(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6179246
(24)【登録日】2017年7月28日
(45)【発行日】2017年8月16日
(54)【発明の名称】多結晶シリコン製造方法及び製造装置
(51)【国際特許分類】
C01B 33/035 20060101AFI20170807BHJP
【FI】
C01B33/035
【請求項の数】6
【全頁数】12
(21)【出願番号】特願2013-159274(P2013-159274)
(22)【出願日】2013年7月31日
(65)【公開番号】特開2014-43389(P2014-43389A)
(43)【公開日】2014年3月13日
【審査請求日】2016年3月31日
(31)【優先権主張番号】特願2012-170436(P2012-170436)
(32)【優先日】2012年7月31日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100101465
【弁理士】
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】石井 敏由記
【審査官】
小野 久子
(56)【参考文献】
【文献】
特開2011−084422(JP,A)
【文献】
特開2012−101983(JP,A)
【文献】
特開昭62−021706(JP,A)
【文献】
特開2006−131491(JP,A)
【文献】
特開2008−143775(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 33/00−33/193
(57)【特許請求の範囲】
【請求項1】
トリクロロシラン及び水素を含む原料ガスを反応炉内で反応させて多結晶シリコンを析出するとともに、その析出の際に生じる排ガスからクロロシラン類を凝縮分離した後に、前記排ガス中に含まれる水素を精製して前記原料ガスとして再利用する多結晶シリコン製造方法であって、前記クロロシラン類を凝縮分離した後の排ガスから不純物を活性炭により吸着除去して水素を精製する第一精製工程と、再生用水素ガスを供給して前記活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する脱着再生工程と、前記脱着再生工程において発生した脱着ガスから不純物等を活性炭により吸着除去して水素を精製する第二精製工程と、テトラクロロシランからトリクロロシランを生成する転化工程とを備え、前記第一精製工程で精製された水素を前記原料ガスとして使用し、前記第二精製工程により精製された水素を前記転化工程において使用することを特徴とする多結晶シリコン製造方法。
【請求項2】
トリクロロシラン及び水素を含む原料ガスを反応炉内で反応させて多結晶シリコンを析出するとともに、その析出の際に生じる排ガスからクロロシラン類を凝縮分離した後に、前記排ガス中に含まれる水素を精製して前記原料ガスとして再利用する多結晶シリコン製造方法であって、前記排ガスから不純物を活性炭により吸着除去して水素を精製する第一精製工程と、再生用水素ガスを供給して前記活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する第一脱着再生工程と、前記第一脱着再生工程において発生した脱着ガスから不純物等を活性炭により吸着除去して水素を精製する第二精製工程と、再生用水素ガスを供給して前記第二精製工程において活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する第二脱着再生工程と、前記第二脱着再生工程において発生した脱着ガスから不純物を活性炭により吸着除去して水素を精製する第三精製工程と、テトラクロロシランからトリクロロシランを生成する転化工程とを備え、前記第一精製工程で精製された水素を前記原料ガスとして使用するとともに、前記第二精製工程で精製された水素を前記第一精製工程に導入して再精製することにより前記原料ガスとして使用し、前記第三精製工程で精製された水素を前記転化工程において使用することを特徴とする多結晶シリコン製造方法。
【請求項3】
前記反応炉が複数台設置され、前記排ガスは、各反応炉から収集された排ガスであることを特徴とする請求項1又は2記載の多結晶シリコン製造方法。
【請求項4】
トリクロロシラン及び水素を含む原料ガスにより多結晶シリコンを析出させる反応炉と、該反応炉から排出された排ガスからクロロシラン類を分離する凝縮器と、該凝縮器を通過した排ガスから活性炭により不純物を除去して水素を精製するための第一吸着塔を有する水素回収系と、テトラクロロシランからトリクロロシランを製造する転化炉とを備え、前記水素回収系で回収された水素を前記原料ガスとして再利用する多結晶シリコン製造装置であって、前記第一吸着塔に、前記第一吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する上位パージガス供給管と、前記活性炭を再生した際に生じる脱着ガスから不純物を活性炭により吸着除去して水素を精製する第二吸着塔とが接続され、前記第二吸着塔に、該第二吸着塔で精製された水素を前記転化炉に供給する水素搬送管が接続されていることを特徴とする多結晶シリコン製造装置。
【請求項5】
トリクロロシラン及び水素を含む原料ガスにより多結晶シリコンを析出させる反応炉と、該反応炉から排出された排ガスからクロロシラン類を分離する凝縮器と、該凝縮器を通過した排ガスから不純物を活性炭により吸着除去して水素を精製するための第一吸着塔を有する水素回収系と、テトラクロロシランからトリクロロシランを製造する転化炉とを備え、前記水素回収系で回収された水素を前記原料ガスとして再利用する多結晶シリコン製造装置であって、前記第一吸着塔に、前記第一吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する上位パージガス供給管と、前記活性炭を再生した際に生じる脱着ガスから不純物を活性炭により吸着除去して水素を精製する第二吸
着塔とが接続され、前記第二吸着塔に、該第二吸着塔で精製された水素を前記第一吸着塔に供給する水素返送管と、前記第二吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する下位パージガス供給管と、前記第二吸着塔から排出される脱着ガスから不純物を活性炭により吸着除去して水素を精製する第三吸着塔とが接続され、前記第三吸着塔に、該第三吸着塔で精製された水素を前記転化炉に供給する水素搬送管が接続されていることを特徴とする多結晶シリコン製造装置。
【請求項6】
前記反応炉が複数台設置され、前記排ガスは、各反応炉から収集された排ガスであることを特徴とする請求項4又は5記載の多結晶シリコン製造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トリクロロシラン及び水素を含む原料ガスを反応させて多結晶シリコンを析出する多結晶シリコンの製造方法及び製造装置に関する。
【背景技術】
【0002】
半導体材料に用いられる高純度多結晶シリコンは、トリクロロシラン(三塩化珪素:SiHCl
3:TCS)と水素とを混合して原料とし、この混合ガスを反応炉に導入して赤熱したシリコン棒に接触させ、高温下のトリクロロシランの水素還元や熱分解によってシリコン棒表面に多結晶シリコンを析出させる方法(シーメンス法)によって主に製造されている。
この多結晶シリコンの製造において、反応炉の排出ガス中には、未反応のトリクロロシラン及び水素、副生物のテトラクロロシラン(四塩化珪素:SiCl
4:STC)、塩化水素等が含まれている。このうち、トリクロロシラン等のシラン類及び水素は、特許文献1及び特許文献2に開示されているように、排出ガスから分離精製され、原料ガスの一部として再利用されることにより、製造コストの低減が図られている。
【0003】
排出ガス中に含まれるトリクロロシランの一部は、排出ガスを冷却することにより凝縮分離され(凝縮工程)、蒸留された後に原料ガスの一部として再利用される。また、一部のトリクロロシランが除去された後の排出ガスを、活性炭を用いた吸着塔に通過させて、塩化水素等を吸着除去することにより、水素が精製されている。
水素の精製は、複数の吸着塔からなる精製手段を設け、それぞれの吸着塔において、塩化水素等の不純物を活性炭に吸着させて除去する精製工程と、吸着した不純物を活性炭から脱離させて吸着能力を再生する脱着再生工程とを循環させることにより、水素を連続して精製することが行われている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭62‐21706号公報
【特許文献2】特開2006‐131491号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、精製された水素ガスを凝縮工程よりも上流側に返送し、再度、精製工程によって、トリクロロシラン及び水素の回収を行うことが提案されている。
ところで、活性炭の吸着能力を再生する脱着再生工程は、例えば、低圧、高温下において、キャリアガスとして使用される水素によるパージにより、吸着成分を放出させて行われる。そして、キャリアガスとしての水素を含む脱着ガスは、多くの場合、再利用されることなく処分されている。
【0006】
脱着再生工程で生じる脱着ガスには多くの不純物が含まれており、仮に脱着ガスを凝縮工程よりも上流側に戻した場合、精製される方法によっては、トリクロロシランや水素に不純物が取り込まれ、多結晶シリコンの品質を損なうおそれがあった。
【0007】
本発明は、このような事情に鑑みてなされたものであって、多結晶シリコン析出反応炉から排出される排ガス中に含まれるクロロシラン類及び水素を回収し、これらを原料ガスの全部又は一部として再利用するとともに、活性炭の脱着再生工程で生じる脱着ガスの再利用を効率よく行うことにより、多結晶シリコンの製造コストを低減することができる多結晶シリコンの製造方法及び製造装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、トリクロロシラン及び水素を含む原料ガスを反応炉内で反応させて多結晶シリコンを析出するとともに、その析出の際に生じる排ガスからクロロシラン類を凝縮分離した後に、前記排ガス中に含まれる水素を精製して前記原料ガスとして再利用する多結晶シリコン製造方法であって、前記クロロシラン類を凝縮分離した後の排ガスから不純物を活性炭により吸着除去して水素を精製する第一精製工程と、
再生用水素ガスを供給して前記活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する脱着再生工程と、前記脱着再生工程において発生した脱着ガスから不純物等を活性炭により吸着除去して水素を精製する第二精製工程と、テトラクロロシランからトリクロロシランを生成する転化工程とを備え、前記第一精製工程で精製された水素を前記原料ガスとして使用し、前記第二精製工程により精製された水素を前記転化工程において使用することを特徴とする。
【0009】
活性炭を再生する際に生じる脱着ガスは、不純物を多く含むため、脱着ガスから精製された水素は、排ガスから精製された水素よりも純度が低い。そのため、脱着ガスから精製された水素をそのまま原料ガスとして使用した場合には、多結晶シリコンに不純物が混入し、品質を損なうおそれがある。
そこで、本発明においては、多結晶シリコンの析出の際に生じる排ガス中に含まれるクロロシラン類及び水素を回収して、これらを原料ガスとして再利用するとともに、活性炭を再生する際に生じる脱着ガスから活性炭により不純物を除去して水素を精製し、この脱着ガスから精製された水素を転化工程に導入することにより、テトラクロロシランのトリクロロシランへの転換反応に必要な水素の一部をまかなうことができる。したがって、多結晶シリコンの製造に必要な原料の利用効率を向上させることができ、外部からの水素の補給を削減することができるので、多結晶シリコンの製造コストを低減することができる。
【0010】
また、本発明は、トリクロロシラン及び水素を含む原料ガスを反応炉内で反応させて多結晶シリコンを析出するとともに、その析出の際に生じる排ガスからクロロシラン類を凝縮分離した後に、前記排ガス中に含まれる水素を精製して前記原料ガスとして再利用する多結晶シリコン製造方法であって、前記排ガスから不純物を活性炭により吸着除去して水素を精製する第一精製工程と、
再生用水素ガスを供給して前記活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する第一脱着再生工程と、前記第一脱着再生工程において発生した脱着ガスから不純物等を活性炭により吸着除去して水素を精製する第二精製工程と、
再生用水素ガスを供給して前記第二精製工程において活性炭に吸着された不純物を脱離して該活性炭の吸着能力を再生する第二脱着再生工程と、前記第二脱着再生工程において発生した脱着ガスから不純物を活性炭により吸着除去して水素を精製する第三精製工程と、テトラクロロシランからトリクロロシランを生成する転化工程とを備え、前記第一精製工程で精製された水素を前記原料ガスとして使用するとともに、前記第二精製工程で精製された水素を前記第一精製工程に導入して再精製することにより前記原料ガスとして使用し、前記第三精製工程で精製された水素を前記転化工程において使用することを特徴とする。
【0011】
この場合、第一脱着再生工程において活性炭を再生する際に生じる脱着ガスから不純物を除去する第二精製工程を設け、この第二精製工程において精製した水素を、第一精製工程の系内に導入して再精製することにより、多結晶シリコンの製造に利用可能な高純度の水素の精製量を増やすことができる。また、第二脱着再生工程で生じた脱着ガスから水素を精製する第三精製工程を設け、この脱着ガスから精製された水素を転化工程に導入することにより、テトラクロロシランのトリクロロシランへの転換反応に必要な水素の一部をまかなうことができる。このように、各脱着再生工程において、活性炭から脱離されて生じる脱着ガスの再利用を効率よく行え、多結晶シリコンの製造に必要な原料の利用効率を向上させることができる。
【0012】
さらに、本発明は、前記反応炉が複数台設置され、前記排ガスは、各反応炉から収集された排ガスであるとよい。
複数台の反応炉からの排ガスを収集して精製するので、各反応炉の運転状況等による排ガス発生量のばらつきを抑制することができ、安定した量の水素を精製することができる。
【0013】
本発明は、トリクロロシラン及び水素を含む原料ガスにより多結晶シリコンを析出させる反応炉と、該反応炉から排出された排ガスからクロロシラン類を分離する凝縮器と、該凝縮器を通過した排ガスから活性炭により不純物を除去して水素を精製するための第一吸着塔を有する水素回収系と、テトラクロロシランからトリクロロシランを製造する転化炉とを備え、前記水素回収系で回収された水素を前記原料ガスとして再利用する多結晶シリコン製造装置であって、前記第一吸着塔に、前記第一吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する上位パージガス供給管と、前記活性炭を再生した際に生じる脱着ガスから不純物を活性炭により吸着除去して水素を精製する第二吸着塔とが接続され、前記第二吸着塔に、該第二吸着塔で精製された水素を前記転化炉に供給する水素搬送管が接続されていることを特徴とする。
【0014】
また、本発明は、トリクロロシラン及び水素を含む原料ガスにより多結晶シリコンを析出させる反応炉と、該反応炉から排出された排ガスからクロロシラン類を分離する凝縮器と、該凝縮器を通過した排ガスから不純物を活性炭により吸着除去して水素を精製するための第一吸着塔を有する水素回収系と、テトラクロロシランからトリクロロシランを製造する転化炉とを備え、前記水素回収系で回収された水素を前記原料ガスとして再利用する多結晶シリコン製造装置であって、前記第一吸着塔に、前記第一吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する上位パージガス供給管と、前記活性炭を再生した際に生じる脱着ガスから不純物を活性炭により吸着除去して水素を精製する第二吸着塔とが接続され、前記第二吸着塔に、該第二吸着塔で精製された水素を前記第一吸着塔に供給する水素返送管と、前記第二吸着塔の活性炭に吸着された不純物を脱離させて再生させるための再生用水素を供給する下位パージガス供給管と、前記第二吸着塔から排出される脱着ガスから不純物を活性炭により吸着除去して水素を精製する第三吸着塔とが接続され、前記第三吸着塔に、該第三吸着塔で精製された水素を前記転化炉に供給する水素搬送管が接続されていることを特徴とする。
【0015】
さらに、本発明は、前記反応炉が複数台設置され、前記排ガスは、各反応炉から収集された排ガスであるとよい。
1台の反応炉では、反応経過に伴い供給ガスのもル比の変化により排出ガス中の水素の割合は変わることもあるが、複数台設置することにより、結果として転化反応に必要な水素の供給量を確保できる。
【発明の効果】
【0016】
本発明によれば、多結晶シリコン析出反応炉から排出される排ガス中に含まれるクロロシラン類及び水素を回収し、これらを原料ガスとして再利用するとともに、各脱着再生工程において、活性炭から脱離されて生じる脱着ガスの再利用を効率よく行え、多結晶シリコンの製造コストを低減することができる。
【図面の簡単な説明】
【0017】
【
図1】本発明に係る多結晶シリコン製造装置の第1実施形態を示す概略構成図である。
【
図2】本発明に係る多結晶シリコン製造装置の第2実施形態を示す概略構成図である。
【
図3】
図1の多結晶シリコン製造装置に塩化水素吸収・回収装置を設けた実施形態を示す概略構成図である。
【
図4】
図2の多結晶シリコン製造装置に塩化水素吸収・回収装置を設けた実施形態を示す概略構成図である。
【発明を実施するための形態】
【0018】
以下、本発明の多結晶シリコン製造方法及び製造装置の一実施形態について説明する。
図1は、本発明の第1実施形態の多結晶シリコン製造装置の全体の概略構成を示しており、図中、トリクロロシランはTCS、テトラクロロシランはSTC、水素はH
2、塩化水素はHClとして表記している。
【0019】
多結晶シリコン製造装置100は、トリクロロシラン及び水素ガスを含む原料ガスにより多結晶シリコンを析出させる反応炉1と、反応炉1から排出された排ガスからクロロシラン類を凝縮分離する凝縮器2と、凝縮器2から被凝縮物として回収された排ガス中に含まれる塩化水素を吸着分離する塩化水素吸着塔3と、塩化水素吸着塔3を通過した排ガスから不純物を除去して水素を回収する水素回収系4と、テトラクロロシランと水素の反応によるトリクロロシランを製造する転化炉5とを備えている。
【0020】
反応炉1は、炉内に多数本のシリコン芯棒を配置し、赤熱したシリコン芯棒の表面にトリクロロシラン及び水素(水素は系内で精製されたもの又は外部から供給されるものを使用可能)を含む原料ガスを接触させることにより、多結晶シリコンを析出させる装置である。この反応炉1は複数台設置されている。
また、凝縮器2は、反応炉1から排出される排ガスを冷却して、排ガス中に含まれるトリクロロシラン、テトラクロロシラン等のクロロシラン類が液化されることにより、分離されるものである。この場合、各反応炉1から排出される排ガスが収集されて凝縮器2に導かれる。凝縮器2で液化分離した凝縮液に含まれるクロロシラン類は、複数の蒸留塔からなる蒸留系6に導入され、段階的に蒸留される。そして、回収されたトリクロロシランは、多結晶シリコン製造のための原料ガスとして再利用される。また、回収されたテトラクロロシランは精製され、転化炉5において、トリクロロシランの製造のために利用される。
この場合、凝縮器2は、処理能力に応じて複数台設けてもよい。
【0021】
塩化水素吸着塔3は、凝縮器2から導出された排ガス中に含まれる塩化水素を、活性炭等の吸着材に吸着させて除去分離するものである。分離された塩化水素は、トリクロロシランの製造等に利用される。
【0022】
水素回収系4は、第一吸着塔7と、第一吸着塔7に接続される第二吸着塔8とにより二段階の精製工程が構成される。第一吸着塔7及び第二吸着塔8は、内部に活性炭が充填されており、この活性炭に排ガスを接触させることにより、水素以外の不純物等の成分を活性炭に吸着させ分離して、水素を精製するものである。
これら第一吸着塔7及び第二吸着塔8は、複数の吸着塔70,80が並列に設けられるとともに、各吸着塔70,80の前後に弁(図示略)が配設され、これら弁を操作することにより、1基又は複数基ずつを切り替えながら運転できるようになっている。そして、各吸着塔70,80内に設けられた活性炭は、一定時間使用すると吸着能力がなくなるため、吸着能力が低下する前に他の併設する吸着塔70,80に切り替えられるようになっている。なお、本実施形態では第一吸着塔7は3基の吸着塔70で構成され、第二吸着塔8は2基の吸着塔80により構成されている。
【0023】
運転状態から停止状態に切換え後の活性炭は、例えば、低圧、高温下でのキャリアガスによるパージにより、吸着した成分を脱離させることにより再生される。このような、活性炭再生のためのキャリアガスとしては例えば水素(水素ガス)が用いられ、キャリアガスとしての水素(再生用水素)は、回収される水素と同程度の純度が必要とされる。この場合、キャリアガスの水素には、吸着塔70,80で精製された水素、又は外部から補給された水素が使用され、各吸着塔70,80に接続されたパージガス供給管72,82を通して供給されるようになっている。そして、キャリアガスの水素は、脱着成分と混合した状態で脱着ガスG1,G2として、各吸着塔70,80から排出される。
【0024】
水素回収系4を構成する吸着塔のうち第一吸着塔7は、塩化水素吸着塔3を通過した排ガスから不純物を除去して水素を精製するものである。第一吸着塔7で精製された水素は、水素供給管71により反応炉1へ供給され、反応炉1において原料ガスとして再利用される。また、第一吸着塔7から排出された脱着ガスは、第二吸着塔8に運ばれて処理される。
第二吸着塔8は、第一吸着塔7から排出される脱着ガスから不純物を除去して水素を精製するものである。この第二吸着塔8で精製された水素は、水素搬送管81により転化炉5へ運ばれてトリクロロシランの製造に利用される。
【0025】
また、転化炉5は、テトラクロロシランから水素付加の転換反応によってトリクロロシランを製造するものであり、製造されたトリクロロシランは、反応炉1へ運ばれて多結晶シリコン製造の原料ガスに利用される。この転化炉5は複数台設置されている。また、転化炉5には原料の水素を供給するための水素供給管10が設けられており、この水素供給管10に水素搬送管81が接続され、第二吸着塔8からの水素が補給される。
【0026】
このように構成される多結晶シリコン製造装置100によって多結晶シリコンを製造するには、反応炉1内に配置された多数本のシリコン芯棒を赤熱させた状態とし、その反応炉1にトリクロロシラン及び水素を含む原料ガスを供給して、シリコン芯棒の表面に多結晶シリコンを析出させる。
反応に供された後の排ガスは、反応炉1から排出され、凝縮器2で凝縮分離される。このうちクロロシランを主体とする液化分は、蒸留系6を経てトリクロロシラン等に分離され、凝縮されない気体分は、塩化水素吸着塔3で塩化水素を分離した後に、水素回収系4において水素が回収される。そして、これらトリクロロシラン及び水素は、原料ガスとして再び反応炉1に供給される。
【0027】
反応炉1から排出される排ガス中には、未反応のトリクロロシラン、水素、反応により副生する塩化水素、テトラクロロシラン、ジクロロシラン等が含まれている。このうち、トリクロロシラン、テトラクロロシラン、ジクロロシラン等のクロロシラン類は、凝縮器2で冷却され、その大部分が液化分離される(凝縮工程)。また、塩化水素は、塩化水素吸着塔3において大部分が分離される(塩化水素吸収工程)。そして、塩化水素吸着塔3を通過した後の排ガスは、水素回収系4の第一吸着塔7に導入され、精製された水素の回収が行われる(第一精製工程)。
【0028】
第一吸着塔7では、3基備えられている吸着塔70を、その前後の弁を開閉操作することにより、一部の吸着塔70において排ガス中に含まれる不純物の吸着運転をしながら、残りの吸着塔70をラインから切り離して再生処理を行うというように、3基の吸着塔70を切り替えながら、水素の精製工程と活性炭の脱着再生工程とを繰り返すことにより、水素を連続して精製することが行われる。
なお、活性炭の再生処理は、およそ20℃〜100℃に加熱した吸着塔70内にパージガス供給管72から再生用水素を供給して行う。これにより、吸着した不純物等を活性炭から脱離させて、活性炭の吸着能力を再生することができる(脱着再生工程)。
【0029】
また、第一吸着塔7において活性炭の再生処理(脱着再生工程)により生じた脱着ガスG1は、第二吸着塔8に運ばれる。第二吸着塔8では、2基の吸着塔80を切り替えながら脱着ガスG1中に含まれる不純物の除去が行われ、水素が精製される(第二精製工程)。
第二吸着塔8で精製された水素は、不純物を多く含む脱着ガスG1により精製されており、第一吸着塔7で精製される水素と比べて水素の純度は劣るが、トリクロロシランの製造に用いることは可能である。そのため、第二吸着塔8で精製された水素は、転化炉5に運ばれて、トリクロロシランの製造(転化工程)に利用される。
【0030】
このように、反応炉1から排出される排ガス中に含まれるクロロシラン類及び水素を回収して、これらを原料ガスとして再利用するとともに、活性炭を再生する際に生じる脱着ガスから不純物を除去して水素を精製し、この脱着ガスから精製された水素を転化工程に導入することにより、テトラクロロシランのトリクロロシランへの転換反応に必要な水素の一部をまかなうことができる。
したがって、多結晶シリコンの製造に必要な原料の利用効率を向上させることができ、外部からの水素の補給を削減することができるので、多結晶シリコンの製造コストを低減することができる。
この場合、反応炉1は複数台設置され、これら反応炉1からの排ガスが収集されて水素回収系4に導かれる。 1台の反応炉では、反応経過に伴い供給ガスのもル比の変化により排出ガス中の水素の割合は変わることもあるが、複数台設置することにより、結果として転化反応に必要な水素の供給量を確保できる。
各反応炉1は、多結晶シリコンの製造サイクルに応じて、運転、停止を繰り返すため、1台の反応炉1からの排ガスは所定の間隔で断続的に排出されるが、複数台の反応炉1が運転、停止のタイミングをずらしながら稼働されるため、これら反応炉1の全体から収集される排ガスは、量の変動が少なくなり、ほぼ一定量が連続して送られる。このため、水素回収系4では、連続して供給される排ガスにより、ほぼ一定量の水素を回収することができる。そして、活性炭の再生処理においても、第一吸着塔7で複数の吸着塔70を切り替えながら、脱着ガスG1がほぼ連続して生成されるので、その脱着ガスG1中の水素が次の第二吸着塔8において精製され、転化炉5に供給される。
【0031】
このように、この多結晶シリコン製造プロセスにおいては、複数台の反応炉からの排ガスを収集して精製するので、各反応炉の運転状況等による排ガス発生量のばらつきを抑制することができ、安定した量の水素を精製することができる。
なお、第一吸着塔7は、反応炉1からの排ガスから水素を精製するものであり、複数台の反応炉1からの排ガスを処理するため、大型の吸着塔70が用いられるが、第二吸着塔8は、第一吸着塔7からの脱着ガスG1から水素を精製するものであり、脱着は各吸着塔80それぞれ一つ一つ実施されるのでめ、
図1に示す例では、第一吸着塔7よりも各吸着塔80は小型で設置数も少なくされている。また、この第二吸着塔8から排出される脱着ガスG2は第一吸着塔7から排出される脱着ガスG1よりも少量である。
第二吸着塔8で精製された水素は転化炉5の原料として利用されるが、必要に応じて、第二吸着塔8からの水素に加えて外部から水素を供給してもよい。
【0032】
次に、本発明の第2実施形態の多結晶シリコン製造方法及び製造装置について説明する。
図2に示す第2実施形態の多結晶シリコン製造装置200の水素回収系4は、3基の吸着塔70で構成される第一吸着塔7、及び2基の吸着塔80で構成される第二吸着塔8に加えて、第二吸着塔8の下流に接続される2基の吸着塔90で構成される第三吸着塔9を備える。
水素回収系4を構成する吸着塔のうち第一吸着塔7は、塩化水素吸着塔3を通過した排ガスから不純物を除去して水素を精製するものであり、第1実施形態の多結晶シリコン製造装置100と同様に、第一吸着塔7で精製された水素は、反応炉1において原料ガスとして再利用される。また、第一吸着塔7の脱着再生処理(第一脱着再生工程)により生じた脱着ガスG1は、第二吸着塔8に運ばれて処理される。
【0033】
第二吸着塔8は、第一吸着塔7から排出される脱着ガスG1から不純物を除去して水素を精製する(第二精製工程)ものであるが、この第二吸着塔8で精製された水素は、水素返送管83により第一吸着塔7の上流側に運ばれる。そして、再度、第一吸着塔7において不純物が除去され、高純度の水素に精製されて(第一精製工程)、反応炉1において原料ガスとして再利用されるようになっている。また、第二吸着塔8の脱着再生処理(第二脱着再生工程)で生じた脱着ガスG2は、第三吸着塔9に運ばれて処理される。
第三吸着塔9は、第二吸着塔8から排出される脱着ガスG2から不純物を除去して水素を精製する(第三精製工程)ものであり、精製された水素は、水素搬送管91により転化炉5へ運ばれてトリクロロシランの製造(転化工程)に利用される。
その他の構成は、第1実施形態のものと同じであり、共通部分に同一符号を付して説明を省略する。なお、
図2に示す符号92は、第三吸着塔9の脱着再生処理に使用される再生用水素を供給するパージガス供給管である。また、符号G3は、第三吸着塔9の脱着再生処理の際に生じる脱着ガスを示す。
【0034】
このように、第2実施形態の多結晶シリコン製造装置200においては、第一吸着塔7の活性炭を再生する際に発生する脱着ガスG1から不純物を除去する第二吸着塔8を設け、第二吸着塔8において精製した水素を、第一吸着塔7の系内に導入して再精製することにより、多結晶シリコンの製造に利用可能な高純度の水素の精製量を増やすことができる。また、第二吸着塔8の下流に第三吸着塔9を設け、第二吸着塔8の脱着ガスG2から精製された水素を転化炉5に導入することにより、テトラクロロシランのトリクロロシランへの転換反応に必要な水素の一部をまかなうことができる。このように、水素回収系4を構成する各吸着塔8〜9において、活性炭から脱離されて生じる脱着ガスの利用を効率よく行え、多結晶シリコンの製造に必要な原料の利用効率を向上させ、多結晶シリコンの製造コストを低減することができる。この場合、複数段の吸着塔7,8,9を配置することにより、脱着ガスG1,G2,G3は徐々に少なくなっていく。
【0035】
図1に示す方法において、水素搬送管81から転化炉5に水素を補給することにより、転化炉における水素供給管からの原料水素の供給量は、従来の転化炉においては3ケ月の運転で370Nm
3/hrであったのに対して、
図1の実施形態では268Nm
3/hrとなり、約1/3が低減された。
図2に示す方法においても、原料水素の供給量は同程度の低減となった。
【0036】
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、
図1及び
図2の多結晶シリコン製造装置において、
図3及び
図4に示すように、転化炉5の直前に塩化水素吸収・回収装置11を設ける構成としてもよい。多結晶シリコン製造装置においては、反応炉1の排出ガス中に塩化水素も含まれており、塩化水素吸着塔3で大部分が除去されるが、除去できなかった塩化水素は後段に流れることになる。塩化水素は、第一吸着塔7や第二吸着塔8、第三吸着塔9においても吸着されるが、脱着ガスとして、下流のガス中にも含まれる。転化炉5内ではテトラクロロシランと水素とで転換反応を行い、多結晶シリコンの原料ガスであるトリクロロシランを生成するが、原料ガスの導入段階で塩化水素が含まれていると、テトラクロロシランが塩化水素と反応することにより、テトラクロロシランと水素との反応が抑制され、転換効率が低下するおそれがある。そこで、
図3及び
図4に示す多結晶シリコン製造装置101,201のように、塩化水素吸収・回収装置11を設けて、転化炉5の水素ガス導入前に塩化水素を回収しておくことにより、テトラクロロシランと水素との転換効率を向上させることができる。
【0037】
また、上記実施形態では、第一吸着塔7を3基、第二吸着塔8及び第三吸着塔9をそれぞれ2基設置する構成としたが、これに限定されるものではなく、3基以上の吸着塔を設置する構成としてもよい。
【符号の説明】
【0038】
1 反応炉
2 凝縮器
3 塩化水素吸着塔
4 水素回収系
5 転化炉
6 蒸留系
7 第一吸着塔
8 第二吸着塔
9 第三吸着塔
10 水素供給管
11 塩化水素吸収・回収装置
70,80,90 吸着塔
71 水素供給管
81,91 水素搬送管
72,82,92 パージガス供給管
83 水素返送管
100,101,200,201 多結晶シリコン製造装置