特許第6179390号(P6179390)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイシン精機株式会社の特許一覧

<>
  • 特許6179390-燃料電池システム 図000002
  • 特許6179390-燃料電池システム 図000003
  • 特許6179390-燃料電池システム 図000004
  • 特許6179390-燃料電池システム 図000005
  • 特許6179390-燃料電池システム 図000006
  • 特許6179390-燃料電池システム 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6179390
(24)【登録日】2017年7月28日
(45)【発行日】2017年8月16日
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/06 20160101AFI20170807BHJP
   H01M 8/0612 20160101ALI20170807BHJP
   H01M 8/04 20160101ALI20170807BHJP
   H01M 8/12 20160101ALN20170807BHJP
【FI】
   H01M8/06 B
   H01M8/06 G
   H01M8/06 W
   H01M8/04 J
   !H01M8/12
【請求項の数】5
【全頁数】17
(21)【出願番号】特願2013-266459(P2013-266459)
(22)【出願日】2013年12月25日
(65)【公開番号】特開2015-122251(P2015-122251A)
(43)【公開日】2015年7月2日
【審査請求日】2016年11月10日
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】アイシン精機株式会社
(74)【代理人】
【識別番号】100089082
【弁理士】
【氏名又は名称】小林 脩
(72)【発明者】
【氏名】藪谷 元彦
【審査官】 橋本 敏行
(56)【参考文献】
【文献】 特開2006−114413(JP,A)
【文献】 特開平11−097046(JP,A)
【文献】 特開2008−276947(JP,A)
【文献】 特開2009−245702(JP,A)
【文献】 特開2012−075315(JP,A)
【文献】 特開2010−238473(JP,A)
【文献】 特開2011−347000(JP,A)
【文献】 特開2012−160329(JP,A)
【文献】 国際公開第2010/113519(WO,A1)
【文献】 国際公開第2010/096028(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M8/00−8/2485
(57)【特許請求の範囲】
【請求項1】
燃料および酸化剤ガスが供給されて発電する燃料電池を備えた燃料電池システムであって、
前記燃料電池システムの中で流通する水分を含んだガス中の水蒸気を液状の熱媒体との熱交換で凝縮し凝縮水を生成する凝縮器と、
前記凝縮器から供給された前記凝縮水を貯蔵する貯水器と、
前記貯水器に貯蔵されている前記凝縮水を前記水として前記改質部に供給する水供給装置と、
前記貯水器を含んで構成され前記凝縮器から流出した前記凝縮水が流通する凝縮水系と、
前記凝縮水系に設けられ前記凝縮水系の凝縮水の導電率を検出する導電率計と、
前記凝縮水系の凝縮水を加熱する加熱装置と、
前記導電率計によって検出された前記凝縮水の導電率が所定値以上である場合、前記加熱装置を加熱させて前記凝縮水系の前記凝縮水を加熱する制御装置と、を備えた燃料電池システム。
【請求項2】
前記制御装置は、前記導電率計によって検出された前記凝縮水の前記導電率が前記所定値以上であっても、前記凝縮水系の周辺温度が所定温度以上である場合には、前記加熱装置による加熱を禁止することで、前記凝縮水系の凝縮水を前記凝縮水系の前記周辺温度により加熱させる請求項1記載の燃料電池システム。
【請求項3】
前記凝縮水系は、前記凝縮器からの前記凝縮水を純水化して前記貯水器に供給する純水器をさらに備え、
前記加熱装置は、前記純水器を加熱する第一加熱装置、および前記貯水器を加熱する第二加熱装置から構成され、
前記制御装置は、前記導電率計によって検出された前記凝縮水の前記導電率が前記所定値以上であっても、前記純水器の周辺温度が所定温度未満である場合には、前記第一加熱装置および前記第二加熱装置を加熱させて前記純水器および前記貯水器を加熱し、一方、前記導電率が前記所定値以上であっても、前記純水器の周辺温度が前記所定温度以上である場合には、前記第二加熱装置のみを加熱させて前記純水器を加熱せずに前記貯水器のみを加熱する請求項1記載の燃料電池システム。
【請求項4】
前記制御装置は、さらに前記燃料電池の発電出力を減少させて、前記凝縮水系を流れる前記凝縮水の単位時間あたりの流量を減少させる請求項1乃至請求項3の何れか一項記載の燃料電池システム。
【請求項5】
前記貯水器から溢れ出た前記凝縮水を少なくとも排出する排水装置をさらに備え、
前記導電率計は、前記排水装置に設けられ前記排水装置によって排水される前記凝縮水の導電率を検出する請求項1乃至請求項4の何れか一項記載の燃料電池システム。


【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関する。
【背景技術】
【0002】
燃料電池システムの一形式として、特許文献1に示されているものが知られている。特許文献1の図1に示されているように、燃料電池システムは、燃料電池を少なくとも含んで構成された燃料電池モジュールと、燃料電池モジュールから排気される燃焼排ガスが供給され、該燃焼排ガスを液状の熱媒体との熱交換で凝縮し凝縮水を生成する凝縮器と、凝縮器から凝縮水が供給され、該凝縮水を純水化する純水器と、純水器で処理された後の凝縮水を貯蔵するタンクと、タンク内の凝縮水の導電率を検知する導電率計と、を備えている。
【0003】
このように構成された燃料電池システムにおいては、凝縮器が破損して導電率の比較的高い熱媒体が純水器やタンクに流入するおそれがある。この場合、タンク内の導電率は上昇する。これを利用して、タンク内に設置した導電率計の測定結果から凝縮器の破損の有無を判定することができる。
【0004】
一方、凝縮器における凝縮対象ガスは二酸化炭素ガスを含む燃焼排ガスであり、凝縮器で生成される凝縮水の炭酸ガス(炭酸イオン)濃度は比較的高い。よって、この場合、凝縮器が破損していなくても、導電率計による測定値が高くなり、凝縮器が破損していると誤判定する可能性がある。
【0005】
そこで、このような誤判定を抑制するため、凝縮器で生成された凝縮水の炭酸ガス濃度を低く抑制するように燃料電池システムを構成することが考えられる。例えば、特許文献2や特許文献3に示すものが知られている。特許文献2の図1に示されているように、燃料電池システムにおいては、回収水16は冷却水12に混合した状態で固体高分子型燃料電池1aの冷却に供した後、カソード加湿器24で空気9と気液接触させることで二酸化炭素を脱気処理させ、これにより、二酸化炭素の溶存濃度が低く抑えられる冷却水12を純水装置17で処理させるようになっている。
【0006】
また、特許文献3の図1に示されているように、燃料電池システムは、改質触媒層3a及び燃焼部3bを有する改質装置3と、燃料電池本体1と、燃焼排ガスラインL12に配置されたドレントラップ21と、ドレントラップ21よりも下流側の燃焼排ガスラインL12に配置された第1熱交換器Q4と、脱炭酸処理器5と、脱炭酸処理した凝縮水を回収する水タンク4とを備え、ドレントラップ21内の高温凝縮水は、脱炭酸処理器5で脱炭酸処理して水タンクに供給させ、第1熱交換器Q4の下流で回収した凝縮水は、水タンク4の水量が所定水量未満のとき、脱炭酸処理器5で脱炭酸処理して水タンク4に供給するように構成されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2010−238467号公報
【特許文献2】特開2009−123445号公報
【特許文献3】特開2009−224064号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述した特許文献2および特許文献3に記載されている燃料電池システムにおいては、凝縮器で生成された凝縮水の炭酸ガス濃度を低く抑制することができるものの、装置(システム)の大型化、高コスト化を招くという問題があった。
【0009】
本発明は、上述した問題を解消するためになされたもので、燃料電池システムにおいて、凝縮器で生成された凝縮水の導電率の測定値が高い場合、システムの大型化・高コスト化を招くことなく、凝縮器が破損している旨の誤判定を抑制することを目的とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するため、請求項1に係る燃料電池システムの発明は、燃料および酸化剤ガスが供給されて発電する燃料電池を備えた燃料電池システムであって、燃料電池システムの中で流通する水分を含んだガス中の水蒸気を液状の熱媒体との熱交換で凝縮し凝縮水を生成する凝縮器と、凝縮器から供給された凝縮水を貯蔵する貯水器と、貯水器に貯蔵されている凝縮水を水として改質部に供給する水供給装置と、貯水器を含んで構成され凝縮器から流出した凝縮水が流通する凝縮水系と、凝縮水系に設けられ凝縮水系の凝縮水の導電率を検出する導電率計と、凝縮水系の凝縮水を加熱する加熱装置と、導電率計によって検出された凝縮水の導電率が所定値以上である場合、加熱装置を加熱させて凝縮水系の凝縮水を加熱する制御装置と、を備えている。
【0011】
これによれば、貯水器を含んで構成され凝縮器から流出した凝縮水が流通する凝縮水系の凝縮水の導電率が所定値以上である場合、加熱装置による加熱によって凝縮水系の凝縮水が加熱されるため、凝縮水の炭酸ガス(炭酸イオン)濃度を小さくすることができ、ひいては凝縮水系において溶存する炭酸ガスに起因する導電率の上昇を抑制することができる。よって、凝縮水系の凝縮水の導電率が上昇した場合に、加熱装置による加熱によって導電率が減少すれば凝縮水系の凝縮水に溶存する高濃度の炭酸ガスが原因であると判断し、一方、加熱装置による加熱によって導電率が減少しなければ凝縮器が破損して導電率の比較的高い熱媒体が凝縮水系に流入したことが原因であると判断することができる。その結果、凝縮器で生成された凝縮水の導電率の測定値が高い場合、従来のようにシステムの大型化・高コスト化を招くことなく、凝縮器が破損している旨の誤判定を抑制することができる。
【0012】
また請求項2に係る発明は、請求項1において、制御装置は、導電率計によって検出された凝縮水の導電率が所定値以上であっても、凝縮水系の周辺温度が所定温度以上である場合には、加熱装置による加熱を禁止することで、凝縮水系の凝縮水を凝縮水系の周辺温度により加熱させる。
これによれば、貯水器を含んで構成され凝縮器から流出した凝縮水が流通する凝縮水系の凝縮水の導電率が所定値以上であっても、凝縮水系の周辺温度が所定温度以上である場合、加熱装置の加熱によらないで凝縮水系の周辺温度によって凝縮水系の凝縮水を加熱して、凝縮水の炭酸ガス濃度を小さくすることができる。すなわち、凝縮水系における炭酸ガスに起因する導電率上昇の抑制を省エネにて実現することができる。
【0013】
また請求項3に係る発明は、請求項1において、凝縮水系は、凝縮器からの凝縮水を純水化して貯水器に供給する純水器をさらに備え、加熱装置は、純水器を加熱する第一加熱装置、および貯水器を加熱する第二加熱装置から構成され、制御装置は、導電率計によって検出された凝縮水の導電率が所定値以上であっても、純水器の周辺温度が所定温度未満である場合には、第一加熱装置および第二加熱装置を加熱させて純水器および貯水器を加熱し、一方、導電率が所定値以上であっても、純水器の周辺温度が所定温度以上である場合には、第二加熱装置のみを加熱させて純水器を加熱せずに貯水器のみを加熱する。
これによれば、純水器の過熱を抑制しながら、凝縮水系の凝縮水を加熱することで、純水器の長寿命化を達成しつつ凝縮水の炭酸ガス濃度を適切に小さくすることができる。
【0014】
また請求項4に係る発明は、請求項1乃至請求項3の何れか一項において、制御装置は、さらに燃料電池の発電出力を減少させて、凝縮水系を流れる凝縮水の単位時間あたりの流量を減少させる。
これによれば、比較的高濃度の炭酸ガスが残存する凝縮水が凝縮水系を流れるのを、ひいては比較的高濃度の炭酸ガスが残存する凝縮水が貯水器に流入するのを小さく抑制することができる。よって、流通する凝縮水をより高温に加熱することができ、その結果、流通する凝縮水に溶存する炭酸ガス濃度をより低減することができる。
【0015】
また請求項5に係る発明は、請求項1乃至請求項4の何れか一項において、貯水器から溢れ出た凝縮水を少なくとも排出する排水装置をさらに備え、導電率計は、排水装置に設けられ排水装置によって排水される凝縮水の導電率を検出する。
これによれば、導電率計が凝縮水系に設けられていないものの、貯水器から溢れ出た凝縮水を少なくとも排出する排水装置に導電率計が設けられている燃料電池システムにおいて、上述した請求項1乃至請求項4の発明に係る作用効果を得ることができる。
【図面の簡単な説明】
【0016】
図1】本発明による燃料電池システムの一実施形態(第1実施例)の概要を示す概要図である。
図2図1に示す燃料電池システムを示すブロック図である。
図3図2に示す制御装置で実行される制御プログラム(第1制御例)のフローチャートである。
図4】炭酸ガス溶液の導電率の時間変化を示す図である。
図5図2に示す制御装置で実行される制御プログラム(第2制御例)のフローチャートである。
図6】本発明による燃料電池システムの一実施形態(第2実施例)の概要を示す概要図である。
【発明を実施するための形態】
【0017】
以下、本発明による燃料電池システムの実施形態の一つである第1実施例について説明する。図1はこの燃料電池システムの概要を示す概要図である。この燃料電池システムは、箱状の筐体11、燃料電池モジュール20、排熱回収システム30、インバータ装置50および制御装置60を備えている。
【0018】
筐体11は、筐体11内を区画して第1室R1および第2室R2を形成する仕切部材12を備えている。第1室R1は第1空間を形成し、第2室R2は第2空間を形成する。仕切部材12は筐体11を上下に区画する部材であり、第1室R1および第2室R2は連通するようになっている。
【0019】
燃料電池モジュール20は、第1室R1内に該第1室R1の内壁面から空間をおいて収納されている。燃料電池モジュール20は、ケーシング21、燃料電池24を少なくとも含んで構成されるものである。本実施形態では、燃料電池モジュール20は、ケーシング21、蒸発部22、改質部23および燃料電池24を備えている。
【0020】
ケーシング21は、断熱性材料で箱状に形成されている。ケーシング21は、第1室R1内に該第1室R1の内壁面から空間をおいて図示しない支持構造を介して仕切部材12に設置されている。ケーシング21内には、蒸発部22、改質部23、燃料電池24および第1燃焼部26である燃焼空間R3が配設されている。このとき、蒸発部22、改質部23が燃料電池24の上方に位置するように配設されている。
【0021】
蒸発部22は、後述する燃焼ガスにより加熱されて、供給された改質水を蒸発させて水蒸気を生成するとともに、供給された改質用原料を予熱するものである。蒸発部22は、このように生成された水蒸気と予熱された改質用原料を混合して改質部23に供給するものである。改質用原料としては天然ガス、LPガスなどの改質用気体燃料、灯油、ガソリン、メタノールなどの改質用液体燃料があり、本実施形態においては天然ガスにて説明する。
【0022】
この蒸発部22には、一端(下端)が水タンク13内に配設された給水管41の他端が接続されている。給水管41には、改質水ポンプ41aが設けられている。改質水ポンプ41aは、蒸発部22に改質水を供給するとともにその改質水供給量(供給流量(単位時間あたりの流量))を調整するものである。改質水ポンプ41aは、水タンク13(貯水器)に貯蔵されている凝縮水を改質水として改質部23に供給する水供給装置である。
【0023】
また、蒸発部22には、改質用原料の供給源(以下、供給源という。)Gsからの改質用原料が改質用原料供給管42を介して供給されている。供給源Gsは、例えば都市ガスのガス供給管、LPガスのガスボンベである。改質用原料供給管42には、原料ポンプ42aが設けられている。原料ポンプ42aは、筺体11内に収納されている。原料ポンプ42aは、燃料電池24に燃料(改質用原料)を供給する供給装置であり、制御装置60からの制御指令値にしたがって供給源Gsからの燃料供給量(供給流量(単位時間あたりの流量))を調整するものである。この原料ポンプ42aは、改質用原料を吸入し改質部23に圧送する圧送装置である。
【0024】
改質部23は、後述する燃焼ガスにより加熱されて水蒸気改質反応に必要な熱が供給されることで、蒸発部22から供給された混合ガス(改質用原料、水蒸気)から改質ガスを生成して導出するものである。改質部23内には、触媒(例えば、RuまたはNi系の触媒)が充填されており、混合ガスが触媒によって反応し改質されて水素ガスと一酸化炭素ガスが生成されている(いわゆる水蒸気改質反応)。これと同時に、水蒸気改質反応にて生成された一酸化炭素と水蒸気が反応して水素ガスと二酸化炭素とに変成するいわゆる一酸化炭素シフト反応が生じている。これら生成されたガス(いわゆる改質ガス)は燃料電池24の燃料極に導出されるようになっている。改質ガスは、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の天然ガス(メタンガス)、改質に使用されなかった改質水(水蒸気)を含んでいる。このように、改質部23は改質用原料(原燃料)と改質水とから燃料である改質ガスを生成して燃料電池24に供給する。なお、水蒸気改質反応は吸熱反応であり、一酸化炭素シフト反応は発熱反応である。
【0025】
燃料電池24は、燃料極、空気極(酸化剤極)、および両極の間に介装された電解質からなる複数のセル24aが積層されて構成されている。本実施形態の燃料電池は、固体酸化物形燃料電池であり、電解質として固体酸化物の一種である酸化ジルコニウムを使用している。燃料電池24の燃料極には、燃料として水素、一酸化炭素、メタンガスなどが供給される。動作温度は400〜1000℃程度である。水素だけではなく天然ガスや石炭ガスなども直接燃料として用いることが可能である。この場合、改質部23は省略することができる。
セル24aの燃料極側には、燃料である改質ガスが流通する燃料流路24bが形成されている。セル24aの空気極側には、酸化剤ガスである空気(カソードエア)が流通する空気流路24cが形成されている。
【0026】
燃料電池24は、マニホールド25上に設けられている。マニホールド25には、改質部23からの改質ガスが改質ガス供給管43を介して供給される。燃料流路24bは、その下端(一端)がマニホールド25の燃料導出口に接続されており、その燃料導出口から導出される改質ガスが下端から導入され上端から導出されるようになっている。カソードエアブロワ44a(カソードエア送出(送風)手段)によって送出されたカソードエアはカソードエア供給管44を介して供給され、空気流路24cの下端から導入され上端から導出されるようになっている。
【0027】
カソードエアブロワ44aは、第2室R2内に配設されている。カソードエアブロワ44aは、第2室R2内の空気を吸入し燃料電池24の空気極に吐出するものであり、その吐出量は調整制御(例えば燃料電池24の負荷電力量(消費電力量)に応じて制御)されるものである。
【0028】
燃料電池24においては、燃料極に供給された燃料と空気極に供給された酸化剤ガスによって発電が行われる。すなわち、燃料極では、下記化1および化2に示す反応が生じ、空気極では、下記化3に示す反応が生じている。すなわち、空気極で生成した酸化物イオン(O2−)が電解質を透過し、燃料極で水素と反応することにより電気エネルギーを発生させている。したがって、燃料流路24bおよび空気流路24cからは、発電に使用されなかった改質ガスおよび酸化剤ガス(空気)が導出する。
(化1)
+O2−→HO+2e
(化2)
CO+O2−→CO+2e
(化3)
1/2O+2e→O2−
【0029】
そして、燃料流路24bおよび空気流路24cから導出した、発電に使用されなかった改質ガス(アノードオフガス)は、燃料電池24と蒸発部22(改質部23)の間の燃焼空間R3にて、発電に使用されなかった酸化剤ガス(カソードオフガス)によって燃焼され、その燃焼ガス(火炎27)によって蒸発部22および改質部23が加熱される。さらには、燃料電池モジュール20内を動作温度に加熱している。その後、燃焼ガスは導出口21aから燃料電池モジュール20の外に排気される。このように、燃焼空間R3が、燃料電池24からのアノードオフガスと燃料電池24からのカソードオフガスとが燃焼されて改質部23を加熱する第1燃焼部26である。すなわち、第1燃焼部26は、燃料電池24からの未使用の燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼ガスを導出する燃焼部である。
第1燃焼部26(燃焼空間R3)では、アノードオフガスが燃焼されて火炎27が発生している。第1燃焼部26には、アノードオフガスを着火させるための一対の着火ヒータ26a1,26a2が設けられている。
【0030】
排熱回収システム30は、燃料電池24の排熱と貯湯水との間で熱交換することで排熱を貯湯水に回収して蓄える排熱回収系である。排熱回収システム30は、貯湯水を貯湯する貯湯槽31と、貯湯水が循環する貯湯水循環ライン32と、燃料電池モジュール20からの燃焼排ガスと貯湯水との間で熱交換が行われる熱交換器33と、が備えられている。
【0031】
貯湯槽31は、1つの柱状容器を備えており、その内部に温水が層状に、すなわち上部の温度が最も高温であり下部にいくにしたがって低温となり下部の温度が最も低温であるように貯留されるようになっている。貯湯槽31の柱状容器の下部には水供給源Ws(例えば水道管)が接続されており、水供給源Wsからの水(低温の水。例えば水道水)が補給されるようになっている。また、貯湯槽31に貯留された高温の温水が貯湯槽31の柱状容器の上部から導出されるようになっている。
【0032】
貯湯水循環ライン32の一端は貯湯槽31の下部に、他端は貯湯槽31の上部に接続されている。貯湯水循環ライン32上には、一端から他端に向かって順番に貯湯水循環手段である貯湯水循環ポンプ32a、第1温度センサ32b、熱交換器33、および第2温度センサ32cが配設されている。貯湯水循環ポンプ32aは、貯湯槽31の下部の貯湯水を吸い込んで貯湯水循環ライン32を図示矢印方向へ通水させて貯湯槽31の上部に吐出するものであり、その流量(送出量)が制御されるようになっている。貯湯水循環ポンプ32aは、第2温度センサ32cの検出温度(貯湯水の貯湯槽31の入口温度)が所定の温度または温度範囲となるように、送出量が制御されるようになっている。
【0033】
第1温度センサ32bは、熱交換器33の貯湯水導入側の貯湯水循環ライン32であって熱交換器33と貯湯槽31との間に配設されている。第1温度センサ32bは、貯湯水の熱交換器33の入口温度すなわち貯湯水の貯湯槽31の出口温度を検出するものであり、その検出結果を制御装置60に送信するようになっている。
【0034】
第2温度センサ32cは、熱交換器33の貯湯水導出側の貯湯水循環ライン32に配設されている。第2温度センサ32cは、貯湯水の熱交換器33の出口温度すなわち貯湯水の貯湯槽31の入口温度を検出するものであり、その検出結果を制御装置60に送信するようになっている。
【0035】
熱交換器33は、燃料電池モジュール20から排気される燃焼排ガスが供給されるとともに貯湯槽31からの貯湯水が供給され、燃焼排ガスと貯湯水とが熱交換する熱交換器である。この熱交換器33は、筐体11内に配設されている。本実施形態では、熱交換器33は、燃料電池モジュール20の下部に設けられており、少なくとも熱交換器33の下部は仕切部材12を貫通して第2室R2に突出されて配設されている。
【0036】
熱交換器33は、ケーシング33aを備えている。ケーシング33aの上部には、燃料電池モジュール20のケーシング21の下部に設けられ燃焼排ガスが導出される導出口21aに連通している。ケーシング33aの下部には、第1排気口11aに接続されている排気管46が接続されている。ケーシング33aの底部には、純水器14に接続されている凝縮水供給管47が接続されている。ケーシング33a内には、貯湯水循環ライン32に接続されている熱交換部(凝縮部)33bが配設されている。
【0037】
このように構成された熱交換器33においては、燃料電池モジュール20からの燃焼排ガスは、導出口21aを通ってケーシング33a内に導入され、貯湯水が流通する熱交換部33bを通る際に貯湯水との間で熱交換が行われ凝縮されるとともに冷却される。凝縮後の燃焼排ガスは排気管46を通って第1排気口11aから外部に排出される。また、凝縮された凝縮水は、凝縮水供給管47を通って純水器14に供給される(自重で落水する)。一方、熱交換部33bに流入した貯湯水は、加熱されて流出される。
【0038】
このように、熱交換器33は、燃料電池システムの中で流通する水分を含んだガス中の水蒸気を液状の熱媒体との熱交換で凝縮し凝縮水を生成する凝縮器である。本実施形態では、燃料電池システムの中で流通する水分を含んだガスは、燃焼排ガスであり、液状の熱媒体は、貯湯水である。なお、燃料電池システムの中で流通する水分を含んだガスは、燃焼排ガスに限定されない。液状の熱媒体は、貯湯水に限定されない。なお、液状の熱媒体は、導電率が純水より高いものが好ましい。
【0039】
熱交換器33の燃焼排ガス導入部、すなわちケーシング21の導出口21aには、第2燃焼部28が設けられている。第2燃焼部28は、第1燃焼部26から排気されるガスである第1燃焼部オフガス、すなわち、第1燃焼部26から排気される未使用の可燃性ガス(例えば、水素、メタンガス、一酸化炭素など)を導入し燃焼して導出するものである。第2燃焼部28は、可燃性ガスを燃焼する触媒である燃焼触媒(例えばプラチナやパラジウムなどの貴金属がセラミックの単体などに担持させたものである。ペレット状のものを充填しても良いし、セラミック・メタルのハニカムや発泡金属の上に担持させたような形態のものでも良い。)で構成されている。
第2燃焼部28には、燃焼触媒を触媒の活性温度まで加熱して可燃性ガスを燃焼させるための燃焼触媒ヒータ28aが設けられている。燃焼触媒ヒータ28aは制御装置60の指示によって加熱されるものである。
【0040】
また、燃料電池システムは、水タンク13および純水器14を備えている。水タンク13および純水器14は第2室R2内に配設されている。水タンク13は、純水器14から導出された純水を貯めておくものである。水タンク13は、熱交換器33(凝縮器)から供給された凝縮水を貯蔵する貯水器である。水タンク13を含んで構成され、熱交換器33(凝縮器)から流出した凝縮水が流通する水路が凝縮水系Lgである。本実施形態では、凝縮水系Lgは、凝縮水供給管47、純水器14(後述する)、配管48および水タンク13から構成されている。なお、凝縮水系Lgは、純水器14を除いて構成するようにしてもよい。
【0041】
凝縮水系Lgには、凝縮水系Lgの凝縮水(凝縮水系Lgを流水する凝縮水)の導電率(電気伝導率、伝導度)を検出する導電率計が設けられている。本実施形態では、導電率計13aが水タンク13に設けられている。導電率計13aは、水タンク13以外の凝縮水系Lg(例えば凝縮水供給管47、純水器14、および配管48)に設けるようにしてもよい。導電率計13aは、容器内の液体(本実施形態では凝縮水(純水))の導電率を検知(測定)するものである。導電率計13aの検知結果は、制御装置60に送信されるようになっている。
【0042】
また、水タンク13には、水タンク13内の凝縮水を加熱する(水タンク13を加熱する)加熱装置である水タンク凍結防止ヒータ13bが設けられている。なお、加熱装置は、凝縮水系の凝縮水を加熱する加熱装置であり、凝縮水系を加熱する。水タンク凍結防止ヒータ13bは、例えば電気式ヒータや燃焼装置(例えばバーナなど)であり、制御装置60により制御されるように構成されている。水タンク凍結防止ヒータ13bは、加熱して水タンク13が凍結するのを防止する。
さらに、水タンク13には、水タンク13内の凝縮水量を検出する図示しない水量センサ(水位センサ)が備えられている。水量センサは例えばフロート式、静電容量式などの水位計である。水量センサは制御装置60に検出信号を送信するようになっている。
【0043】
純水器14は、イオン交換樹脂を内蔵しており、例えば粒状のイオン交換樹脂を充填している。また被処理水の状態によっては、中空糸フィルタを設置しても良い。純水器14は、熱交換器33からの凝縮水をイオン交換樹脂によって純水化するものである。純水器14は、配管48を介して水タンク13に連通しており、純水器14内の純水は配管48を通って水タンク13に導出される。すなわち、純水器14は、熱交換器33からの凝縮水を純水化して水タンク13に供給する。
【0044】
また、純水器14には、純水器14内の凝縮水を加熱する(純水器14を加熱する)加熱装置である純水器凍結防止ヒータ14aが設けられている。純水器凍結防止ヒータ14aは、水タンク凍結防止ヒータ13bと同様に構成されている。純水器凍結防止ヒータ14aは、加熱して純水器14が凍結するのを防止する。
【0045】
また、燃料電池システムは、排水装置70を備えている。排水装置70は、水受け部材71、排水管72を備えている。水受け部材71は、筐体11内に配設され水タンク13から溢れ出た水を少なくとも受けるものである。本実施形態では、水受け部材71は、上方に開口する開口部71aを有するとともに平らな底部71bを有するトレー状に形成された容器である。水受け部材71の開口部71aの直上には、オーバーフローライン13c、ドレン管46aの各下端が配設されている。これにより、水受け部材71は、水タンク13から溢れ出た水をオーバーフローライン13cを介して確実に受けることができ、第1排気口11aから入った外部の水(例えば雨水)を排気管46およびドレン管46aを介して確実に受けることができる。
【0046】
また、水受け部材71は、少なくとも、水タンク13のオーバーフローライン13cの接続位置(水タンク13のオーバーフロー口)、ドレン管46aの上端位置の全てより下方に配設されている。
底部71bには、排水管72が接続されている。排水管72は、水受け部材71が受けた水を水受け部材71から筐体11の外部に排出するものである。排水管72の上端が底部71bの下面に接続され、排水管72の下端が下方に延ばされ筐体11の下部(底板、側板の下部)を貫通して筐体11の外部に突設されている。なお、底部71bの構造は、排水管72が接続されている部分に向けて水が流れるように構成されるのが好ましい。
【0047】
また、ドレン管46aの上端は、排気管46に接続されている。ドレン管46aの下端は、下方に延ばされ、排水装置70の水受け部材71の上方位置まで延設されている。ドレン管46aは、第1排気口11aから入った外部の水が第1熱交換器33を介して純水器14に流入するのを抑制するためのものである。
【0048】
また、燃料電池システムは、第2室R2を形成する筐体11に形成された空気導入口11bと、第1室R1を形成する筐体11に形成された空気導出口11cと、空気導入口11bに設けられた換気用空気ブロワ15と、を備えている。換気用空気ブロワ15は、筐体11内を換気する換気装置である。この換気用空気ブロワ15が作動すると、外気が空気導入口11bを介して換気用空気ブロワ15に吸い込まれ、第2室R2に送出される。さらに、第2室R2内の気体(主として空気)は仕切部材12を通って第1室R1に流れ、第1室R1内の気体は空気導出口11cを介して外部に排出される。
【0049】
また、燃料電池システムは、凝縮水系Lgの周辺温度を検出する温度センサSTH1を備えている。温度センサSTH1は、凝縮水系Lgの周辺に設けられている。温度センサSTH1は、第2室R2内に設けられている。温度センサSTH1は、その検出結果を制御装置60に送信するようになっている。
【0050】
さらに、燃料電池システムは、インバータ装置50を備えている。インバータ装置50は、燃料電池24から出力される直流電圧を入力し所定の交流電圧に変換して交流の系統電源51および外部電力負荷53に接続されている電源ライン52に出力する第1機能と、系統電源51からの交流電圧を電源ライン52を介して入力し所定の直流電圧に変換して補機や制御装置60に出力する第2機能と、を有している。
【0051】
系統電源(または商用電源)51は、該系統電源51に接続された電源ライン52を介して外部電力負荷53に電力を供給するものである。燃料電池24はインバータ装置50を介して電源ライン52に接続されている。外部電力負荷53は、交流電源で駆動される負荷であり、例えばドライヤ、冷蔵庫、テレビなどの電化製品である。
【0052】
補機は、燃料電池モジュール20に改質用原料、水、空気を供給するためのモータ駆動のポンプ41a,42a、換気用空気ブロワ15およびカソードエアブロワ44aなどから構成されている。この補機は直流電圧にて駆動されるものである。
【0053】
さらに、燃料電池システムは、制御装置60を備えている。制御装置60には、上述した導電率計13a、温度センサSTH1,32b,32c、各ポンプ32a,41a,42a、各ブロワ15,44a、および各ヒータ13b,14a,26a1,26a2,28aが接続されている(図2参照)。制御装置60はマイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、燃料電池システムの運転を実施している。RAMは同プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
【0054】
次に、上述した燃料電池システムの作動に係る第1制御例について説明する。制御装置60は、図示しない起動スイッチがオンされると(あるいはユーザによって予め設定された起動開始時刻となったことにより自動的に起動が開始されると)、図3に示すフローチャートに対応するプログラムの実行を開始する。
【0055】
制御装置60は、ステップS102において、水タンク13内の凝縮水の導電率が異常であるか否かを判定する。例えば、導電率計13aによって検知(測定)された凝縮水の導電率が所定値以上である状態が所定時間(例えば1時間)継続しているか否かに基づいて凝縮水の導電率が異常であるか否かを判定する。所定値は、例えば45μS/cmに設定されている。この所定値は、凝縮水の導電率が5〜20μS/cmであり、水道水の導電率が凝縮水の導電率より高い(大きい)80〜400μS/cmであること基づいて設定されている。すなわち、所定値は、凝縮水の導電率と熱交換器33の熱媒体である貯湯水(水道水)の導電率との間に設定されている。
なお、導電率計13aによって検知された凝縮水の導電率が所定値以上であるか否かに基づいて凝縮水の導電率が異常であるか否かを判定するようにしてもよい。
【0056】
制御装置60は、凝縮水の導電率が異常である場合には、ステップS102にて「YES」と判定し、プログラムをステップS104に進める。一方、導電率が異常でない場合には、制御装置60は、ステップS102にて「NO」と判定し、ステップS102の処理を繰り返す。
【0057】
制御装置60は、ステップS104において、タイマTMのカウントを開始する。その後、制御装置60は、ステップS106において、温度センサSTH1によって検出された凝縮水系Lgの周辺温度TH1が所定温度TH1a(例えば40℃)以下であるか否かを判定する。なお、所定温度TH1aは、純水器14のイオン交換樹脂の熱劣化を十分に抑制することができる温度に設定されている。
【0058】
凝縮水系Lgの周辺温度TH1が所定温度TH1a以下である場合、制御装置60は、ステップS106にて「YES」と判定し、水タンク凍結防止ヒータ13bをオンすることで、水タンク13および水タンク13内の凝縮水を加熱する(ステップS108)。
このように、制御装置60は、導電率計13aによって検出された凝縮水の導電率が所定値以上である場合、水タンク凍結防止ヒータ13bを加熱させて凝縮水系Lgの凝縮水を加熱する。
【0059】
燃焼排ガス中には二酸化炭素が含まれているため、凝縮水中には二酸化炭素が溶け込んでいる。二酸化炭素が溶存している水タンク13内の凝縮水が加熱されると、凝縮水中の炭酸(炭酸イオン)が二酸化炭素ガスとなって発生する。その結果、凝縮水中の炭酸イオン濃度が減少する。すなわち、水タンク13内の凝縮水が加熱されると、水タンク13内の凝縮水中の炭酸イオン濃度が減少する。
【0060】
二酸化炭素が溶存している凝縮水の導電率の時間変化を図4に示す。図4では、凝縮水の温度が室温(例えば20℃)である場合と、室温より高い40℃である場合を示している。すなわち、55μS/cmの炭酸水(凝縮水)を撹拌しないで室温下にて放置した場合を丸印で示し、55μS/cmの炭酸水を撹拌しないで40℃にて放置した場合を三角印で示している。室温下では、導電率が5μS/cmまで下がるのに約55時間かかっているが、40℃では、約10時間しかかかっていない。このように、雰囲気温度が高いほど凝縮水(炭酸水)中の炭酸イオンが減少し、ひいては凝縮水の導電率が低下する。
【0061】
さらに、制御装置60は、燃料電池24の発電出力を所定電力(例えば200W)に固定するように制御する(ステップS110)。具体的には、外部電力負荷53での消費電力が200Wより大きい場合には、制御装置60は、目標発電出力を200Wに設定し、発電量が200Wとなるように燃料などの供給量を調整する。また、外部電力負荷53での消費電力が200W未満である場合には、制御装置60は、目標発電出力を200Wに設定し、発電量が200Wとなるように燃料などの供給量を調整する。このとき、水タンク凍結防止ヒータ13bの消費電力が200W未満である場合には、他の内部電力負荷(例えば他のヒータである純水器凍結防止ヒータ14a)に通電することで、総消費電力を200Wとすることが好ましい。これにより、発電出力と消費電力とを一致させることができるため、燃料電池24の発電出力を固定した際に、逆潮流を防止することができる。
【0062】
さらに、燃料電池24の発電出力を低い電力に固定することにより、熱交換器33にて生成される凝縮水量を少なく抑制することができる。外気温度および貯湯水の熱交換器入口温度が同じである場合には、燃料電池24の発電出力と生成される凝縮水量は比例するからである。これにより、水タンク凍結防止ヒータ13bの出力が一定である場合には、水タンク凍結防止ヒータ13bを通過する凝縮水の流量(単位時間あたりの流量)が小さくなると、流量が大きい場合と比較して、凝縮水の水温が高くなる。その結果、凝縮水中の炭酸イオン濃度をより減少させることができる。
【0063】
一方、凝縮水系Lgの周辺温度TH1が所定温度TH1a以下でない場合(周辺温度TH1が所定温度TH1aより高い場合)、制御装置60は、水タンク凍結防止ヒータ13bをオンしないで、高温である周辺温度を利用して水タンク13および水タンク13内の凝縮水を加熱する(昇温する)。この場合にも、上述した場合より効果は小さいものの、凝縮水(炭酸水)中の炭酸イオンが減少し、ひいては凝縮水の導電率が低下する。
【0064】
その後、制御装置60は、ステップS112において、凝縮水の導電率が異常であるか否かすなわち導電率異常が継続しているか否かを判定する。具体的には、制御装置60は、ステップS112において、導電率計13aによって検知された凝縮水の導電率が所定値以上であるか否かに基づいて凝縮水の導電率が異常であるか否かを判定する。所定値は、上記ステップS102と同様な値(例えば45μS/cm)に設定してもよいし、上記ステップS102の値より小さい値(例えば10μS/cm)に設定してもよい。
【0065】
さらに、制御装置60は、ステップS116において、導電率異常が該異常の検知開始時点から所定時間継続しているか否かを判定する。具体的には、制御装置60は、上記異常の検知時点からカウントを開始されたタイマTMが所定値TM1以上となった場合には、凝縮水の導電率異常が所定時間継続していると判定する。所定時間は所定値TM1に相当する時間であり、例えば12時間に設定されている。この所定時間は、上述したように凝縮水中の炭酸イオンがガス化し減少して一定値以下となるのにかかる十分な時間である。
【0066】
導電率が異常でない場合すなわち導電率異常が解消された場合には、制御装置60は、ステップS112にて「NO」と判定し、本導電率異常判定制御を終了し、通常の運転に復帰する(ステップS114)。導電率異常が検知された時点から所定時間(12時間)が経過する前に、加熱された凝縮水の導電率が所定値以下となれば、導電率が異常でないすなわち導電率異常が解消されたと判定される。すなわち、導電率が高かった原因は、炭酸イオン濃度の増大であり、熱交換器33の破損による水道水(比較的導電率が高い)の流入ではないと、判断することができる。なお、導電率異常判定制御の終了処理は、オン状態にある水タンク凍結防止ヒータ13bをオフするとともに、タイマTMを0にクリアすることである。
【0067】
一方、導電率異常が所定時間継続している場合には、制御装置60は、ステップS112,116にて「YES」と判定し、炭酸イオン濃度の増大による導電率上昇でなく、熱交換器33の破損による水道水(比較的導電率が高い)の流入による導電率上昇であると判定し、燃料電池システムの運転(発電運転または起動運転)を停止する(ステップS118)。
【0068】
上述した説明から明らかなように、本実施形態によれば、水タンク13(貯水器)を含んで構成され熱交換器33(凝縮器)から流出した凝縮水が流通する凝縮水系Lgの凝縮水の導電率が所定値以上である場合、水タンク凍結防止ヒータ13b(加熱装置)による加熱によって凝縮水系Lgの凝縮水が加熱されるため(ステップS102,108)、凝縮水の炭酸ガス(炭酸イオン)濃度を小さくすることができ、ひいては凝縮水系Lgにおいて溶存する炭酸ガスに起因する導電率の上昇を抑制することができる。よって、凝縮水系Lgの凝縮水の導電率が上昇した場合に、水タンク凍結防止ヒータ13b(加熱装置)による加熱によって導電率が減少すれば凝縮水系Lgの凝縮水に溶存する高濃度の炭酸ガスが原因であると判断し、一方、水タンク凍結防止ヒータ13b(加熱装置)による加熱によって導電率が減少しなければ熱交換器33(凝縮器)が破損して導電率の比較的高い熱媒体(貯湯水:水道水)が凝縮水系Lgに流入したことが原因であると判断することができる。その結果、熱交換器33(凝縮器)で生成された凝縮水の導電率の測定値が高い場合、従来のようにシステムの大型化・高コスト化を招くことなく、熱交換器33(凝縮器)が破損している旨の誤判定を抑制することができる。
【0069】
また本実施形態に係る制御装置60は、導電率計13aによって検出された凝縮水の導電率が所定値以上であっても、凝縮水系Lgの周辺温度が所定温度以上である場合には、水タンク凍結防止ヒータ13b(加熱装置)による加熱を禁止する(ステップS106にて「NO」と判定する)ことで、凝縮水系Lgの凝縮水を凝縮水系Lgの周辺温度により加熱させる。
これによれば水タンク13(貯水器)を含んで構成され熱交換器33(凝縮器)から流出した凝縮水が流通する凝縮水系Lgの凝縮水の導電率が所定値以上であっても、凝縮水系の周辺温度が所定温度以上である場合、水タンク凍結防止ヒータ13b(加熱装置)の加熱によらないで凝縮水系Lgの周辺温度によって凝縮水系Lgの凝縮水を加熱して、凝縮水の炭酸ガス濃度を小さくすることができる。すなわち、凝縮水系Lgにおける炭酸ガスに起因する導電率上昇の抑制を省エネにて実現することができる。
【0070】
また本実施形態に係る制御装置60は、さらに燃料電池24の発電出力を減少させて、凝縮水系Lgを流れる凝縮水の単位時間あたりの流量を減少させる(ステップS110)。
これによれば、比較的高濃度の炭酸ガス(炭酸イオン)が残存する凝縮水が凝縮水系Lgを流れるのを、ひいては比較的高濃度の炭酸ガスが残存する凝縮水が水タンク13(貯水器)に流入するのを小さく抑制することができる。よって、流通する凝縮水をより高温に加熱することができ、その結果、流通する凝縮水に溶存する炭酸ガス濃度をより低減することができる。
また、燃料電池24の発電出力を低出力に抑制すると、投入する燃料を減少させるため、発生する二酸化炭素を減少させることができ、凝縮水の炭酸イオン濃度を低減することができる。
【0071】
次に、上述した燃料電池システムの作動に係る第2制御例について説明する。本第2制御例は、上述した第1制御例と以下の点で異なる。加熱装置が、水タンク凍結防止ヒータ13b(第二加熱装置)だけでなく、純水器凍結防止ヒータ14a(第一加熱装置)および水タンク凍結防止ヒータ13b(第二加熱装置)から構成されており、両ヒータ14a,13bが凝縮水の加熱に使用されている。
【0072】
具体的には、図5のフローチャートに示すように、ステップS104とステップS106との間に、水タンク凍結防止ヒータ13bをオンするステップS108を実行するとともに、ステップS106とステップS112との間に、純水器凍結防止ヒータ14aをオンするステップS202を実行する。これにより、制御装置60は、導電率計13aによって検出された凝縮水の導電率が所定値以上であっても、純水器14の周辺温度が所定温度(例えば40℃)未満である場合には、純水器凍結防止ヒータ14aおよび水タンク凍結防止ヒータ13bをオンして加熱させて純水器14および水タンク13(貯水器)を加熱する。一方、導電率が所定値以上であっても、純水器の周辺温度が所定温度以上である場合には、制御装置60は、水タンク凍結防止ヒータ13bのみを加熱させて純水器14を加熱せずに水タンク13(貯水器)のみを加熱する。
これによれば、純水器14の過熱を抑制しながら、凝縮水系Lgの凝縮水を加熱することで、純水器14の長寿命化を達成しつつ凝縮水の炭酸ガス濃度を適切に小さくすることができる。
【0073】
なお、本第2制御例においては、上述した第1制御例と同様に、各ヒータ13b,14aによる加熱と同時に、燃料電池24の発電出力を低出力に抑制するようにしてもよい。
なお、本発明は、起動運転、発電運転および停止運転の全てに適用できる。
【0074】
さらに、燃料電池システムの実施形態の一つである第2実施例について説明する。図6はこの燃料電池システムの概要を示す概要図である。上述した第1実施例とは、導電率計72aが排水装置70に設けられている点で異なる。さらに、ドレン管46aの下端は、排水装置70の水受け部材71の上方位置ではなく、水受け部材71の下方(導電率計72aの下方)まで延設され配水管72に合流されている。
【0075】
導電率計72aは、排水管72や、水受け部材71、特に受けた水が流れる部分例えば排水管72が接続されている排水口付近に備えられている。導電率計72aは、排水装置70から排水される排水の導電率を検知するものである。導電率計72aの検知結果は、制御装置60に送信されるようになっている。なお、導電率計72aは水受け部材71の水受け部に設けてもよい。この場合、排水管72は、水受け部材71の側面に接続されていることが好ましい。また、導電率計に代えて抵抗計を使用するようにしてもよい。導電率計と抵抗計は実質的に同等である。
【0076】
また、上述した実施形態では、水タンク13にオーバーフローライン13cを設ける代わりに、または設けるとともに、純水器14にオーバーフローライン14bを設けるようにしてもよい。オーバーフローライン14bの上端は純水器14の上部に接続されている。そのオーバーフローライン14bの接続位置は、配管48の接続位置より高くなるようになっている。オーバーフローライン14bの下端は、排水装置70の水受け部材71の下方(導電率計72aの下方)まで延設され配水管72に合流されている。純水器14からオーバーフローした凝縮水がオーバーフローライン14bを通って排水装置70に導かれるようになっている。なお、オーバーフローライン14bは常設されているわけではないので、破線で示している。
【0077】
前述した説明から明らかなように、本実施形態に係る燃料電池システムは、貯水器13から溢れ出た凝縮水を少なくとも排出する排水装置70をさらに備え、導電率計72aは、排水装置70に設けられ排水装置70によって排水される凝縮水の導電率を検出する。
これによれば、導電率計72aが凝縮水系Lgに設けられていないものの、貯水器13から溢れ出た凝縮水を少なくとも排出する排水装置70に導電率計が設けられている燃料電池システムにおいて、上述した第1実施例に係る作用効果を得ることができる。
【0078】
なお、上述した実施形態において、凝縮水系Lgは、純水器14を省略したタイプもある。
また、上述した実施形態において、凝縮器の熱媒体は、貯湯水に限定されるものでなく、貯湯水と燃料電池システムを流通する被凝縮ガスとの間で熱を交換する熱媒体(例えば不凍液(エチレングリコールを主成分とする))でもよい。
【符号の説明】
【0079】
11…筐体、11a…第1排気口、11b…空気導入口、11c…空気導出口、12…仕切部材、13…水タンク(貯水器)、13a…導電率計、13b…水タンク凍結防止ヒータ(第二加熱装置(加熱装置))、13c…オーバーフローライン、14…純水器、14a…純水器凍結防止ヒータ(第一加熱装置(加熱装置))、14b…オーバーフローライン、15…換気用空気ブロワ、20…燃料電池モジュール、21…ケーシング、21a…導出口、22…蒸発部、23…改質部、24…燃料電池、24a…セル、24b…燃料流路、24c…空気流路、25…マニホールド、26…燃焼空間(第1燃焼部)、27…火炎、28…第2燃焼部(燃焼触媒)、28b…燃焼触媒ヒータ、30…排熱回収システム、31…貯湯槽、32…貯湯水循環ライン、32a…貯湯水循環ポンプ、32b,32c…温度センサ、33…熱交換器(凝縮器)、41a…改質水ポンプ(水供給装置)、42a…原料ポンプ、44…カソードエア供給流路、44a…カソードエアブロワ、50…インバータ装置、51…系統電源、52…電源ライン、53…外部電力負荷、60…制御装置、70…排水装置、71…水受け部材、72…配水管、72a…導電率計、Lg…凝縮水系、R1…第1室、R2…第2室、R3…燃焼空間。



図1
図2
図3
図4
図5
図6