(58)【調査した分野】(Int.Cl.,DB名)
前記活動モニタが、加速度データを測定するための加速度計を備え、前記活動データが、加速度データを備え、前記命令の実行により、前記プロセッサが、前記加速度データから前記活動カウント及び前記活動レベルを導出する、請求項1に記載のヘルス・モニタリング・システム。
前記ピークが、前記ピーク振幅、前のステップからの経過時間、ならびに前記推定歩行速度を比較することによって、ストライドまたはハーフストライドのいずれかとして分類される、請求項3に記載のヘルス・モニタリング・システム。
前記活動モニタは、前記対象者の呼吸速度を記述する呼吸データを測定するための呼吸センサを備え、前記活動データは、前記呼吸データを備え、前記命令の実行により、さらに、前記プロセッサは:
前記呼吸データから呼吸速度データを算出し;
前記呼吸速度データを前記メモリに格納し、ここで、前記呼吸速度データが、時間と関連づけられ;
前記呼吸速度データの少なくとも一部を使用して少なくとも1つの追加統計パラメータを算出し;及び
前記少なくとも1つの追加統計パラメータに対する追加リスクスコアを算出し、ここで前記総リスクスコアが、前記追加リスクスコアを少なくとも部分的に使用して算出される、
請求項1〜4のいずれか一項に記載のヘルス・モニタリング・システム。
前記命令を実行することにより、前記プロセッサが、アーカイブされた活動カウントから活動テンプレートを算出し、前記活動テンプレートが、所定の期間にわたる前記対象者の活動の平均であり、前記少なくとも1つの行動パラメータが、前記活動カウントと前記活動テンプレートとの比較によりさらに算出される、請求項8に記載のヘルス・モニタリング・システム。
前記命令を実行することにより、さらに、前記プロセッサは、前記総リスクスコアをディスプレイ上に表示、前記総リスクスコアを遠隔患者管理システムに回送、前記総リスクスコアを電子メール送信、およびそれらの組合せのいずれか1つを実行する、
請求項1〜11のいずれか一項に記載のヘルス・モニタリング・システム。
対象者の健康状態における増悪のリスクを判断するよう配置されるヘルス・モニタリング・システムのプロセッサで実行するための機械実行可能命令を備えるコンピュータプログラムであって、前記ヘルスシステムが、前記対象者の活動の時間および継続期間を記述する活動データを取得するための活動モニタを備え、前記命令の実行により、前記プロセッサが:
所与の期間内の活動の活動カウント及び各活動の活動レベルを前記活動データから導出し;
メモリに前記活動カウント及び前記活動レベルを格納し、ここで、前記活動カウント及び前記活動レベルのそれぞれは前記対象者の前記各活動の前記時間と関連づけられ;
前記活動カウント及び前記活動レベルを時間の関数として表す少なくとも2つの統計パラメータを前記活動カウント及び前記活動レベルから算出し;
前記少なくとも2つの統計パラメータのそれぞれに対して、前記対象者に対する増悪のリスクを示すリスクスコアを算出し;
前記少なくとも2つの統計パラメータのそれぞれに対する前記リスクスコアを使用して総リスクスコアを算出する、
コンピュータプログラム。
【発明の概要】
【0006】
本発明は、独立クレームにおいて、ヘルス・モニタリング・システム、コンピュータプログラム製品、およびヘルスモニタリングの方法を提供する。実施形態は、従属クレームにおいてもたらされる。
【0007】
本発明の実施形態は、急性増悪および再入院に対する患者のリスクを判断するための方法を提供することができる。本方法は、活動データから抽出されたさまざまな情報を組み合わせることを含み、そのような活動データには、活動カウント、歩いてならびに座ってもしくは横になって過ごす時間、歩行パターンならびに歩数、および、呼吸速度ならびに呼吸回復時間などの呼吸データを含む。次いで、リスクスコアが導出され、急性増悪および再入院に対する患者のリスクを示す。
【0008】
慢性閉塞性肺疾患(COPD)に関連した入院は、急性増悪の結果であり、COPD患者の健康に関する生活品質を著しく悪化させる。高頻度の急性増悪は、生存に対する予後不良に関連する。
【0009】
入院した患者の約3分の1が、後に、3ヶ月以内に再入院する。しかしながら、これら再入院の多くは、場合によっては、臨床医が再入院に関する患者のリスクをより認識していたなら、避けることができたものである。したがって、患者が急性増悪をより発症しやすいことを知ることは、患者が増悪の急性期に達する前に、臨床医が適時介入することを可能にすることができ、それにより、入院を避けることができる。
【0010】
本発明の実施形態は、急性増悪および再入院に対する患者のリスクを評価するための方法を提供することができる。加速度計から収集した、または呼吸センサと組み合わせて収集したデータを解析することにより、患者の状態に関する貴重な情報をもたらすことができる。例えば、患者が、座るもしくは横になる、歩く期間が少なくなる、通常より多くの休息期間を取る、および/または呼吸緩和速度が多くなる時間が増え始めると、それらは、患者の健康状態が悪くなっているという徴候である。患者の活動および呼吸パターンの具体的な詳細を検討することによって、リスクスコアを生成し、患者に対し急性増悪および再入院の可能性を示すことが可能となる。その場合、リスクスコアは、3レベルリスク評価、すなわち、高リスク、中リスク、または低リスクに変換され、患者が理解し、それに基づいて対処するためのリスクの単純な解析となる。したがって、適切な介入をもたらし、患者が、入院治療を必要とする段階にまで悪化しないことを保証することができる。
【0011】
本明細書で使用する場合、「コンピュータ可読ストレージメディア」は、コンピューティングデバイスのプロセッサによって実行可能な命令を格納することができる、あらゆる有形のストレージメディアを包含する。コンピュータ可読ストレージメディアは、コンピュータ可読非一時的ストレージメディアと称してもよい。コンピュータ可読ストレージメディアはまた、有形のコンピュータ可読メディアと称してもよい。いくつかの実施形態において、コンピュータ可読ストレージメディアは、コンピューティングデバイスのプロセッサによってアクセス可能なデータを格納することを可能にしてもよい。コンピュータ可読ストレージメディアの例には、これらだけに限らないが、フロッピー(登録商標)ディスク、パンチテープ、パンチカード、磁気ハードディスクドライブ、固体ハードディスク、フラッシュメモリ、USBメモリ、ランダム・アクセス・メモリ(RAM)、リード・オンリー・メモリ(ROM)、光学ディスク、光磁気ディスク、およびプロセッサのレジスタファイルがある。光学ディスクの例には、コンパクトディスク(CD)およびデジタル多用途ディスク(DVD)があり、例えば、CD−ROM、CD−RW、CD−R、DVD−ROM、DVD−RW、またはDVD−Rディスクがある。コンピュータ可読ストレージメディアという用語はまた、ネットワークまたは通信リンクを介してコンピュータデバイスによってアクセス可能な、さまざまな種類の記録メディアを意味する。例えば、データは、モデム、インターネット、または構内ネットワーク上で検索される可能性がある。コンピュータ可読ストレージメディアへの言及は、場合により、複数のコンピュータ可読ストレージメディアであるとして解釈されるべきである。1つまたは複数のプログラムのさまざまな実行可能コンポーネントが、異なる位置に格納されていてもよい。コンピュータ可読ストレージメディアは、例えば、同じコンピュータシステム内の複数のコンピュータ可読ストレージメディアとしてもよい。コンピュータ可読ストレージメディアはまた、複数のコンピュータシステムまたはコンピューティングデバイス上に分散されたコンピュータ可読ストレージメディアとしてもよい。
【0012】
「コンピュータメモリ」または「メモリ」は、コンピュータ可読ストレージメディアの一例である。コンピュータメモリは、プロセッサに直接アクセス可能な任意のメモリである。コンピュータメモリの例には、これらだけに限らないが、RAMメモリ、レジスタ、およびレジスタファイルがある。「コンピュータメモリ」または「メモリ」についての言及は、場合により、複数のメモリであるとして解釈されるべきである。メモリは、例えば、同じコンピュータシステム内の複数のメモリとしてもよい。メモリはまた、複数のコンピュータシステムまたはコンピューティングデバイス上に分散されたメモリとしてもよい。
【0013】
「コンピュータストレージ」または「ストレージ」は、コンピュータ可読ストレージメディアの一例である。コンピュータストレージは、任意の不揮発性コンピュータ可読ストレージメディアである。コンピュータストレージの例には、これらだけに限らないが、ハードディスクドライブ、USBメモリ、フロッピー(登録商標)ドライブ、スマートカード、DVD、CD−ROM、および固体ハードドライブがある。いくつかの実施形態において、コンピュータストレージはまた、コンピュータメモリとしてもよく、その逆でもよい。「コンピュータストレージ」または「ストレージ」についての言及は、場合により、複数のストレージであるとして解釈されるべきである。ストレージは、例えば、同じコンピュータシステムまたはコンピューティングデバイス内の複数のストレージデバイスとしてもよい。ストレージはまた、複数のコンピュータシステムまたはコンピューティングデバイス上に分散されたストレージとしてもよい。
【0014】
本明細書で使用される場合、「プロセッサ」は、プログラムまたは機械実行可能命令を実行することが可能な電子部品を含む。「プロセッサ」を備えるコンピューティングデバイスに対する言及は、場合により、1つより多くのプロセッサまたは処理コアを含むものと解釈すべきである。プロセッサは、例えば、マルチコアプロセッサとしてもよい。プロセッサはまた、単一のコンピュータシステム内の、または複数のコンピュータシステム上に分散されたプロセッサの集合を意味することができる。コンピューティングデバイスという用語はまた、場合により、それぞれが1つまたは複数のプロセッサを備えるコンピューティングデバイスの集合またはネットワークを意味すると解釈されるべきである。多くのプログラムは、同じコンピューティングデバイス内に配置することができるか、または複数のコンピューティングデバイス上に分散することもできる、複数のプロセッサによって実行される命令を有する。
【0015】
本明細書で使用される場合、「ユーザインターフェース」は、ユーザまたはオペレータが、コンピュータまたはコンピュータシステムと相互通信することを可能にするインターフェースである。「ユーザインターフェース」はまた、「ヒューマン・インターフェース・デバイス」と称してもよい。ユーザインターフェースは、オペレータに情報もしくはデータを提供し、および/またはオペレータから情報もしくはデータを受信することができる。ユーザインターフェースは、オペレータからの入力を、コンピュータにより受信することを可能にすることができ、コンピュータからユーザへの出力をもたらすことができる。言い換えると、ユーザインターフェースは、オペレータが、コンピュータを制御もしくは操作することを可能にすることができ、インターフェースは、コンピュータが、オペレータの制御もしくは操作の影響を示すことを可能にすることができる。データもしくは情報のディスプレイもしくはグラフィカル・ユーザ・インターフェース上への表示は、オペレータに情報をもたらす一例である。キーボード、マウス、トラックボール、タッチパッド、ポインティングスティック、グラフィックタブレット、ジョイスティック、ゲームパッド、ウェブカメラ、ヘッドセット、ギアスティック、ステアリングホイール、ペダル、有線グローブ、ダンスパッド、リモートコントロール、1つまたは複数のスイッチ、1つまたは複数のボタン、および加速度計によるデータの受信は、すべて、オペレータからの情報もしくはデータの受信を可能にするユーザインターフェースコンポーネントの例である。
【0016】
本明細書で使用される場合、「ハードウェアインターフェース」は、コンピュータシステムのプロセッサが、外部コンピューティングデバイスならびに/もしくは装置と相互通信するか、または制御することを可能にするインターフェースを含む。ハードウェアインターフェースは、プロセッサが、制御信号もしくは命令を、外部コンピューティングデバイスおよび/または装置に送信することを可能にすることができる。ハードウェアインターフェースはまた、プロセッサが、データを、外部コンピューティングデバイスおよび/または装置と交換することを可能にすることができる。ハードウェアインターフェースの例には、これらだけに限らないが、ユニバーサル・シリアル・バス、IEEE1394ポート、パラレルポート、IEEE1284ポート、シリアルポート、RS−232ポート、IEEE−488ポート、Bluetooth(登録商標)接続、無線ローカルエリアネットワーク接続、TCP/IP接続、Ethernet(登録商標)接続、制御電圧インターフェース、MIDIインターフェース、アナログ入力インターフェース、およびデジタル入力インターフェースがある。
【0017】
本明細書で使用される場合、「ディスプレイ」または「ディスプレイデバイス」は、画像またはデータを表示するために使用される出力デバイスまたはユーザインターフェースを含む。ディスプレイは、ビジュアルデータ、オーディオデータ、および/または触覚データを出力することができる。ディスプレイの例には、これらだけに限らないが、コンピュータモニタ、テレビスクリーン、タッチパネル、触覚電子ディスプレイ、点字スクリーン、ブラウン管(CRT)、蓄積管、双安定ディスプレイ、電子ペーパ、ベクトルディスプレイ、フラット・パネル・ディスプレイ、蛍光表示管(VF)、発光ダイオード(LED)ディスプレイ、エレクトロ・ルミネッセンス・ディスプレイ(ELD)、プラズマ・ディスプレイ・パネル(PDP)、液晶ディスプレイ(LCD)、有機発光ダイオードディスプレイ(OLED)、プロジェクタ、およびヘッド・マウント・ディスプレイがある。
【0018】
一態様において、本発明は、対象者の時間依存的運動を記述する活動データを取得するための活動モニタを備えるヘルス・モニタリング・システムを提供する。対象者の時間依存的運動は、内部運動および/または外部運動とすることができる。外部運動の例には、対象者の歩行または走行に起因する運動を挙げることができる。内部運動の例には、対象者の呼吸を挙げることができる。例えば、対象者が身につける活動モニタは、対象者の運動および/または呼吸による運動または運動の変化を検出することができる。さらに、ヘルス・モニタリング・システムは、ヘルス・モニタリング・システムを制御するためのプロセッサを備える。プロセッサは、複数のプロセッサであると解釈してもよく、異なる位置に設置してもよい。さらに、ヘルス・モニタリング・システムは、機械可読命令を格納するためのメモリを備える。
【0019】
命令を実行することにより、プロセッサは、活動データから活動カウントを導出する。本明細書で使用される場合、活動カウントは、活動データから導出された活動の離散測定値である。例えば、対象者が部屋の周りを動き、何らかの動作をすると、加速度計は、繰り返し加速度を記録する。ある程度の活動を使用して、活動カウントとして登録することができる。さらに、命令を実行することにより、プロセッサは、メモリに活動カウントを格納する。活動カウントはそれぞれ、時間と関連づけられる。言い換えると、時間依存的な活動カウントが、メモリに格納される。
【0020】
さらに、命令を実行することにより、プロセッサは、活動カウントから少なくとも2つの統計パラメータを算出する。少なくとも2つの統計パラメータは、時間の関数として、活動カウントを記述する。さらに、命令を実行することにより、プロセッサは、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを算出する。少なくとも2つの統計パラメータのそれぞれは、対象者に対するリスクと関連づけてもよい。さらに、命令を実行することにより、プロセッサは、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを使用して、総リスクを算出する。本発明の実施形態は、少なくとも2つの統計パラメータから総リスクを算出することで、対象者の活動レベルの変化を検知することができるため、有益である可能性がある。これにより、対象者が再検査または再入院すべき時期を正確に計画することができる可能性がある。
【0021】
他の実施形態において、活動モニタは、加速度データを測定する加速度計を備える。活動データは、加速度データを備える。命令を実行することにより、プロセッサは、加速度データから活動カウントを導出する。加速度計は、対象者の加速度を測定するために使用することができる。そのような加速度は、対象者が、動いているか、または身体活動に従事していることを示すことができる。
【0022】
他の実施形態において、命令を実行することにより、さらに、プロセッサは、加速度データをバンドパスフィルタリングする。フィルタのこのバンドパスは、デジタルで実行することができ、またはアナログ回路を使用して実行することができる。さらに、命令を実行することにより、プロセッサは、バンドパスフィルタリングされた加速度データにおけるピークを識別する。さらに、命令を実行することにより、プロセッサは、振幅によりストライドまたはハーフストライドのいずれかとしてピークのそれぞれを分類し、第3の時間依存的速度、直前のステップからの経過時間、および推定歩行速度を算出する。2つの統計パラメータの少なくとも1つは、時間依存的歩行速度を表す。本実施形態は、対象者が行うステップまたはストライドの数を、より高い精度で識別するので、有利であるだろう。これにより、活動カウントのより正確な決定を導くことができる。
【0023】
他の実施形態において、ピークは、ピーク振幅、前のステップからの経過時間、および推定歩行速度を所定のパラグラフスペースと比較することによって分類される。本質的に、ピーク振幅、前のステップからの経過時間、および推定歩行速度を含む、およびそれらについて言及するパラメータスペースを使用して、3次元パラメータスペースを定義することができる。経験的実験により、パラメータスペースは、2つの領域、すなわち、ストライドもしくはハーフストライドに分割することができる。ピーク振幅、前のステップからの経過時間、および推定歩行速度が決定されると、値リストを所定のパラメータスペースに対してチェックすることができ、ストライドまたはハーフストライドであるかどうかの決定を行うことができる。所定のパラメータスペースは、特定の対象者に対するものとしてもよく、または、対象者のグループもしくは集まりに対するものとしてもよい。本実施形態は、ストライドまたはハーフストライドのいずれかとして加速度計によって検出されたステップを高精度で分類する方法を提供するため、有利であるだろう。
【0024】
他の実施形態において、活動モニタは、対象者の呼吸速度を示す呼吸データを測定するための呼吸センサを備える。本明細書で使用される場合、呼吸センサは、対象者の呼吸速度を測定するために使用することができるセンサを含む。このことは、さまざまな方法で実行することができる。例えば、加速度計、マイクロフォン、および胸郭拡張センサを使用することができる。活動データは、呼吸データを備える。これは、加速度計が、対象者の内部運動および外部運動の両方を測定するためである。
【0025】
他の実施形態において、異なる種類の呼吸データが取得され、活動データに付加されるか、または活動データに含まれる。活動データは、呼吸データを備える。さらに、命令を実行することにより、プロセッサは、呼吸データから呼吸速度データを算出する。さらに、命令を実行することにより、プロセッサは、メモリに呼吸速度データを格納する。呼吸速度データは、時間と関連づけられる。したがって、呼吸速度データは、時間依存的である。これは、メモリに格納されるような活動カウントもまた時間依存的であるので、有利であり得る。したがって、時間依存的活動カウントは、時間依存的呼吸速度データと直接比較することができる。さらに、命令を実行することにより、プロセッサは、呼吸速度データから少なくとも1つの追加統計パラメータを算出する。
【0026】
さらに、命令を実行することにより、プロセッサは、少なくとも1つの追加統計パラメータに対する追加リスクスコアを算出する。総リスクスコアは、追加リスクスコアを使用して、少なくとも部分的に算出される。本実施形態は、呼吸の速度と対象者の活動とを比較することができるため、有利であり得る。例えば、活動後、呼吸速度がどれくらいであるか、および対象者が回復するためにどのくらいかかったかを記すことができる。これにより、対象者の健康を非常に効果的に測定することができる。
【0027】
他の実施形態において、少なくとも1つの追加統計パラメータが、活動カウントを使用して算出され、呼吸回復速度を判断する。対象者の呼吸器の健康状態は、対象者が、極端な運動後に、どれだけ早く回復するかに非常に依存する。本明細書で使用される場合、呼吸回復速度は、対象者の循環系が、運動後に回復するためにどれだけの時間がかかるかを示す、測定値または算出された速度である。少なくとも1つの追加統計パラメータは、時間依存的呼吸回復速度と、時間依存的活動カウントとの組合せを使用して算出することができる。
【0028】
他の実施形態において、呼吸センサは、加速度計である。
【0029】
他の実施形態において、呼吸センサは、マイクロフォンである。
【0030】
他の実施形態において、呼吸センサは、胸郭拡張センサである。
【0031】
他の実施形態において、さらに、命令を実行することにより、プロセッサは、活動カウントから少なくとも1つの行動パラメータを算出する。行動パラメータは、時間の関数として、活動カウントを記述する。例えば、活動カウントを使用して、対象者が従事する行動の種類を判断することができる。例えば、対象者が眠っているか、または何らかの他の活動を行っている場合の活動カウントの時間分布を判断することができる。さらに、命令を実行することにより、プロセッサは、少なくとも1つの行動パラメータに対する行動類似性スコアを算出する。例えば、対象者の以前の活動をモニタリングすることができ、行動パラメータの変化を調査することができる。例えば、対象者が眠りから覚める時間の長さまたは時間を、行動パラメータとしてモニタリングすることができる。
【0032】
少なくとも1つの行動パラメータに対するベースライン値は、継続時間に対して確立することができる。いくつかの実施形態において、行動類似性スコアは、以前の1つまたは複数の値からの行動パラメータの変化または逸脱である。このことは、対象者の行動の変化をモニタリングする際に特に有益であり得る。例えば、対象者が有することができる総活動カウントは、1日において、または連続する日々において同じである可能性があるが、対象者の行動は、完全に変化している。
【0033】
他の実施形態において、多様な行動パラメータが、活動カウントを使用して算出される。多様な行動パラメータは、少なくとも1つの行動パラメータを備える。行動類似性スコアは、多様な行動パラメータのそれぞれに対して算出される。さらに、命令を実行することにより、プロセッサは、少なくとも2つの統計パラメータのそれぞれに対する総行動類似性スコアを算出する。
【0034】
他の実施形態において、総リスクスコアは、総行動類似性スコアを少なくとも部分的に使用して、算出される。
【0035】
他の実施形態において、少なくとも1つの行動パラメータは、1日の時間による活動強度の分類である。
【0036】
他の実施形態において、少なくとも1つの行動パラメータは、活動カウントが所定の活動レベルを超える、最も長い期間である。
【0037】
他の実施形態において、少なくとも1つの行動パラメータは、活動カウントが所定の活動レベルを超える、最も長い期間の時刻である。
【0038】
他の実施形態において、少なくとも1つの行動パラメータは、歩いている時間である。
【0039】
他の実施形態において、少なくとも1つの行動パラメータは、対象者が眠っている時間である。
【0040】
他の実施形態において、少なくとも1つの行動パラメータは、睡眠継続期間である。
【0041】
他の実施形態において、少なくとも1つの行動パラメータは、睡眠中の総活動カウントである。
【0042】
他の実施形態において、少なくとも1つの行動パラメータは、活動カウントが所定の活動レベル未満である、最長期間である。
【0043】
他の実施形態において、少なくとも1つの行動パラメータは、活動カウントが所定の活動レベル未満である、最長期間の時刻である。
【0044】
他の実施形態において、少なくとも1つの行動パラメータは、最長持続活動の時間である。
【0045】
他の実施形態において、少なくとも1つの行動パラメータは、最長持続活動の強度レベルである。
【0046】
他の実施形態において、少なくとも1つの行動パラメータは、最長持続活動の継続期間である。
【0047】
他の実施形態において、少なくとも1つの行動パラメータは、最長持続非活動の時間である。
【0048】
他の実施形態において、少なくとも1つの行動パラメータは、最長持続非活動の継続期間である。
【0049】
他の実施形態において、少なくとも1つの行動パラメータは、1日の異なる間隔中の、平均活動カウントである。
【0050】
他の実施形態において、少なくとも1つの行動パラメータは、歩いている間の休息である。
【0051】
他の実施形態において、少なくとも1つの行動パラメータは、休息の継続期間である。
【0052】
他の実施形態において、少なくとも1つの行動パラメータは、座って過ごす時間である。
【0053】
他の実施形態において、少なくとも1つの行動パラメータは、横になって過ごす時間である。
【0054】
他の実施形態において、少なくとも1つの行動パラメータは、歩いて過ごす時間である。
【0055】
他の実施形態において、少なくとも1つの行動パラメータは、活動間の切替時間である。
【0056】
他の実施形態において、少なくとも1つの行動パラメータは、上述の行動パラメータの組合せである。
【0057】
他の実施形態において、命令の実行により、プロセッサは、アーカイブされた活動カウントから活動テンプレートを算出する。少なくとも1つの行動パラメータは、活動カウントと日毎の活動テンプレートとを比較をして算出される。アーカイブされた活動カウントは、所与の周期でメモリに格納された時間依存的活動カウントであってもよい。日毎の活動テンプレートは、対象者の起床および就寝時などを記録することができる。それらはまた、対象者が動いて過ごす時間の平均量についての情報を含むことができる。このことは、活動テンプレートの比較が、医師またはヘルスケア提供者の注意を必要とする可能性のある対象者の行動の急速な変化を示す可能性があるため、有益であるだろう。
【0058】
他の実施形態において、活動テンプレートは、以下のいずれかである。すなわち、月毎の活動テンプレート、週毎の活動テンプレート、日毎の活動テンプレート、運動活動テンプレート、および休日活動テンプレートである。例えば、月毎の活動テンプレートは、時間の関数として、1ヶ月にわたる対象者の活動の平均とすることができる。同じように、週毎の活動テンプレートおよび日毎の活動テンプレートは、それぞれ、1週間および1日にわたる平均活動とすることができる。運動活動テンプレートは、対象者が運動した日から取得された活動テンプレートとすることができる。休日活動テンプレートは、対象者が休んだか、または運動しなかった1日または複数日から取得することができる。本実施形態は、対象者の活動を比較することができる、異なる時間スケールを提供するため、有益であり得る。
【0059】
他の実施形態において、日毎のテンプレートは、所定数の日毎の時間ビンにおけるアーカイブされた活動カウントをビニングおよび平均することによって算出される。活動カウントと日毎の活動テンプレートとの比較は、活動カウントを日毎の時間ビンにビニングすることによって実行される。さらに、比較は、日毎の時間ビンのそれぞれにおける活動カウントの数と、日毎の時間ビンのそれぞれにおけるアーカイブされた活動カウントの平均数とを比較することによって実行される。
【0060】
他の実施形態において、少なくとも1つの行動パラメータは、少なくとも2つの統計パラメータの1つである。本質的に、いくつかの実施形態において、行動パラメータは、統計パラメータと同じとすることができる。
【0061】
他の実施形態において、少なくとも2つの統計パラメータは、以下のいずれか1つを備える。すなわち、日毎の総活動カウント、日毎の平均活動カウント、日毎のピーク活動カウント、所定の閾値を超える活動カウントの最長期間、所定の閾値未満の活動カウントの最長期間、活動切替継続期間、およびそれらの組合せである。例えば、活動切替継続期間は、対象者が活動の種類を変更する、例えば、睡眠状態から歩行状態に移行するのにかかる時間とすることができる。活動切替継続期間の例には、起床して、ベッドから起き上がることが挙げられる。
【0062】
他の実施形態において、命令を実行することにより、さらに、プロセッサは、以下のいずれか1つを実行する。すなわち、総リスクスコアをディスプレイ上に表示、総リスクスコアを遠隔患者管理システムに回送、総リスクスコアを電子メール送信、およびそれらの組合せのいずれか1つを実行する。本実施形態は、ディスプレイ上の総リスクスコアにより、対象者に自身の行動についてのフィードバックをもたらすことができるため、有益であり得る。さらに、総リスクスコアを遠隔患者管理システムに回送すること、またはそれを電子メール送信することで、情報を医師に提供することができる。本明細書で使用される場合、遠隔患者管理システムは、対象者の入力から、および/またはセンサデータからデータを収集することができるシステムであり、ヘルスケア情報を対象者または患者に提供するために使用される。
【0063】
他の実施形態において、活動カウントは、それらを時間間隔にビニングすることによって、メモリに格納される。
【0064】
別の態様において、本発明は、ヘルス・モニタリング・システムのプロセッサにより実行する、機械実行可能命令を備えるコンピュータプログラム製品を提供する。ヘルスシステムは、対象者の時間依存的運動を記述する活動データを取得するための活動モニタを備える。命令を実行することにより、プロセッサは、活動データから活動カウントを駆動する。さらに、命令を実行することにより、プロセッサは、活動カウントをメモリに格納する。活動カウントはそれぞれ、時間と関連づけられる。さらに、命令を実行することにより、プロセッサは、活動カウントから少なくとも2つの統計パラメータを算出する。少なくとも2つの統計パラメータは、時間の関数として、活動カウントを記述する。さらに、命令を実行することにより、プロセッサは、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを算出する。さらに、命令を実行することにより、プロセッサは、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを使用して、総リスクスコアを算出する。
【0065】
別の態様において、本発明は、ヘルスモニタリングの方法を提供する。本方法は、活動モニタの活動データから活動カウントを導出するステップを備える。活動モニタは、対象者の時間依存的運動を記述する活動データを取得するよう動作可能である。例えば、特定の期間の一定の閾値を超える活動を、活動カウントとしてカウントすることができる。他の実施形態において、対象者の活動は、時間とともに統合され、活動カウントに変換される。例えば、活動は、ある期間にわたって対象者が体験する加速度の測定値とすることができる。さらに、本方法は、活動カウントを記録するステップを備える。活動カウントはそれぞれ、時間と関連づけられる。さらに、本方法は、活動カウントから少なくとも2つの統計パラメータを算出するステップを備える。少なくとも2つの統計パラメータは、時間の関数として、活動カウントを記述する。さらに、本方法は、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを算出するステップを備える。さらに、本方法は、少なくとも2つの統計パラメータのそれぞれに対するリスクスコアを使用して、総リスクスコアを算出するステップを備える。
【0066】
他の実施形態において、本方法は、さらに、総リスクスコアを使用してリスク層別化を決定するステップを備える。
【0067】
本方法は、さらに、慢性閉塞性肺疾患、すなわちCOPD増悪に対するリスク分類を算出するステップを備える。
【0068】
他の実施形態において、本方法は、さらに、総リスクスコアが、所定の範囲内、または所定の範囲を超える場合、対象者を入院させるステップを備える。
【0069】
以下に、例示目的のみのために、本発明の好適な実施形態を、図面を参照して説明する。
【発明を実施するための形態】
【0071】
これらの図において、同様の番号の要素は、同等の要素であるか、または同じ機能を実行する。以前に説明した要素は、機能が同等である場合、後の図で必ずしも説明しない。
【0072】
図1は、本発明の実施形態による方法を示すフローダイアグラムである。ステップ100では、活動カウントが、活動モニタから受信される。次に、ステップ102では、活動カウントはメモリに格納される。活動カウントは、それらを時間と関連づけるようにも格納される。例えば、活動カウントは、個々の時間スタンプを有してもよく、または、時間範囲を示すビンに配置してもよい。次に、ステップ104では、少なくとも2つの統計パラメータを、活動カウントから算出する。統計パラメータは、活動カウントの時間関連性を使用する。次に、ステップ106では、リスクスコアが、統計パラメータのそれぞれに対して算出される。次いで、最後に、ステップ108では、総リスクスコアが、統計パラメータのそれぞれに対するリスクスコアを使用して算出される。
【0073】
図2は、本発明のさらなる実施形態による方法のフローダイアグラムを示す。ステップ200では、加速度データが、活動モニタから受信される。次に、ステップ202では、加速度データがバンドパスされる。バンドパスは、デジタルフィルタによって実行してもよい。次に、ステップ204では、フィルタリングされた加速度データにおけるピークが識別される。次に、ステップ206では、ピークは、ストライドまたはハーフストライドとして分類される。次に、ステップ208では、活動カウントは、ストライドおよびハーフストライドから導出される。例えば、活動カウントは、ある数のストライドまたはハーフストライドと等しくてもよい。次に、ステップ210では、活動カウントはメモリに格納される。活動カウントは、活動カウントのそれぞれを、時間または時間範囲と関連づけるような方法で格納される。次に、ステップ212では、少なくとも2つの統計パラメータを、活動カウントから算出する。ステップ214では、リスクスコアが、統計パラメータのそれぞれに対して算出される。最後に、ステップ216では、総リスクスコアが、リスクスコアを使用して算出される。
【0074】
図3は、本発明のさらなる実施形態によるフローダイアグラムを示す。ステップ300では、加速度データが、活動モニタから受信される。次に、ステップ302では、加速度データがバンドパスフィルタリングされる。次に、ステップ304では、フィルタリングされた加速度データにおけるピークが識別される。最後に、ステップ306では、ピークは、ストライドまたはハーフストライドとして分類される。
【0075】
図4は、本発明の実施形態によるヘルス・モニタリング・システム400を示す。本図では、活動モニタ402を示す。活動モニタ402は、プロセッサ404およびメモリ406を備える。プロセッサ404は、メモリ406に格納されたプログラム408を実行するために、メモリに接続される。プログラム408は、活動モニタ402で動作および機能するコンピュータ実行可能コードを備える。メモリ406はまた、対象者414に近接するセンサ412から取得された活動データ410を備える。いくつかの実施形態において、活動モニタ402全体は、対象者414に装着される。センサ412は、加速度計、または対象者414の運動を検出することが可能な他のセンサとすることができる。センサ412はまた、呼吸を検出するマイクロフォン、または対象者414の呼吸を検出するための胸郭拡張センサを備えることができる。
【0076】
活動モニタ402は、ネットワーク接続416によって、コンピュータ418に接続される。コンピュータ418は、コンピュータストレージ422およびコンピュータメモリ424に接続されたプロセッサ420を備える。コンピュータストレージ422内には、コンピュータ418が活動モニタ402から受信した活動データ410が示される。さらに、コンピュータストレージ422は、活動カウント426を備えるものとして示される。さらに、コンピュータストレージ422は、活動カウント426から算出された統計パラメータ428を備えるものとして示される。さらに、コンピュータストレージ422は、リスクスコア430を備えるものとして示される。リスクスコア430は、統計パラメータ428から算出された。さらに、コンピュータメモリ422は、リスクスコア430から算出された総リスクスコア432を備えるものとして示される。
【0077】
コンピュータメモリ424は、活動カウント算出モジュール434を備えるものとして示される。活動カウント算出モジュール434は、プロセッサ420が、活動データ410から活動カウント426を算出することを可能にするコンピュータ実行可能コードを備える。さらに、コンピュータメモリ424は、統計パラメータ算出モジュール436を備えるものとして示される。統計パラメータ算出モジュール436は、プロセッサ420が、活動カウント426から統計パラメータ428を算出することを可能にするコンピュータ実行可能コードを備える。さらに、コンピュータメモリ424は、リスクスコア算出モジュール438を備えるものとして示される。リスクスコア算出モジュール438は、プロセッサ420が、統計パラメータ428からリスクスコア430を算出することを可能にするコンピュータ実行可能コードを備える。さらに、コンピュータメモリ424は、総リスクスコア算出モジュール440を備えるものとして示される。総リスクスコア算出モジュール440は、プロセッサ420が、リスクスコア430を使用して総リスクスコア432を算出することを可能にするコンピュータ実行可能コードを備える。
【0078】
図5は、本発明のさらなる実施形態によるヘルス・モニタリング・システム500を示す。この実施形態では、活動モニタ402’が存在する。活動モニタ402’は、
図4の活動モニタ402とコンピュータ418との機能を組み合わせる。これは、ヘルス・モニタリング・システムの機能を、異なるプロセッサ間に分散することを可能にする方法の例示の1つである。
【0079】
活動モニタ402は、ディスプレイ502を有する。ディスプレイ502には、総リスクスコア432を対象者414に示すことができるリスク・フィードバック・インジケータ504が存在する。ディスプレイ502は、LCDもしくはOLEDディスプレイなどのグラフィカルディスプレイとすることができ、または、単に、高リスク、中リスク、ならびに低リスクを示すための、発光ダイオードなどのインジケータとすることができる。
【0080】
活動モニタ402は、コンピュータ506に、ネットワーク接続416を介して通信する。コンピュータ506は、ユーザインターフェース510、コンピュータ、コンピュータストレージ512、およびコンピュータメモリ514に接続されたプロセッサ508を備える。コンピュータストレージ512は、活動モニタ402’から受信した活動カウント426を備えるものとして示される。さらに、コンピュータストレージ512は、活動カウント426から算出された行動パラメータ516を備えるものとして示される。さらに、コンピュータストレージ512は、行動パラメータ516から算出された行動類似性スコア518を備えるものとして示される。さらに、コンピュータストレージ512は、行動類似性スコア518から算出された総行動類似性スコア520を備えるものとして示される。さらに、コンピュータストレージ512は、活動カウントデータベース522を備えるものとして示される。活動カウントデータベース522は、活動モニタ402によって取得された、アーカイブされた活動カウントを備える。さらに、コンピュータストレージ512は、活動カウントデータベース522から導出された活動テンプレート524を備えるものとして示される。さらに、コンピュータストレージ512は、活動テンプレート524から算出されたリスク層別化526を備えるものとして示される。
【0081】
さらに、コンピュータメモリ514は、行動パラメータ算出モジュール530を備えるものとして示される。行動パラメータ算出モジュール530は、プロセッサ508が、活動カウント426から行動パラメータ516を算出することを可能にするコンピュータ実行可能コードを備える。さらに、コンピュータメモリ514は、行動類似性スコア算出モジュール532を備えるものとして示される。行動類似性スコア算出モジュール532は、プロセッサ508が、行動パラメータ516から行動類似性スコア518を算出することを可能にするコンピュータ実行可能コードを備える。
【0082】
さらに、コンピュータメモリ514は、総行動類似性スコア算出モジュール534を備える。総行動類似性スコア算出モジュール534は、行動類似性スコア518から総行動類似性スコア520を算出するためのコンピュータ実行可能コードを備える。さらに、コンピュータメモリ514は、リスク層別化算出モジュール538を備えるものとして示される。リスク層別化算出モジュール538は、活動テンプレートおよび/または総行動類似性スコア520を使用してリスク層別化526を算出するコンピュータ実行可能コードを備える。
【0083】
コンピュータストレージ514は、プロセッサ508が、活動カウントデータベース522から活動テンプレート524を算出することを可能にするコンピュータ実行可能コードを備える活動カウント解析モジュール536をさらに備えるものとして示される。コンピュータメモリ514は、医師またはヘルスケア提供者が、グラフィカル・ユーザ・インターフェース524を閲覧することを可能にする患者管理モジュール540をさらに有するものとして示される。この場合、グラフィカル・ユーザ・インターフェースは、グラフィカル・ユーザ・インターフェース542上でリスク層別化指示544として示されるリスク層別化526を示す。
【0084】
本発明の実施形態は、急性増悪および再入院に対する患者のリスクを評価するための方法を提供することができる。加速度計から収集した、または呼吸センサと組み合わせて収集したデータを解析することにより、患者の状態に関する貴重な情報をもたらすことができる。例えば、患者が、座るもしくは横になる、歩く期間が少なくなる、通常より多くの休息期間を取る、および/または呼吸緩和速度が多くなる時間が増え始めると、それらは、患者の健康状態が悪くなっているという徴候である。患者の活動および呼吸パターンの具体的な詳細を検討することによって、リスクスコアを生成し、患者に対し急性増悪および再入院の可能性を示すことが可能となる。その場合、リスクスコアは、3レベルリスク評価、すなわち、高リスク、中リスク、または低リスクに変換され、患者が理解し、それに基づいて対処するためのリスクの単純な解析となる。したがって、適切な介入をもたらし、患者が、入院治療を必要とする段階にまで悪化しないことを保証することができる。
【0085】
本発明は、患者が退院した後、活動データおよび呼吸データを収集するために使用される、加速度計を備えることができる。あるいは、呼吸センサを使用して、呼吸データを取得することができる。加速度計は、患者からの連続的なデータを測定する。データは解析され、以下に記載する活動および呼吸に関するさまざまな種類の情報を提供する。
【0086】
図6は、本発明の実施形態による方法を示すフローダイアグラムを示す。ステップ600では、センサデータを取得する。これは、いくつかの実施形態において、身体活動センサデータ602および呼吸センサデータ604を含むことができる。次に、ステップ606では、活動情報および呼吸情報が、センサデータから抽出される。次に、ステップ608では、リスクスコアが、情報の種類に従って取得される。次に、ステップ610では、総リスクスコアが算出される。最後に、612では、リスク評価が、例えば、高リスク、中リスク、または低リスクとして表示される。
【0087】
活動カウントは、未処理の加速度データから導出された活動レベルのグローバル測定値である。情報の種類には、
総活動カウント/日(または、週)
平均活動カウント/日(または、週)
ピーク活動カウント/日(または、週)
最長持続活動/日(または、週)
非活動(睡眠)の最長期間
がある。
通常は、活動レベルがより高い患者は、増悪に対するリスクがより低い傾向がある。
【0088】
歩行は、COPDの患者でも実行可能な身体活動の最も一般的な形態の1つである。所与の日または週に歩いた歩数および歩行速度は、この種の身体活動を行うための能力に関するより詳細な情報をもたらす。より多くの歩数およびより速いペースで歩く患者は、入院に対するリスクがより低い。
【0089】
患者が歩行中に取る休憩の回数および休憩の継続期間は、身体活動を実行するための患者の能力に関する情報をもたらす。歩行中により多くの長期間にわたる休息を取る患者は、増悪の重要な指標の1つである、重症呼吸困難を発症している可能性がある。したがって、これらの患者は、入院に対するリスクがより高い。
【0090】
長期間非活動状態である患者は、健康状態が悪い可能性があり、したがって、入院に対するリスクがより高い可能性がある。
【0091】
切替時間(transition times)は、身体活動の種類を変更するために必要な時間または継続期間である。切替時間は、これらだけに限らないが、以下の、
朝に起床する時間
横になっている状態から座っている状態に移行するための時間
座っている状態から立っている状態に移行するための時間
夜に就寝する時間
を含む。
【0092】
通常は、さまざまな活動に対して長い切替時間を必要とする患者は、健康状態がより悪く、入院に対するリスクがより高い。
【0093】
図7は、時間700対活動カウント702のプロットを示す。活動カウントは、3つの領域、すなわち、睡眠期間704、切替期間706、および活動期間708に分割される。本図は、活動カウントを使用して、睡眠、切り替え、および活動期間708を判断することを可能にする方法を示す。睡眠期間では、活動カウントは、非常に低い。切替時間706では、活動カウントに大きな変化がある。最後に、活動期間708では、より多くの活動カウントが存在し、カウントは、劇的に変化している。
【0094】
図8は、時間対呼吸速度802のプロットを示す。これは、呼吸回復速度を算出することを可能にする方法を示す。曲線804は、実際の呼吸速度804を示す。曲線806は、曲線804に対する指数関数的回復速度適合度806である。適合度806を使用して、回復速度を判断する。
【0095】
図8は、身体活動が停止した場合に、患者の呼吸速度がどのように回復するかを示す。グラフの形状は、一般に、逆指数関数的であり、患者の健康状態によって決定される。患者が良好で健康である場合、呼吸速度は、迅速に通常状態に戻るであろう。健康状態が悪い患者は、通常の呼吸速度に達するために、より長い時間を要する。
【0096】
活動停止後の呼吸速度は、Resp(tn)=c(t0)exp(−1/τ(tn))として表すことができる。ここで、tnは、分または秒の尺度での休憩後の時間であり、例えば、(活動後の300秒)であり、C(t0)は、t=0(停止時間)での呼吸速度の定数関数であり、τ(tn)は、減衰時間である。
【0097】
図9は、
図8で算出した回復時間を使用して、健康状態インデックス904を割り当てることを可能とする方法を示す表を示す。列900は、回復時間を分単位で示す。行902は、非常に低いから非常に高いに移行する活動の強度を示す。回復時間および活動の強度902により、健康状態インデックス904が割り当てられる。健康状態インデックス904は、いくつかの実施形態におけるスコアとしてもよい。
【0098】
図9の表は、患者に対する健康状態ファクタを示す。患者の健康状態が悪い場合、身体的タスクの実行から回復するのにより長い時間がかかり、例えば、患者が「低強度」の活動を実行し、回復に1分かかると、健康状態インデックス「7」が割り当てられ、回復時間が長くなると、健康状態インデックスが低くなるという結果になる。患者が「非常に高い」強度タスクから迅速に回復した場合、患者はより良好であり、より高い健康状態インデックスを有する。健康状態インデックスが低いことは、患者の健康状態が悪いことを示す。回復時間は、何らかの形態の身体活動後に、呼吸速度がベースラインに戻るのにかかる時間の測定値である。
【0099】
各種の情報は、測定に応じたスコアを与えられる。後に、総スコアが導出され、入院のための患者のリスクが示される。スコアが高いと、リスクも高いことを示す。
【0100】
図10は、総リスク1008を算出する方法を図示する表を示す。この表は、列1000において、異なる統計パラメータを有する。これらのパラメータのそれぞれは、重み係数1002を与えられる。列1004は、統計パラメータ1000の異なるレベルまたは層別化により、リスクスコア1004を示す。スコア1006は、統計パラメータ1000のそれぞれに対して算出される。これらは、次いで、総リスクスコア1008を算出するために加えられる。
【0101】
いくつかの実施形態において、本システムは、2つのモード、すなわち、アクティブとアンビエントとで機能することができる。アクティブモードでは、患者は、ある種の既知の身体的タスクを実行するよう求められる可能性があり、活動および呼吸データが、活動前、活動中、および活動後に測定される。アンビエントモードでは、加速度計からのデータを使用して、患者の活動を推定する。これらは、患者が普通の日の間に何らかの時点で行う可能性のある通常の活動である。1日中、ログを取ることで、患者の活動の正確な概要が得られる。次いで、強度と、患者がこれらの日々の活動を行うために要した時間とから、健康状態を導出することができる。
【0102】
典型的に、加速度計は、胸、ベルト、および/またはポケットに装着する小型センサである。ほとんどの活動を、単一の加速度計を使用して検出することができる。必要であれば、追加の加速度計を作動させ、より高い精度をもたらすことができる。しかしながら、これは、モニタリングシステムの邪魔にならない性質を損ね、不快感を高め、適合性を損ねる。
【0103】
代替実施形態において、SpO2、症状、患者の人口統計、および病歴データなどの追加データは、統合され、より正確なリスク予測をもたらすことができる。例えば、病院への再入院歴がある患者は、再入院する可能性が高いことが知られている。したがって、この種類の情報と、患者から測定されたリアルタイム活動情報とを組み合わせることで、非常に貴重なツールをもたらすことができる。
【0104】
COPD増悪は、ベースラインからの症状の悪化、例えば、咳、息切れ、および痰の分泌の増加である。通常、それらは、ウイルス性感染または細菌性感染に起因し、入院の原因となることが多く、COPDの最大のコスト項目である。患者が症状の悪化、および後の増悪を感じると、患者は、ケアを開始するか、または自身の治療を変更する。しかしながら、症状の変化からの患者の視点は、主観的であり、患者の状態に基づいて損なわれる。患者の症状から客観的尺度への遷移に基づく増悪の早期検出は、時間通りにケアを開始し、患者の治療を最適化する助けとすることができる。したがって、これにより、ヘルスケアのコストが低減する。
【0105】
活動の変化は、COPDにおける増悪を検出するための良好な測定値と言われることが多い。
図11に示すような活動パターンを見ると、その変化を示すことができる測定値を定義する必要があることは明らかである。
【0106】
図11は、COPD患者における活動パターンの一例を示す。画像1102は、対象者の活動パターンを示す。斜線領域1106は、対象者が眠っていた場合を示すが、この場合、対象者は、睡眠中、活動モニタを身につけていた。
図11は、対象者が就寝し、朝に起床する規則的な行動を示し、毎日15:00頃に周期的な非活動状態を見て取れる。これは、居眠りをしているか、またはテレビ番組を見ているのであろう。患者が体調を崩していると、この定期的な行動から逸脱する可能性がある。睡眠が多くなることは、より不規則な行動パターンであり、または夜の間により多くの活動を示す。この種類の行動の変化を検出する鍵は、これらのことを示す正しいパラメータを定義することである。
【0107】
本発明の実施形態は、COPD患者の日毎の、または週毎の定期的な行動を示す活動パターンを使用して、初期増悪を検出する方法を提供することを可能にする。通常の(ベースライン)行動からのいかなる逸脱も、患者の状態が悪くなっていることを示すことができる。通常、定期的な行動をする人は、日課から逸脱する、すなわち、睡眠時間が増えるなどの状態になる可能性がある。体調がよくなると、日課から逸脱する人もいる可能性がある。体調が悪くなると、より規則的に安静にするなどの、より体系化された行動をするであろう。
【0108】
実施形態は、日々の行動および活動を示す、測定された活動信号から導出されたパラメータのセットを備えることができる。ある時間にわたる、それらのパラメータ自体の変化は、将来的な増悪を示している可能性がある。さらに、増悪に対する警告、または何らかの医学的もしくは非医学的介入を開始するために使用することができる。これらのパラメータは、患者の報告された症状と共に追加の客観的尺度として使用され、増悪の早期検出が可能となる。
【0109】
次に、このパラメータに基づいて、日課に対する測定値を決定することができる。この目的を達成するために、患者が体調を回復している場合の行動に基づき、テンプレート的な日々のパターンが決定される。これは、日毎、および週毎を基本に行うことができる。次いで、患者が通常のベースライン行動から逸脱しているかどうかを示すパターンに基づいて、類似性スコアを算出することができる。この、いわゆる、行動類似性スコアはまた、増悪を示す可能性がある。いくつかの実施形態において、第1のステップは、以下のような日々の行動を示すパラメータのステップを算出することである。すなわち、
総「アクティブ」活動カウント
活動の強度レベル
活動状態を維持した最長時間
起床時間および睡眠時間
時間間隔(日中、夜間)における平均活動カウント
睡眠活動
を算出する。
i)総日中活動カウント
本発明において、提案した第1のパラメータは、目を覚ましている間、日々に費やす総活動カウントの変化を第1に識別する。通常、本図は、COPD患者が回復した場合と同様である。例えば、
図12は、患者データの一例を示し、8月6日土曜日に、患者は他の日に比べて活動量が少ないことが分かる。これは、患者の体調が優れず、より多くの時間を休息して過ごしたことを示す。次いで、翌日の8月7日日曜日、患者が再び回復し、通常の日課に戻っている。
【0110】
図12は、異なる日1200に対する日々の活動カウント1202の総数を示す。
図12では、日毎の活動カウントの総数を示す。
ii)活動の強度レベル
上記の第1のパラメータは、活動カウントに基づいて行動の変化を識別することができるが、患者が異なる強度レベル(低、中、および高)の活動に費やした時間量についての情報をもたらさない。したがって、本発明における第2のパラメータにより、異なる強度レベルの活動で1日に費やした総時間量を調べる。
図13は、患者が各強度レベルで費やした時間量、および日々の患者の行動の変化を明確に示す。患者の体調があまり良くない場合、患者は、動作が遅くなり、同じ種類の動作(例えば、コーヒーをいれる、ベッドから起き上がる、洗濯をするなど)を行うのにより長い時間がかかり、そのため、「低」活動状態で過ごす時間が増え、「高」活動状態が減少する。
【0111】
図13は、活動カウントがさまざまに分解されたこと以外、
図12に示したものと同じデータを示す。
図13では、異なる日々を示し、次いで、異なる種類の活動に費やした時間量1302を示す。1304で示したバーは、睡眠時間の量を示す。1306で示したバーは、低活動時間の量を示す。1308で示したバーは、中活動時間を示す。1310で示した時間は、個人が高い活動をした場合を示す。
iii)活動状態を維持した最長時間
本発明で提示する第3のパラメータは、日毎の活動を維持した最長時間である。COPD患者の健康が悪化すると、息切れが起きやすくなることが知られている。したがって、結果として、患者は、活動を維持する時間が短くなる。
図4は、同じ患者に対する最長維持活動を示す。患者が土曜日に最も低い総活動を有することをパラメータ1(総日中活動カウント)は示すが、
図14に示すように、同じ日に、その患者が最短維持活動を有することを意味しなかった。
【0112】
図14は、異なる日1400の最大活動継続期間1402のプロットを示す。これは、使用することが可能な他の統計パラメータの一例である。
iv)起床時間および睡眠時間
朝の起床時間および夜の睡眠時間は、COPD患者の症状を示すためのパラメータとすることが可能である。このパラメータは、本発明に含まれ、以下の
図5から容易に検出することができる。さらに、
図15は、臨床医または患者が、日毎の活動を理解するために非常に有益な視覚化ツールをもたらす。
図15における日毎の活動の何らかの変化は、日課の行動の変化を示し、それは容易に検出することができる。
【0113】
図15は、複数日1502に対する活動
図1500を示す。x軸は、分刻みの時間1504である。y軸は、異なる日々1502を示す。領域1506は、対象者の非活動時間を示す。1508で示された領域は、活動カウントが500/分超の場合である。領域1510は、対象者が500から1000/分の間の活動カウントを有する場合である。領域1512は、対象者が1000から2000/分の間の活動カウントを有する場合である。領域1514は、対象者が2000から3000/分の間の活動カウントを有する場合である。領域1516は、活動カウントが3000/分超の場合である。
v)時間間隔(日中、夜間)における平均活動カウント
図16は、日中および夜間の間の間隔における平均活動カウントに対する同じデータを示す図である。x軸は、異なる日々1600を示し、y軸1602は、日々の平均活動カウントを示す。1604で示した領域は、日中であり、1606で示した領域は、夜間である。
vi)睡眠活動
睡眠障害は、症状(例えば、呼吸困難、慢性咳、疲労、および胸部圧迫)およびCOPD患者の治療のために用いられる薬物療法(不眠症または日中の眠気の原因となる)によって、COPD患者に共通に見られる。さらに、健康な人に影響しない、通常睡眠中に発生する呼吸パターンの変化が、COPD患者により深刻な結果を実際にもたらす可能性がある。したがって、本発明において、COPD患者の睡眠活動パターンをモニタリングすることを提案する。睡眠期間中の活動の増加は、患者の症状が悪化したことを示す可能性がある。特に、増悪前の早朝に、患者は咳が増えることが知られている。咳は、睡眠を乱す。睡眠活動パターンの変化により、増悪の発症を検出することができる。
【0114】
次に、上記パラメータに基づき、いわゆる行動類似性スコアを決定する。第1のステップは、患者の安定状態の行動を調べることである。
【0115】
それに基づいて、テンプレートを、上記したパラメータに対して定義することができる。次いで、各新しい日または週に対して、テンプレートとの相関関係に基づいて算出された行動類似性スコアが決定される。一例を
図17に示す。
【0116】
図17は、総行動類似性スコア1706を算出するために使用することができる表を示す。列1700では、さまざまな行動パラメータをリスト表示する。列1702には、重み係数1702を配置することができる。1704には、個々の行動類似性スコア1704を入力することが可能である。次いで、これらは、総行動類似性スコア1706を算出するために、セル1706にまとめられる。
【0117】
COPD、慢性心不全または糖尿病を煩う患者に対して、活動することは非常に重要である。日々の活動の低下は、健康状態の悪化を示す可能性がある。この悪化を示す測定値は、日中に患者が行う歩数とすることができる。医者が利用可能な多くのステップ検出器が存在するが、ゆっくり歩いている間、あまり機能しないことが知られており、ゆっくり歩くことは、この群の患者の特性である可能性がある。
【0118】
公表されている利用可能なステップまたはストライド検出アルゴリズムは、ステップもしくはストライドの検出に焦点を当てているが、通常歩行の対象者からのデータを使用するのみである。ゆっくりとしたステップの検出には問題がある。
【0119】
図18は、活動モニタにより取得される加速度信号を示す図である。x軸は、1800でラベル付けされ、時間を示す。y軸1802は、加速度信号1802を示す。1804で示したポイントは、左ステップを表し、1806で示したポイントは、右ステップを示す。
【0120】
図19もまた、活動モニタにより取得される加速度信号を示す。しかしながら、
図19における例では、左ステップのみを見ることができる。これら2つの図は、単一アルゴリズムにより、加速度信号のピークがフルストライドであるのか、ハーフストライドのみであるのかを検出することが、どれだけ困難である可能性があるかを示す。
【0121】
図18および
図19は、対象者がゆっくり歩いている場合、臀部に装着した加速度計から入手可能な異なる種類の信号、すなわち、
ストライド毎の両ステップ
ストライド毎の1ステップ
その中間
を示す。
これは、既存の検出アルゴリズムを不安定にする。
【0122】
ゆっくり歩く場合のステップを検出する問題は、両足のすべてのステップが常に視認可能でないことである。ステップが視認可能なことがあり、片足からのステップのみが視認可能なこともある。さらに、その組合せとなることもある。
【0123】
解決法の1つは、ストライドのみを検出すること、および他の足からのステップを破棄することである。例えば、以下の解決法が有効である。すなわち、
感度の高いピーク検出器でステップを検出する
後の分類に基づき他の足からのステップを検出する
これらを破棄する
単一ストライドを出力する
本発明の一実施形態による方法は、ゆっくりしたステップまたはストライドを検出するために適切なアルゴリズムを生成する後の分類ステップを有することができる。
【0124】
本発明の一実施形態による活動モニタの実施形態は、以下の特徴を有する。
【0125】
1 第1のステップ:バンドパスフィルタ+ピーク検出器
すべてのストライドが、すべての対象者で検出されるよう構成される(高感度)
疑陽性は、「他の足」からのステップであり、常に存在するわけではない
2 第2のステップ:3つの特徴に基づく分類
振幅
前のステップからの経過時間
1で検出されたピーク数に基づき推定された歩行速度
後の分類ステップの一例は、
図20に示す。
【0126】
図20は、検出されたステップを分類することを可能にする一例を示す図である。ステップが、第2の足由来である場合、推定された歩行速度が比較的速く、および直前のステップから経過した時間が比較的短い。これらのパラメータに基づいて、そのステップが、すでに検出されたストライドに属するのかどうかを判断することができる。x軸は、推定歩行速度を示し、y軸2002は、前のステップからの経過時間を示す。領域2004は、検出されたピークが、ハーフストライドである場合を示す。領域2006は、検出されたピークが、フルストライドである場合を示す。
【0127】
図20は、検出されたステップすべての後分類の一例を示す。ステップが、「第2の」足由来である場合、推定された歩行速度が比較的速く、および直前のステップから経過した時間が比較的短い。これらのパラメータおよびその他に基づいて、そのステップが、すでに検出されたストライドに属するのかどうかを判断することができる。
【0128】
本発明を、図面および上記説明で詳細に図示および説明してきたが、そのような図示および説明は、例証および例示のためであり、制限するためのものではなく、本発明は、開示した実施形態に限定されない。
【0129】
開示した実施形態に対する他の変形例も、図面、開示、および添付の特許請求の範囲の研究から、請求項に係る発明を実施する際に当業者によって理解および実行することが可能である。特許請求の範囲において、「備える」という言葉は、他の要素またはステップを除外せず、不定冠詞「a」または「an」は、複数形を除外しない。単一プロセッサ、または他のユニットにより、特許請求の範囲に記載された、いくつかの項目の機能を満たすことができる。特定の手段が相互に異なる従属クレームに記載されているという単なる事実は、これらの手段の組合せが有利に使用できないことを示すものではない。コンピュータプログラムは、他のハードウェアと共に、もしくは他のハードウェアの一部としてもたらされる光学ストレージメディアまたはソリッドステートメディアなどの適切なメディアに格納/分散してもよいが、インターネットまたは他の有線もしくは無線電気通信システムを介するなどの他の形式で分散してもよい。特許請求の範囲におけるいかなる参照符号も、その範囲を限定するよう解釈されるべきではない。