処理で信号処理部18は、連続静止物標の導出処理を行う(ステップS601)。
【0196】
そして、信号処理部18は、連続静止物標が存在する場合(ステップS602でYes)、割れ物標の判定条件を変更し(ステップS701)、割れ物標が存在するか否かの判定処理を行う(
図35に示すステップS501)。ステップS701の処理について具体的には、カウンタの閾値を例えば、1から2に変更する。なお、連続静止物標が存在しない場合(ステップS602でNo)、信号処理部18は割れ物標が存在するか否かの判定処理を行う(
図35に示すステップS501)。
【0197】
<変形例>
以上、本発明の実施の形態について説明してきたが、この発明は上記実施の形態に限定されるものではなく様々な変形が可能である。以下では、このような変形例について説明する。なお、上記実施の形態で説明した形態、および、以下で説明する形態を含む全ての形態は、適宜に組み合わせ可能である。
【0198】
また、上記の実施の形態において、レーダ装置1の角度方向推定はESPRITとして説明したが、これ以外にもDBF(Digital Beam Forming)、PRISM(Propagator method based on an Improved Spatial-smoothing Matrix)、および、MUSIC(Multiple Signal Classification)などのうちいずれか一のアルゴリズムを用いてもよい。
【0199】
また、上記実施の形態において、レーダ装置1は、車両に搭載する以外の各種用途(例えば、飛行中の航空機および航行中の船舶の監視の少なくともいずれか1つ)に用いてもよい。
【0200】
また、上記実施の形態において、縦距離に応じて、変動値の積算方法を変更することについて説明したが、縦距離以外に、車両CRにジャイロセンサを設けて、車両CRの走行する路面の傾斜が変化した場合に、変動値の積算方法を変更するようにしてもよい。さらに、車両CRにナビゲーション装置を備え、車両CRの地点情報を取得し、車両CRの位置が路面の傾斜の変わる地点となった場合に、変動値の積算方法を変更するようにしてもよい。
【0201】
また、上記の実施の形態において、ステップS113の処理では、路上物標以外に、車両の上方に存在する物標を導出する処理を行ってもよい。具体的には、その物標の車高位置が所定の高さよりも高い(例えば、車両CRの車高よりも高い)位置に存在する静止物標(例えば、車道の上方に設けられている片持式や門型式の道路標識など)を導出する処理を行ってもよい。
【0202】
また、上記第2の実施の形態において、静止物標よりも近い距離に移動物標が存在する場合に、静止物標を制御対象外の物標と判定しやすくする例として、路上物標判定処理における変動積算値の閾値を大きくすることについて説明した。これ以外にも、静止物標よりも近い距離に移動物標が存在する場合に、路上物標判定処理を中止(無効化)してもよい。
【0203】
また、上記第5の実施の形態、および、第6の実施の形態において、連続静止物標が存在すると判定した場合は、少なくとも所定時間(例えば、1sec)は連続静止物標が存在するとして処理を行う。これにより、頻繁に判定結果が切り替わることを防止できる。
【0204】
また、上記第6の実施の形態において、判定条件の変更処理(ステップS701)は、カウンタのカント値の変更と説明したが、これ以外にも
図24のステップS515の処理の横距離差を±1.0m以内から±0.7m以内に変更してもよい。これにより連続静止物標である複数の静止物標が対象の静止物標の近傍に存在している場合に、複数の静止物標を対象の静止物標と同一の物体に属する割れ物標と誤判定することを防止する。
【0205】
また、上記第6の実施の形態において、判定条件の変更処理(ステップS701)は、カウンタのカント値の変更と説明したが、これ以外にも
図9に示した角度信号の信号レベルを移動平均する回数を増加(例えば、2回から3回)に増加させてもよい。