特許第6174906号(P6174906)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 中村留精密工業株式会社の特許一覧

<>
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000002
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000003
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000004
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000005
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000006
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000007
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000008
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000009
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000010
  • 特許6174906-機械の自己診断及び機械精度の補正方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6174906
(24)【登録日】2017年7月14日
(45)【発行日】2017年8月2日
(54)【発明の名称】機械の自己診断及び機械精度の補正方法
(51)【国際特許分類】
   B23Q 17/24 20060101AFI20170724BHJP
   B23Q 15/24 20060101ALI20170724BHJP
   G05B 19/404 20060101ALI20170724BHJP
   G05B 19/18 20060101ALI20170724BHJP
   B23Q 15/26 20060101ALI20170724BHJP
【FI】
   B23Q17/24 B
   B23Q15/24
   G05B19/404 K
   G05B19/18 X
   B23Q15/26
【請求項の数】4
【全頁数】11
(21)【出願番号】特願2013-108929(P2013-108929)
(22)【出願日】2013年5月23日
(65)【公開番号】特開2014-226754(P2014-226754A)
(43)【公開日】2014年12月8日
【審査請求日】2016年5月17日
(73)【特許権者】
【識別番号】000212566
【氏名又は名称】中村留精密工業株式会社
(74)【代理人】
【識別番号】100078673
【弁理士】
【氏名又は名称】西 孝雄
(72)【発明者】
【氏名】酒井 友基
【審査官】 村上 哲
(56)【参考文献】
【文献】 特開平07−186003(JP,A)
【文献】 特開昭62−213945(JP,A)
【文献】 特開2011−240457(JP,A)
【文献】 特開平01−127255(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q 17/00 − 17/24
B23Q 15/00 − 15/28
G05B 19/404
WPI
(57)【特許請求の範囲】
【請求項1】
機械内部の画像を取得するカメラを備え、制御器は加工プログラムに従って生成される指令値を設定されている補正値で補正して加工に用いる移動台ないし回転台の各駆動装置を動作させることによりワークの連続加工を行う工作機械の機械精度の自己診断方法において、
前記移動台ないし回転台にワークが搬入されたときに、前記カメラで搬入されたワークの位置ずれを検出し、検出された位置ずれに基づいてワーク1個毎に当該ワークの位置ずれによる補正値を演算して制御器に設定してワークの加工を行い、
ワークが搬出されたときに定期的に、前記カメラで前記移動台ないし回転台の同一箇所を撮影して取得した画像から機械の偏倚量の変化を検出し、検出された偏倚量が制御器に設定したしきい値を超えたときに警告を発することを特徴とする、工作機械の自己診断方法。
【請求項2】
請求項1記載の方法で検出した偏倚量が前記しきい値を超えていないことを条件として、当該偏倚量の変化に基づいて、前記移動台ないし回転台に対する動作指令の補正値の設定ないし更新を行うことを特徴とする、工作機械における機械精度の補正方法。
【請求項3】
前記カメラで前記移動台ないし回転台の同一箇所を複数回撮影して取得した複数の画像のそれぞれから機械の偏倚量を検出し、検出した複数の偏倚量のばらつきが制御器に設定したしきい値を超えたときに警告を発することを特徴とする、請求項1記載の工作機械の自己診断方法。
【請求項4】
前記移動台ないし回転台を停止した状態で前記複数の画像を取得する、請求項3記載の工作機械の自己診断方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、工作機械の変形や部品の摩耗などによる故障を予防するための自己診断方法及び当該診断により検出した変形やガタによる加工精度の低下を補正する方法に関するもので、特に、機械内部にカメラを備えた工作機械における上記方法に関するものである。
【背景技術】
【0002】
工作機械には、機械に搬入された素材の姿勢を検出したり、機械動作を監視する目的で、機械内部に素材や加工部を撮影するカメラを備えたものが実用されている。
【0003】
図7及び図8は、素材の搬入姿勢を検出するカメラを備えたガラス板の周縁加工装置の例を模式的に示した図で、図7は、テレビ受像器のディスプレイパネルに用いるような大型のガラス基板の周縁加工装置の例であり、図8は、携帯端末のディスプレイパネルに用いるような小型ないし中型のガラス基板の周縁研削装置の例である。
【0004】
図7に示した装置は、テーブル12上に固定したガラス基板wを図のY方向に移動しながらテーブル12の両側に配置した砥石3、3でワークのY方向の両側辺e、eの加工を行う装置である。この周縁加工装置では、装置に設置した2台のカメラ5、5でワークwの角又は角部付近に付したマークm1、m2、m3を読み取って、テーブル12上でのワークwの位置及び角度の偏倚(ずれ)を検出し、検出した偏倚量に基づいて、テーブル12の回転角や工具3の切り込み方向(図のX方向)の位置指令を補正している。各側の砥石3とカメラ5は、それぞれの側に設けたX方向送り台21、21に搭載されており、カメラ5で検出されたX方向の偏倚量がそのまま砥石3のX方向の位置の補正値となる。
【0005】
図8に示した装置は、ワークwを固定したテーブル12の鉛直軸P回りの回転角θと、テーブル中心Pに向けて図のX方向に接近及び離隔する工具3の移動量xとを関連付けて制御すること(以下、「コンタリング方式」と言う。)により、ワークwに自由形状の周縁加工を行う装置である。この周縁加工装置では、テーブルを回転させるか又はカメラ5を図の紙面直角方向に移動させることにより、工具3をX方向に移動させる横送り台21に搭載した1個のカメラ5でテーブル12上に置かれたワークwの複数箇所の角を検出することで、テーブル12上でのワークwの位置及び角度の偏倚を検出し、検出した偏倚量に基づいて、テーブル12の回転角や工具3のX軸方向の位置指令を補正している。
【0006】
また、旋盤などの金属加工機械においても、機内にカメラを設置して当該カメラで撮影した画像を制御盤のディスプレイに表示することにより、手動操作でテスト加工を行う際などのオペレータによる機械の動作確認を容易にした装置が提案されている。
【0007】
機械は、運転に伴う発熱や環境温度の変化によって熱変形する。工作機械では、機械の部分的な熱変形やワークと機械の熱変形の差によって加工誤差が生じる。また、機械は長年の使用により、摺動部の摩耗や軸受の損傷などにより、ガタが生ずる。このガタもまた工作機械の加工精度を低下させ、不良品を発生する原因となる。不良品が発生したときは、その原因を追及するために機械精度の測定が行われる。また、そのような不良品の発生を未然に防ぐためには、定期的に機械精度の測定を行う必要がある。
【0008】
部材の摩耗等による工作機械の加工精度の低下は、刃物台などの直線移動部材の位置決め精度の低下と、主軸や旋回テーブルなどの回転部材の回転位置決め精度の低下が主な要因である。直線移動部材の精度の計測は、図9に示すように、所定位置に位置決めした直線移動部材51の実際の位置をダイヤルケージや接触センサ52で検出することにより行っており、回転部材の回転角の精度は、図10に示すように、回転部材53に多面鏡54を取り付け、各反射面55がオートコリメータ56などの光学測定器に向いたときの投射光と反射光のずれにより計測している。
【0009】
すなわち、機械の各部材の移動軸や回転軸について、それらの精度を計測するのに必要な測定器を所定の箇所に取り付け、部材のあるべき位置と実際の位置との偏倚量の測定値から当該部材の駆動源(サーボモータなど)に与える指令値を補正する補正値(補正パラメータ)を求めて制御器に設定することにより、所望の加工精度が維持されるようにしている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2013−035089号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
工作機械の精度低下を認識しないまま機械を使用し続けて不良品を発生すると、多大な損失を招くことになるので、定期的に機械精度を測定して機械の精度低下や熱変形に対応する補正値を設定することにより、加工精度の維持を図ることは極めて重要である。
【0012】
しかし、不良品の発生を確実に防止しようとすると、頻繁に機械精度の確認(測定)を行わねばならず、従来の機械精度の測定方法では長時間機械を停止して測定を行う必要があり、測定のための作業負担も大きかった。すなわち、測定のためには機械を停止して、機械が備えている複数の移動部材や回転部材について、その移動方向毎にピックテスタやオートコリメータなどの測定器を取り付けて計測する必要があり、高額の測定器が必要であるほか、高度な測定技術と多大な作業時間を必要とする。そして、この測定の間、ワークの加工作業が停止するので、生産性も低下するなど、経済的負担及び計測作業者の作業負担が大きいという問題があった。
【0013】
この発明は、ワークの連続加工中に、その加工を行っている工作機械の移動部材や回転部材、特に加工精度に大きく影響する虞のある移動部材や回転部材の位置決め精度を計測して、必要に応じて制御器に登録される補正値を変更しながら連続加工を継続することができ、更にそれらの部材を支持する軸受や駆動系の損傷による故障の発生を予知することも可能な工作機械を得ることを課題としている。
【課題を解決するための手段】
【0014】
この発明は、機械内部の画像を取得するカメラ5を備え、制御器4は加工プログラムに従って生成される指令値を設定されている補正値で補正して各駆動装置を動作させることによりワークの連続加工を行う工作機械において、移動台21ないし回転台12にワークwが搬入されたときに、カメラ5で搬入されたワークwの位置ずれを検出し、検出された位置ずれに基づいてワーク1個毎にワークwの位置ずれによる補正値を演算して制御器4に設定してワークwの加工を行い、ワークが搬出されたときに、前記カメラ5を用いて定期的に移動台21ないし回転台12の同一部位を撮影して取得した画像から機械の偏倚量の変化を測定することを特徴とする機械の自己診断方法、及び、その診断結果に基づいて、当該移動台ないし回転台に対する動作指令の補正値の設定ないし変更を行うことを特徴とする補正値の自動設定方法を提供することにより、上記課題を解決したものである。
【0015】
制御器4は、自己診断プログラム並びにカメラ5を撮像対象となる移動台ないし回転台の所定箇所に位置決めする位置決め手段、画像を取得する画像取得手段、取得画像から所定箇所の現実の位置を検出する位置検出手段、当該検出した位置と制御器に登録ないし記憶した本来の位置との偏倚を演算する演算手段を備え、更に、演算した偏倚からテーブルや送り台の各制御軸方向の補正値を演算する補正値演算手段、及び演算した補正値を制御器の所定の記憶領域に記憶する補正値設定手段を備える。
【0016】
自己診断プログラムは、機械の運転時間やワーク加工数が制御器に予め登録した自己診断間隔に達した後の加工動作終了時に呼び出される。自己診断プログラムは、前記位置決め手段によりテーブルその他の回転台や送り台とカメラを計測位置に移動し、画像取得手段で当該位置でカメラの画像を取得し、位置検出手段により当該画像から検出対象箇所の位置を検出し、偏倚演算手段により検出対象箇所の本来あるべき位置からの偏倚を検出する。これらの操作を複数回繰り返すことにより、複数の偏倚量を求める。そして、これらの偏倚からテーブルや送り台の各制御軸方向の補正値を演算して制御器に設定されている補正値を新しく演算した補正値に更新する。
【0017】
上記の手順において、検出ないし演算した複数の偏倚量相互ないし補正値相互の差が予め登録したしきい値を超えているときは警告を発して、必要な場合には連続加工を終了して機械を停止する。
【発明の効果】
【0018】
この発明の自己診断方法によれば、オペレータの管理や作業を全く必要とせずに機械精度の低下による不良品の発生の虞が事前に検知されるため、不良品の発生を未然に防止でき、更に、機械故障に繋がる虞のある機械のガタや変形を検知したときに警告を発することにより、機械故障を事前に防止することができる。
【0019】
また、機械内部に設けられているカメラを用い、診断のタイミング及び計測動作、更に計測結果の判定までがプログラム動作で行われるため、オペレータの熟練を必要とせずに誰でも現状の機械精度を把握することができる。
【0020】
また、計測に用いるカメラは、ワークの位置決め確認や加工精度計測用のカメラを使用するので、機械の偏倚を測定するための高額な測定器を用意する必要がなく、計測作業のために長い時間機械を停止させることもないので、計測に要する費用や機械稼働のロスを大幅に軽減できる。
【0021】
また、この発明の補正値の自動設定方法によれば、上記の自己診断法による効果が発揮されるほか、補正値の算出ミスや入力ミスなどの人為的ミスを防止することができ、補正値が自動的に変更されて連続運転を継続することができるので、高い加工精度を維持できると共に、機械稼働率の向上による生産性の向上とオペレータの作業負担の軽減を図れるという効果がある。
【図面の簡単な説明】
【0022】
図1】周縁加工装置の側面図
図2図1の装置の主要な機器配置を示す平面図
図3】コンタリング方式の加工を示す説明図
図4】取得したカメラの画像の例を示す図
図5】連続加工手順を示すフローチャート
図6】自己診断及び補正値の設定手順を示すフローチャート
図7】大型ガラス板の周縁加工装置の例を示す模式的な斜視図
図8】小型ないし中型ガラス板の周縁加工装置の例を示す模式的な斜視図
図9】移動台の位置計測の従来例を示す模式図
図10】回転台の回転角計測の従来例を示す模式図
【発明を実施するための形態】
【0023】
以下、コンタリング方式の周縁加工装置を例にして、この発明の実施形態を説明する。図はこの種の周縁加工装置の一例を示す図で、特許文献1で提案している装置であり、図1は側面図、図2は要部の機器配置を示す平面図である。
【0024】
図において、1はワーク軸である。ワーク軸1は、鉛直方向の中空の回転軸で、上端にテーブル12が設けられており、加工されるワーク(ガラス板)wは、テーブル12の上面に水平姿勢で保持される。テーブル12の上面には、ワーク軸1の中空孔を通して負圧が供給されており、ワークwは、下面を真空吸着されてテーブル12に固定される。ワーク軸1の下端には、主軸モータ(サーボモータ)15が連結されており、当該主軸モータ15は、サーボアンプ41を介して制御器4に接続され、制御器4の指令によってワーク軸1の回転角が制御されている。
【0025】
ワーク軸1の上方には、横送り台21が設けられている。横送り台21は、図示しない水平方向の横ガイドに移動自在に案内され、横送りモータ(サーボモータ)23で回転駆動される横送りねじ24に螺合している。横送りモータ23は、制御器4に接続されており、横送り台21の移動位置が制御器4によって制御されている。
【0026】
横送り台21には、縦送り台25が設けられている。縦送り台25は、横送り台21に固定した鉛直方向の縦ガイドに移動自在に装着され、縦送りモータ26で回転駆動される縦送りねじ27に螺合している。
【0027】
縦送り台25には、鉛直方向の砥石軸31が軸支され、この砥石軸の下端に砥石3が装着されている。砥石軸31の上端は、歯付ベルト33を介して砥石駆動モータ34に連結されている。図の装置は、砥石軸が1本であるが、複数本の砥石軸を設けて径や形状の異なる複数種の砥石を装着可能な装置も多く用いられている。
【0028】
ワーク軸1の軸心及び砥石軸31の軸心は、横送り台21の移動方向と平行な同一鉛直面s上に位置している。図3に示したように、コンタリング方式では、制御器4で横送り台21の移動量(=砥石3の移動量)xとワーク軸1の回転角θとを関連付けて制御することにより、所望の平面形状の周縁加工を行う。
【0029】
横送り台21の定位置には、テーブル12上に搬入されたワークの画像を取得するためのカメラ5が設けられている。このカメラ5は、図2に示すように、その光軸が前記鉛直面sを通る位置に設けられている。
【0030】
テーブル12の角部A、Bの上面には、それぞれマークa、bが刻設されている。テーブル12上でのこのマークa、bの位置は分かっているから、テーブル12を回転してマークa、bを前記鉛直面sに位置させたときのワーク軸1の原点角度からの回転角と、鉛直面s上に位置したマークにカメラ5の光軸を一致させるときの横送り台の移動位置は、演算によって求めることができる。
【0031】
そこで、制御器4で横送りモータ23と主軸モータ15を回転して、マークaをカメラ5の光軸の位置に位置決めし、カメラ5で角部Aの画像を取得する。図4は、カメラが取得した画像の例を示した図である。取得した画像からマークaの画像中心からの位置を検出することができる。次に、テーブル12を180度回転し、要すれば横送り台21を移動して、マークbをカメラ5の光軸の位置に位置決めし、カメラ5で角部Bの画像を取得する。
【0032】
このようにして取得した画像上のマークa、bのカメラ光軸からの偏倚を計測することにより、テーブル12の回転角の誤差(初期位置からのずれ)及び横送り台21の位置決め誤差を計測することができる。また、テーブル12及び横送り台21を反対方向から回転及び移動してマークa、bをカメラ5の光軸に一致させて同様な計測を行うことにより、反対方向から計測したときの誤差と最初に計測したときの誤差との差により、摩耗などにより生じた機械のガタを計測することができる。
【0033】
なお、テーブル12にマークa、bを刻設しない場合であっても、画像上におけるテーブルの周縁の線の交点からテーブル12の角を検出することができる。この場合には、テーブル12の対象とする角A、Bがあるべき位置に光軸Coを位置決めしたカメラ5でテーブルの角部Aの画像を取得し、次にテーブル12を180度回転して角部Bの画像を取得する。取得した画像には、テーブルの縁の映像として直交する2本の線分が写っているから、この2本の交点の画像上での座標を取得できる。
【0034】
上記のようにして取得したマークa、bないし角A、Bの頂点の位置を比較することにより、次のような内容の機械状態の自己診断及びその計測結果に基づく補正処理を行うことができる。
(1)機械の使用開始時及びその後の制御器に予め登録した機械稼働時間や加工個数毎に、テーブルのX及びY方向のずれ量を比較し、熱偏倚の状況を確認する。また、ずれ量を基に、熱偏倚のずれを補正する補正値を制御器に自動で設定する。
(2)テーブル及び横送り台を停止した状態で同一箇所を複数回撮影し、それらの画像におけるマークa、bや角A、Bの頂点の位置を比較することにより、機械振動の状態を確認することができる。比較した位置のばらつきが予め登録したしきい値より大きいときは、例えば横送り台の駆動系に生じた遊びの増大などが考えられるので、警告を発してオペレータに注意を促す。
(3)テーブルを同じ角度に繰り返し位置決めして同一箇所を撮影し、それらの画像におけるマークa、bや角A、Bの頂点の位置を比較することにより、テーブルを支持している主軸ベアリングなどのテーブル支持系や主軸モータなどの駆動系の異常を検出することができ、異常と判定されたときに警告を発する。
【0035】
次に図5及び6を参照して、上述した装置におけるこの発明の自己診断及び機械精度の補正方法を説明する。まず、連続加工を開始するに先立って、制御器4に運転時間を計時するタイマを設け、自己診断を実施する時間間隔と許容されるガタ(遊び)の許容値とを設定しておく。
【0036】
連続加工手順を示す図5において、加工が開始されると、制御器4は、搬入搬出装置からのワーク搬入完了信号を待つ。ワークが搬入されたら、例えば特許文献1に記載された手順でテーブル12上に搬入されたワークwの位置ずれを検出し、当該検出された位置ずれに基づいてワーク1個毎に当該ワークの位置ずれによる補正値を演算して制御器に設定する。そして、テーブル上の1個のワークの加工を行い、加工が終了したら終了信号を搬入搬出装置に送ってテーブル12上からのワークwの搬出を待つ。ワークが搬出されたら、図6で説明する自己診断プログラムを実行し、制御が戻ったら次のワークがあれば最初に戻って次のワークの搬入を待つ。次のワークがなければ連続加工手順を終了する。
【0037】
図6は、自己診断プログラムの手順である。この手順には、機械精度の補正手順が含まれている。この手順の実行が開始されると、まず制御器4に設けた運転時間タイマで計時されている運転時間が自己診断を実行する時間間隔に達しているかどうかが判断され(ステップ61)、達していなければ直ちに終了して連続加工手順に戻る。自己診断の時間間隔に達している場合には、予め登録されている角度にテーブル12を回転させると共に、予め登録されている位置に横送り台21を移動して第1のマークaをカメラ5の光軸上に位置させる(ステップ62)。そして、カメラ5の画像を取得し(ステップ63)、取得した画像からマークaを検出してその本来の位置(光軸中心)からの偏倚を検出する(ステップ64)。次にテーブルを180度回転し、カメラの画像を取得することによってマークbを検出して、そのあるべき位置からの偏倚を検出する(ステップ65〜68)。この2つのマークa、bの偏倚からテーブルの回転角の偏倚と、テーブル中心と横送り台21とのX方向(横送り台の送り方向)とこれに直交するY方向の偏倚を演算できるが、Y方向の偏倚が加工精度に及ぼす影響は小さいので、テーブル角度と横送り台の位置偏倚を補正するための第1の補正値を求めて記憶する(ステップ69)。
【0038】
次にテーブル12と横送り台21とを反対方向から移動して同様な操作によりマークaとbの画像を取得して、前記と同様に第2の補正値を演算する(ステップ70〜77)。そして、第1と第2の補正値の差が登録された遊びの許容値より大きいときは、これを制御器に対する補正値の設定によって解消することは困難なので、警告を発して運転を停止する。もし、第1と第2の補正値の差が許容値以下であれば、それらの補正値の平均値を現在補正値として設定し(ステップ78)、運転時間タイマをリセットして連続加工手順に戻る。
【0039】
上記の実施例に示した装置及び手順は、テーブルの回転と工具のX方向のみの移動によってワークの加工を行うものであるが、工具をX、Y方向に移動して加工を行う装置では、テーブル上に設定した一箇所をカメラで撮影した画像からX、Y両方向の偏倚を検出することにより、経時変化や熱偏差による工具とテーブルの相対位置関係の変化を検出して、自動でこれらの偏倚を補正するための補正値を制御器に設定する。
【0040】
また、上記の自己診断手順におけるステップ63や66で機械を停止させたまま同一箇所を複数回撮影して、それら相互の画像の偏倚を検出することにより、機械振動の確認を行うことが可能で、その複数回の画像における対象物の画像の位置に設定された許容値を超えるばらつきがあるときは、何らかの異常が発生しているとして警告を発するようにすることができる。
【0041】
また、上記の自己診断手順におけるステップ62〜67を繰り返して複数の画像を取得し、その画像相互の対象物の位置のばらつきを確認することができる。このばらつきが大きいときは、例えば主軸モータ15を含む主軸の駆動系や主軸を軸支している軸受、あるいは横送り台21の駆動系に異常が発生していると考えられるので、このような場合にもそのばらつきの量が予め設定された許容値を超えているときは、警告を発して機械の点検を促すこともできる。
【0042】
上記実施例で説明した工作機械は、コンタリング方式によるガラス板の周縁加工装置であるが、図7に示した装置や工具を2次元平面上で移動して加工を行うマシニングセンタのような機械にもこの発明の方法を採用することができる。特に、カメラが工具の切り込み方向に送る送り台に搭載されている機械においては、カメラと工具との相対位置関係が変化せず、検出された偏倚量をそのまま当該方向の補正値とすることができるので、この発明の方法が特に有効である。
【0043】
以上のように、この発明の方法によれば、既存の装置に検出器や計測器を追加設置することなく、制御器に自己診断プログラムと各種の許容値を登録して連続加工中に適時自己診断プログラムを呼び出すことのみによって機械精度の診断とそれぞれの時点における機械の熱偏倚などに応じた補正値を設定することが可能になり、更に自己診断プログラムで複数の画像を取得してそれらを相互比較することによって機械の異常や故障を発見することができ、不良品の発生を防止することができるばかりでなく、機械の摩耗や故障を初期段階で発見することができるという効果がある。
【符号の説明】
【0044】
1 ワーク軸
3 砥石
4 制御器
5 カメラ
12 テーブル
15 主軸モータ
21 横送り台
23 送り装置(横送りモータ)
A,B テーブルの角部
a,b 角部に刻設したマーク
P テーブルの中心
w ワーク
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10