(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
特許文献1には、無人飛行体の着陸を支援する方法について記載されている。無人飛行体は、自律飛行中に着陸が必要であるか否かを所定の条件に基づき判断し、着陸が必要であると判断した場合は自動的に着陸目標地点を設定し、無線信号の受信電界強度が閾値以上であると判断した場合に着陸目標地点に向けて自律飛行を開始する。
【0003】
特許文献2には、無人車のバッテリ自動充電装置について記載されている。バッテリ自動充電装置は、バッテリを給電手段により充電するために無人車が所定の位置に停止したときに光送信装置からの光信号が受信できる位置に固定された光受信装置を備える。
【0004】
特許文献3には、磁界共鳴方式の非接触給電を行うシステムにおいて、送電装置から受電装置に対して目標とする伝送効率を維持して安定して電力を供給する技術について記載されている。受電装置は、受電コイルの内部空間に設けられ、その巻回軸の方向が受電コイルの巻回軸の方向に対して回転可能に軸支された受電側調整用コイルと、非接触給電により送電装置から受電装置への給電中に伝送効率が目標値に維持されるように、受電コイルの巻回軸の方向と受電側調整用コイルの巻回軸の方向とがなす角度を調節することにより受電側の共振回路の共振周波数を変化させる受電側角度調節機構と、を備える。
【0005】
特許文献4には、受電コイルと、受電コイルに電気的に並列に接続された固定容量コンデンサと、を備える受電装置に対して、電磁誘導により非接触で電力を送電する非接触電力送電装置において、効率良く電力伝送を行うべく、交流電源に電気的に接続された送電コイルに電気的に直列に可変容量コンデンサを接続し、交流電力の電圧位相と電流位相との間の位相差が小さくなるように可変容量コンデンサの容量値を制御することが記載されている。
【0006】
特許文献5には、一次側コイルを有する送電装置と、二次側コイルを有する受電装置とを有する給電システムにおいて、受電装置側が、負荷に供給される電流の値が所定値となるよう調整することが記載されている。受電装置は、一次側コイルに供給されている第1電流に応じて第2電流が発生する二次側コイルと、第2電流から生成されるとともに負荷に供給される第3電流の値が所定値となるように調整する調整装置とを備える。
【0007】
特許文献6には、磁界共鳴方式の非接触給電を利用した被探査物の探査システムについて記載されている。また磁界共鳴方式の非接触給電において送電回路のインピーダンスは送電回路と受電回路との間の距離に応じて変化し、距離とインピーダンス(もしくは消費電力)との関係が予め既知であれば送電回路の消費電力から両者の距離を把握できることが記載されている。
【発明の概要】
【発明が解決しようとする課題】
【0009】
電動式の飛行体(ヘリコプタ、マルチコプタ(多発型ヘリコプタ)等)は、飛行に際して機体に重量物であるバッテリを搭載しなければならず、これが飛行性能や取り扱いの容易さを向上しようとする際に足かせとなっている。即ち、重量物であるバッテリを搭載することで、その分、単位時間当たりの電力消費が増大して飛行時間が短縮され(いわゆる出力密度(出力重量比)の低下)、機体の運動性能も低下する。また重量増によって墜落時や衝突時の衝撃も大きくなり、耐久性や安全性の確保が難しくなる。またバッテリは、飛行前に充電が必要であり、その分、飛行回数が制限されてしまう。さらにバッテリは消耗品であるため、定期的に交換しなければならず、ランニングコストもかかる。
【0010】
本発明は、こうした課題を解決すべくなされたものであり、飛行体の飛行性能や取り扱い性を向上することが可能な、飛行体の飛行システム、及び飛行体の飛行方法を提供することを目的としている。
【課題を解決するための手段】
【0011】
上記目的を達成するための本発明のうちの一つは、飛行体の飛行システムであって、磁気共鳴方式の非接触給電により電力を受電する受電装置、及び前記受電装置により受電した電力によって飛行のための推力を得る推力発生機構、を有する飛行体と、前記飛行体から離隔して設けられ、前記飛行体の飛行中に前記非接触給電により前記受電装置に電力を供給する送電装置と、を備える。
【0012】
このように、本発明の飛行システムは、飛行中の飛行体に非接触給電を利用して電力を供給し、飛行体は受電した電力を利用して推力を得るので、バッテリは、飛行体に搭載しないか、もしくは緊急時に要求される程度の小容量のものでよく、飛行体の軽量化を図ることができる。また軽量化により飛行体の飛行性能を向上することができ、墜落時や衝突時の衝撃も緩和され、耐久性や安全性を高めることができる。また飛行時間の制限がなくなるため、例えば、長時間の操縦練習が可能になる。また飛行前の充電が不要となり、充電の煩わしさからも開放される。またバッテリは、飛行体に搭載しないか、もしくは小容量(軽量)/低価格のものでよいことで、ランニングコストも抑えられる。
【0013】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記非接触給電により前記送電装置から前記受電装置への送電が可能なエリア内に設定されたエリアである飛行エリア内に前記飛行体が存在するか否かの判定に用いる情報を提供するセンサと、前記情報に基づき前記飛行体が前記飛行エリア内に存在するか否かを判定し、前記飛行体が前記飛行エリア内に存在しないと判定した場合に前記送電装置から送電する電力を低下させる制御を行う、情報処理装置と、を更に備える。
【0014】
本発明によれば、情報処理装置が、飛行体が飛行エリア内に存在しないと判定した場合に送電装置から送電する電力を低下させるので、飛行体が飛行エリアから離れた場所に移動するのを防ぐことができる。そのため、飛行体を安全に飛行させることができる。
【0015】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記送電装置が送電する電力を計測する電力計測回路を備え、前記情報処理装置は、前記電力計測回路が計測する前記電力の変化に基づき、前記飛行体が前記飛行エリア内に存在するか否かを判定する。
【0016】
送電装置から飛行体(受電装置)に非接触給電を行っている場合、送電装置が送電する電力(送電側の共振回路の電流)は飛行体(受電装置)が存在する位置によって変化するので、送電装置が送電する電力の変化から飛行体の位置を推定することができる。本発明はこの性質を利用するものであり、本発明によれば飛行体が飛行エリア内に存在するか否かを判定する仕組みを簡素な構成にて実現することができる。
【0017】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記送電装置は、共振回路を構成する送電コイルを備え、前記飛行体と通信可能に接続し、前記飛行体から前記受電装置が受電する電力を取得し、前記送電装置が供給する電力と前記受電装置が受電する電力との比から伝送効率を求め、前記伝送効率が高くなるように、前記送電コイルのインダクタンスを調節する情報処理装置、を更に備える。
【0018】
本発明によれば、簡素な仕組みにより、移動する飛行体に対して効率よく非接触給電を行うことが可能になる。
【0019】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記送電装置は、共振回路を構成する容量素子を備え、前記飛行体と通信可能に接続し、前記飛行体から、前記受電装置が受電する電力を取得し、前記送電装置が供給する電力と前記受電装置が受電する電力との比から伝送効率を求め、前記伝送効率が高くなるように、前記容量素子の静電容量を調節する情報処理装置、を更に備える。
【0020】
本発明によれば、簡素な仕組みにより、移動する飛行体に対して効率よく非接触給電を行うことが可能になる。
【0021】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記飛行体の制御
信号を無線送信する送信機と、前記飛行体に設けられ、前記制御信号を受信する受信機と、前記飛行体に設けられ、前記受信機が受信した
前記制御信号に従って前記飛行体の飛行制御を行う飛行制御装置と、を備える。
【0022】
このように本発明は、飛行体が無線信号により遠隔操縦される場合に適用することができる。
【0023】
本発明のうちの他の一つは、上記飛行体の飛行システムであって、前記飛行体が、前記飛行エリア内に位置するように自律的に自身の飛行制御を行う飛行制御装置を備える。
【0024】
このように本発明は、前記飛行エリア内に位置するように自律的に自身の飛行制御を行う飛行制御装置を備えた飛行体に適用することができる。またこれにより、例えば、飛行体が飛行エリア内を自動的に半永久的に飛び続けるような玩具やディスプレイ品(展示物)等を実現することもできる。
【0025】
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
【発明の効果】
【0026】
本発明によれば、飛行体の飛行性能や取り扱い性を向上することができる。
【発明を実施するための形態】
【0028】
図1に本発明の一実施形態として説明する、飛行体の飛行システム(以下、飛行システム1と称する。)の概略的な構成を示している。同図に示すように、飛行システム1は、飛行ステーション2並びに飛行体3を含む。飛行ステーション2は非接触給電(ワイヤレス給電とも称される。)により飛行体3に電力を供給し、飛行体3はこの電力を利用して得られる推力によって飛行する。尚、以下では、好適な実施例として、非接触給電が磁界共鳴方式(交流共鳴方式又は直流共鳴方式)で行われる場合について説明するが、非接触給電の方式は必ずしも同方式に限定されない。
【0029】
飛行ステーション2は、飛行体3に送電を行う送電装置10、情報処理装置14、エリアセンサ15、及び測距センサ16を含む。送電装置10は、磁界共鳴方式(交流共鳴方式又は直流共鳴方式)の非接触給電により飛行体3に送電を行う。エリアセンサ15及び測距センサ16は、予め定められた飛行エリア5内に現在、飛行体3が存在するか否かの判定に用いる情報を提供する。尚、本実施形態では、一例として、飛行エリア5は直方体状(
図1において点線で示す境界線(境界面)で囲まれた空間)であるものとして説明する。
【0030】
飛行体3は、送電装置10から非接触給電により電力を受ける受電装置20を備える。受電装置20は、送電装置10の送電コイル111から送られてくる電力を受ける受電コイル211を有する。飛行体3は、例えば、ヘリコプタ、マルチコプタ、飛行機、飛行船、飛行ロボット等である。飛行体3は、無線方式で遠隔操縦されるタイプのもの(ラジコン、トイラジコン等と称されるもの等)であってもよいし、自律制御機構を備えて自律的に飛行するタイプのものであってもよい。以下では、飛行体3が、無線方式で遠隔操縦されるタイプ(ユーザによって操作される送信機(例えば、プロポと称されるもの等)(後述する送信機6)から送られてくる無線信号によって遠隔操縦されるタイプ)である場合を例として説明する。
【0031】
図2は、飛行システム1を、
図1の上方(+z方向)から眺めた図である。送電コイル111は、飛行エリア5の全域に亘って万遍なく飛行体3に電力供給が可能となる態様で配置される。飛行エリア5は、必ずしも非接触給電により送電装置10から受電装置20への送電が可能なエリア(以下、送電可能エリアと称する。)と一致していなくてもよい。本実施形態では、飛行エリア5は、送電可能エリア内に、当該送電可能エリアよりも狭い領域として設定されているものとする。このため、例えば、飛行体3が飛行エリア5から多少外側に外れた場合でも、送電装置10から受電装置20に対して、飛行体3の飛行に支障を与えることなく必要な電力を供給することができる。
【0032】
送電コイル111及び受電コイル211の態様は必ずしも限定されない。送電コイル111や受電コイル211として、例えば、ソレノイド型やヘリカル型のコイルを用いてもよい。要は、送電コイル111や受電コイル211は、少なくとも必要な伝送効率が確保できる態様であればよい。例えば、飛行体3が、飛行中の姿勢の変化が少ないタイプのものである場合、送電コイル111や受電コイル211として、指向性の高いものが選択される。また例えば、飛行体3が、飛行中の姿勢の変化が大きいタイプのものである場合、送電コイル111や受電コイル211として、指向性の少ないブロードな特性のものが選択される。本実施形態では、一例として、送電コイル111はフラット・スパイラル型であり、飛行エリア5の底面に当該底面と平行に(巻回軸が鉛直方向(z軸の方向)を向くように)設けられているものとする。また本実施形態では、一例として、受電コイル211もフラット・スパイラル型であるものとする。
【0033】
図3(a)に、飛行ステーション2のハードウェア構成(ブロック図)を示している。同図に示すように、飛行ステーション2は、情報処理装置14、エリアセンサ15、測距センサ16、及び送電装置10を備える。送電装置10は、送電回路11、送電回路11の消費電力を計測する電力計測回路12、及び電源回路13を備える。
【0034】
図3(b)に、送電装置10の回路構成を示している。同図に示すように、送電回路11は、送電コイル111、容量素子112、及び制御回路113を含む。電力計測回路12は、電源回路13から送電回路11に供給される電力を計測する電圧計121及び電流計122を含む。尚、送電コイル111は、非接触給電の伝送効率を向上させるべく、インダクタンスの調節が可能なものであってもよい。また容量素子112は、非接触給電の伝送効率を向上させるべく、静電容量の調節が可能なものであってもよい。
【0035】
電源回路13は、例えば、AC/DCコンバータやレギュレータ(スイッチング方式のレギュレータ、リニア方式のレギュレータ等)を含み、商用電源等から供給される電力を、送電回路11や情報処理装置14に供給する。
【0036】
制御回路113は、送電回路11に供給する所定周波数の駆動電流を生成する。制御回路113は、例えば、ドライバ回路(ゲートドライバ、ハーフブリッジドライバ等)、高周波増幅器、整合回路(マッチング回路)を含む。
【0037】
図4に、飛行ステーション2が備える情報処理装置14(コンピュータ)のハードウェア構成(ブロック図)を示している。同図に示すように、情報処理装置14は、プロセッサ141、記憶装置142、入力装置143、及び出力装置144を備える。これらはバス等の通信手段を介して通信可能に接続されている。
【0038】
プロセッサ141は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)を用いて構成されている。記憶装置142は、プログラムやデータを記憶する装置であり、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、NVRAM(Non Volatile RAM)等である。プロセッサ141及び記憶装置142は、例えば、これらが一体としてパッケージングされたマイクロコンピュータ(マイコン)等として提供されるものであってもよい。
【0039】
入力装置143は、ユーザから情報や指示の入力を受け付けるインタフェースであり、例えば、キーボード、マウス、タッチパネル等である。
【0040】
出力装置144は、ユーザに情報を提供するインタフェースであり、例えば、液晶パネル、LED(Light Emitting Diode)、スピーカ等である。
【0041】
通信装置145は、後述する飛行体3側の通信装置259と無線通信を行う。この無線通信は、例えば、2.4GHz帯の周波数の電波等を用いて行われる。
【0042】
図3(a)に戻り、エリアセンサ15は、飛行体3が飛行エリア5の境界(境界線、境界面、
図1において点線で示した部分)に存在するか否かを検出する。エリアセンサ15は、例えば、一対の発光部と受光部とを備えた複数の光電式センサを備えて構成される。
【0043】
測距センサ16は、当該測距センサ16と飛行体3との間の距離を計測するセンサであり、例えば、超音波センサや距離画像センサ(TOF(Time Of Flight)方式、パターン照射方式等)である。測距センサ16は、例えば、当該測距センサ16によって距離を計測可能な領域が飛行エリア5の全体をカバーするように配置される。本実施形態では、測距センサ16は、送電コイル111の中央(中心)付近に配置している。飛行ステーション2は、複数の測距センサ16を備えていてもよい。
【0044】
図5に情報処理装置14が備える機能(ソフトウェア構成)を示している。同図に示すように、情報処理装置14は、操作入力受付部501、飛行体位置特定部502、送電制御部503、消費電力監視部504、情報出力部505、及び機体認識処理部506の各機能を備える。これらの機能は、例えば、プロセッサ141が、記憶装置142に格納されているプログラムを読み出して実行することにより実現される。
【0045】
操作入力受付部501は、入力装置143を介してユーザから操作入力を受け付ける。操作入力受付部501は、例えば、ユーザが送電開始操作(給電許可操作)又は送電停止操作を行ったか否かを判定し、その結果を送電制御部503に通知する。
【0046】
飛行体位置特定部502は、飛行体3の現在位置を特定する。例えば、飛行体位置特定部502は、エリアセンサ15から入力される信号に基づき、飛行体3が、飛行エリア5の境界(前述した直方体の底面を除く各面(境界面、境界線))に存在するか否かを判定する。また飛行体位置特定部502は、測距センサ16により取得される、測距センサ16から飛行体3までの距離に基づき、飛行体3の現在位置を判定する。飛行体位置特定部502が、一つ以上のエリアセンサ15の計測値と一つ以上の測距センサ16の計測値とに基づき、総合的に飛行体3の現在位置を判定する構成としてもよい。また飛行体位置特定部502が、例えば、飛行体3のエリアセンサ15の計測値の履歴や測距センサ16の計測値の履歴に基づき、飛行体3の現在位置を特定もしくは予測する構成としてもよい。また飛行体位置特定部502が、GPS(Global Positioning System)等、エリアセンサ15や測距センサ16以外の位置測定装置を用いて飛行体3の現在位置を特定するようにしてもよい。また飛行体3が受電しているときと飛行体3が受電していないときとでは、電力計測回路12の計測値(送電装置10が送電する電力(例えば、電流計122の計測値))が変化するので(例えば、特許文献6を参照)、この変化に基づき、飛行体位置特定部502が飛行体3の現在位置を特定するようにしてもよい。これによれば飛行体3が飛行エリア5内に存在するか否かを判定する仕組みを簡素な構成にて実現することができる。尚、本実施形態では、飛行体3が飛行エリア5の境界(境界線、境界面)上に存在する場合、飛行体位置特定部502は、飛行体3は現在、飛行エリア5外に存在すると判定するものとする。
【0047】
送電制御部503は、送電コイル111から送電する電力の大きさ(出力)を制御する。送電制御部503は、例えば、操作入力受付部501からの通知(例えば、ユーザが送電開始操作や送電停止操作を行った旨の通知)に応じて送電コイル111から送電する電力の大きさを制御する。また送電制御部503は、例えば、飛行体位置特定部502の判定結果に基づき、送電コイル111から送電する電力の大きさを制御する。こうした電力制御は、例えば、送電制御部503が、制御回路113のドライバ回路のPWM制御におけるデューティ比、送電回路11と受電回路21の結合係数、容量素子112の静電容量、電源回路13から制御回路113への電力供給量、制御回路113から送電コイル111への電力供給量等の一つ以上を変化させることにより行われる。
【0048】
送電制御部503は、非接触給電の伝送効率が向上するように送電コイル111のインダクタンスを調節する機能を有していてもよい。また送電制御部503は、非接触給電の伝送効率が向上するように容量素子112の静電容量を調節する機能を有していてもよい(例えば、特許文献3〜5を参照)。送電制御部503は、例えば、送電回路11からの送電量と、通信装置145を介して飛行体3から取得される受電装置20の受電量との比に基づき、上記伝送効率を把握する。また送電制御部503は、例えば、電力計測回路12の計測値に基づき上記伝送効率を把握する。
【0049】
消費電力監視部504は、電力計測回路12から得られる情報(電圧値、電流値)に基づき、送電回路11の消費電力を随時監視する。
【0050】
情報出力部505は、出力装置144に後述する様々な情報を出力する。
【0051】
機体認識処理部506は、飛行体3から取得した認証情報に基づく認証(給電の対象とすることが可能な飛行体3であるか否かの確認)を行う。上記認証情報は、例えば、通信装置145が、飛行体3の通信装置259と無線通信することにより取得する。このように、機体認識処理部506が飛行体3の認証を行うことで、例えば、近くに存在する他社製品や類似製品の誤動作防止や盗難防止等を図ることができる。
【0052】
図6に、飛行体3のハードウェア構成(ブロック図)を示している。同図に示すように、飛行体3は、受電装置20と、受電装置20から電力の供給を受ける飛行制御装置250とを備える。
【0053】
飛行制御装置250は、制御回路251、受信機252、各種センサ253、モータ制御装置254、動力モータ255、アクチュエータ256、操舵機構257、出力装置258、通信装置259、及びバッテリ260を備える。
【0054】
制御回路251は、プロセッサや記憶素子を含み、情報処理装置として機能する。制御回路251は、例えば、プロセッサや記憶素子が一体としてパッケージングされたマイクロコンピュータ(マイコン)により実現されるものであってもよい。
【0055】
各種センサ253は、例えば、3軸ジャイロセンサ(角速度センサ)、3軸加速度センサ、気圧センサ、磁気センサ、超音波センサ、GPS(Global Positioning System)等である。3軸ジャイロセンサは、例えば、飛行体3の前後左右の傾きや回転の角速度を検出する。3軸加速度センサは、例えば、飛行体3の加速度(前後左右上下の各方向の加速度)を検出する。気圧センサは、例えば、飛行体3の高度や昇降速度を求めるための気圧を計測する。磁気センサは、例えば、飛行体の機軸が現在向いている方位を検出する。超音波センサは、例えば、飛行体3と地面、壁、障害物等との間の距離を検出する。尚、飛行体3は、必ずしも以上に例示した総てのセンサを備えていなくてもよい。
【0056】
受信機252は、遠隔操縦の送信機6から送られてくる無線信号を受信し、受信した無線信号の内容を制御回路251に入力する。
【0057】
モータ制御装置254(ESC(Electronic Speed Controller)、アンプ等とも称される。)は、例えば、電気抵抗値の大きさ制御やPWM(Pulse Width Modulation)制御によって動力モータ255の回転を制御する。モータ制御装置254は、飛行のための推力を発生する推力発生機構を構成する。
【0058】
動力モータ255は、モータ制御装置254とともに推力発生機構を構成する。動力モータ255は、電動モータであり、例えば、ブラシレスモータである。飛行体3が、例えば、ヘリコプタである場合、動力モータ255は、メインロータやテールロータの回転力を発生する。また飛行体3が、例えば、飛行機である場合、動力モータ255は、推力を得るためのプロペラの回転力を発生する。また飛行体3が、例えば、マルチコプタである場合、動力モータ255は、推力を発生するプロペラの回転力を発生する。
【0059】
アクチュエータ256は、例えば、サーボモータや電磁石を用いて構成され、制御回路251から送られてくる信号(例えば、PWM信号)に応じて操舵機構257を制御する。
【0060】
操舵機構257は、例えば、アクチュエータ256によって制御される機械式機構を含む。飛行体3が、例えば、ヘリコプタである場合、上記機械式機構(リンケージ、スワッシュプレート等)は、アクチュエータ256が発生する力を、ピッチ、エルロン、エレベータ、ラダー(テールローターピッチ)等の制御力に変換する。また飛行体3が、例えば、飛行機である場合、上記機械式機構(リンケージ等)は、アクチュエータ256が発生する力を、エルロン、エレベータ、ラダー等を制御する力に変換する。尚、操舵機構257は、飛行体3に必須の構成ではない(例えば、マルチコプタは、複数の動力モータ255の夫々の回転数を制御することにより操舵を行う。)。
【0061】
出力装置258は、ユーザに情報を提供するインタフェースであり、例えば、LED、スピーカ等である。出力装置258は、例えば、飛行体3が飛行エリア5から外れた場合にその旨を示す情報を出力(LEDの明滅、警告音の出力等)する。
【0062】
通信装置259は、飛行ステーション2側の通信装置145と無線通信を行う。制御回路251は認証情報を記憶しており、認証情報を通信装置259を介して飛行ステーション2に送信する。
【0063】
バッテリ260は、例えば、リチウムイオン二次電池、リチウムポリマー二次電池、電気二重層キャパシタ(電気二重層コンデンサ)である。バッテリ260は、例えば、何らかの理由で送電装置10からの送電が中断した際に飛行体3を安全に着陸させるのに必要な程度の容量を有するもので、軽量のものである。バッテリ260は、飛行体3の飛行中や着陸中に受電装置20が受電した電力によって充電される。バッテリ260の端子間電圧は制御回路251に入力される。制御回路251は、上記端子間電圧に基づきバッテリ260の残量を把握する。また制御回路251は、例えば、バッテリ260の現在の残量を示す情報を出力装置258から出力する。尚、バッテリ260は必須の構成ではなく、飛行体3はバッテリ260を備えていなくてもよい。飛行体3がバッテリ260を備えていない場合、例えば、受電装置20から飛行制御装置250に直接、動力モータ255を駆動するための電力が供給される。飛行システム1が、例えば、玩具として提供される場合には、バッテリ260を搭載しないことで容易に軽量化を図ることができ、飛行体3の運動性や安全性も容易に向上させることができる。
【0064】
図7に、飛行体3に搭載される受電装置20の構成を示している。同図に示すように、受電装置20は、磁界共鳴方式の非接触給電を行う受電回路21(受電コイル211及び容量素子212を含む。)、受電回路21が受電した電力を整流して負荷(飛行制御装置250、バッテリ260等)に供給する整流回路22、及び負荷に供給される受電電力を計測し、計測した値を後述する制御回路251に入力する電力計測回路24(電圧計241及び電流計242を含む)を備える。受電コイル211は、インダクタンスの調節が可能なものであってもよい。また容量素子212は、静電容量の調節が可能なものであってもよい。
【0065】
図8に制御回路251が備える機能(ソフトウェア構成)を示している。同図に示すように、制御回路251は、姿勢制御部801、操舵制御部802、受電電力監視部803、警告出力部804、機体認識処理部805、及び自動着陸制御部806を備える。これらの機能は、例えば、制御回路251のプロセッサが、制御回路251の記憶装置に格納されているプログラムを読み出して実行することにより実現される。
【0066】
姿勢制御部801は、各種センサ253から入力される信号に応じて、モータ制御装置254やアクチュエータ256(動力モータ255や操舵機構257)を制御し、飛行体3の飛行姿勢を制御する。
【0067】
操舵制御部802は、受信機252から入力される信号に応じて、モータ制御装置254やアクチュエータ256(動力モータ255や操舵機構257)を制御し、飛行体3の動作(3軸(ヨー角、ロール角、ピッチ角)方向の変化、上昇、下降、旋回等)を制御する。
【0068】
受電電力監視部803は、受電装置20の電力計測回路24から入力される電圧及び電流の計測値に基づき、受電装置20の受電電力を監視する。受電電力監視部803は、上記計測値を、通信装置259を介して送電装置10に通知する。
【0069】
警告出力部804は、受電電力監視部803が受電量が閾値以下であることを検知した場合、受電が十分に行われていないことを示す情報を出力装置258に出力する。
【0070】
機体認識処理部805は、認証情報を記憶し、通信装置259を介して認証情報を飛行ステーション2の通信装置145に送信する。
【0071】
自動着陸制御部806は、受電量が閾値以下であることを検知した場合に飛行体3を安全に着陸(ソフトランディング)させるよう(例えば、徐々に浮力を低下させる等)、モータ制御装置254やアクチュエータ256(動力モータ255や操舵機構257)を制御する。
【0072】
=処理説明=
続いて、飛行システム1において行われる処理について説明する。
【0073】
<送電制御処理>
図9は、飛行ステーション2側で行われる処理(以下、送電制御処理S900と称する。)を説明するフローチャートである。以下、同図とともに送電制御処理S900について説明する。
【0074】
飛行ステーション2の電源が投入されると、まず飛行ステーション2の機体認識処理部506が、飛行体3を認識することができるか否かの判定を行う。具体的には、機体認識処理部506は、飛行体3から認証情報を受信し、受信した認証情報に基づく認証を行うことにより上記判定を行う(S911:NO)。
【0075】
機体認識処理部506が飛行体3を認識(認証に成功)すると(S911:YES)、続いて、飛行ステーション2の飛行体位置特定部502が、前述した方法により、飛行体3が現在、飛行エリア5内に存在するか否かを判定する(S912)。飛行体位置特定部502が、飛行体3が現在、飛行エリア5内に存在すると判定した場合(S912:YES)、処理はS913に進む。飛行体位置特定部502が、飛行体3が現在、飛行エリア5外に存在すると判定した場合(S912:NO)、処理はS911に戻る。
【0076】
S913では、飛行ステーション2の操作入力受付部501は、ユーザが送電開始操作(給電許可操作)を行ったか否かを判定する(S913:NO)。ユーザが送電開始操作を行ったと判定すると(S913:YES)、その旨が送電制御部503に通知され、送電制御部503は送電を開始する(送電コイル111を通電)(S914)。尚、ユーザの送電開始操作を待たずに、飛行体位置特定部502が、飛行体3が現在、飛行エリア5内に存在すると判定した(S912:YES)ことをもって自動的に送電制御部503が送電を開始するようにしてもよい。
【0077】
送電を開始した後、飛行ステーション2の機体認識処理部506は、飛行体3を認識できているか否かをリアルタイムに監視する(S915)。機体認識処理部506は、飛行体3を認識できなくなると(S915:NO)その旨を送電制御部503に通知し、これを受けて送電制御部503は送電を停止する(S918)。その後、処理はS911に戻る。
【0078】
また飛行ステーション2の飛行体位置特定部502は、飛行体3が飛行エリア5内に存在しているか否かをリアルタイムに監視する(S916)。飛行体位置特定部502は、飛行体3が飛行エリア5内に存在しない場合(S916:NO)、その旨を送電制御部503に通知し、これを受けて送電制御部503は送電を停止する(S918)。その後、処理はS911に戻る。
【0079】
また飛行ステーション2の操作入力受付部501は、ユーザが送電停止操作を行ったか否か(S917)をリアルタイムに監視する。操作入力受付部501は、ユーザが送電停止操作を行ったと判定すると(S917:YES)、その旨を送電制御部503に通知し、これを受けて送電制御部503は送電を停止する(S918)。その後、処理はS911に戻る。
【0080】
<飛行制御処理>
図10は、飛行体3において行われる処理(以下、飛行制御処理S1000と称する。)を説明するフローチャートである。以下、同図とともに飛行制御処理S1000について説明する。
【0081】
飛行体3の電源が投入されると、まず飛行体3の制御回路251が、受電装置20の電力計測回路24の電圧計241(又は電流計242)により計測される電圧値(又は電流値)が予め設定された電圧閾値(又は電流閾値)を超えているか否か(飛行に必要な電力を受電できているか否か)を判定する(S1011)。そして電圧値(又は電流値)が電圧閾値(又は電流閾値)を超えていると判定すると(S1011:YES)、続いて制御回路251は、受信機252から制御指示が入力されているか否かを判定する(S1012)。受信機252から制御指示が入力されている場合(S1012:YES)、処理はS1013に進む。一方、受信機252から制御指示が入力されていない場合(S1012:NO)、処理はS1014に進む。
【0082】
S1013では、制御回路251は、制御指示に従って動力モータ255や操舵機構257を制御する。またS1014では、制御回路251は、各種センサ253から入力される値に応じて、動力モータ255や操舵機構257をフィードバック制御し、飛行体3の姿勢を自律的に制御する。
【0083】
制御回路251は、受電装置20の電力計測回路24の電圧計241(又は電流計242)により計測される電圧値(又は電流値)が予め設定された電圧閾値(又は電流閾値)の夫々について設定された閾値)を超えているか否か(飛行に必要な電力を受電できているか否か)をリアルタイムに判定する(S1015)。電圧値(又は電流値)が電圧閾値(又は電流閾値)を超えている場合(S1015:YES)、処理はS1012に戻る。一方、電圧値(又は電流値)が電圧閾値(又は電流閾値)を超えていない場合(S1015:NO)、制御回路251は、受電が不十分である旨の警告の出力(LEDの明滅や警告音声の出力等)を開始し(S1016)、着陸(ソフトランディング)に向けた動作を開始する(S1017)。
【0084】
S1018では、制御回路251は、飛行体3が着陸したか否かを判定する。制御回路251は、例えば、動力モータ255の回転が所定時間以上、停止している(又は予め設定された閾値回転数以下になっている)場合に飛行体3が着陸したと判定する。また制御回路251は、例えば、アクチュエータ256の制御が所定時間以上行われていない場合に飛行体3が着陸したと判定する。
【0085】
制御回路251が、着陸が完了していないと判定した場合(S1018:NO)、処理はS1018に戻る。制御回路251は、飛行体3が着陸したと判定すると(S1018:YES)、警告出力を停止する。その後、処理はS1011に戻る。
【0086】
このように、飛行体3が飛行エリア5内に存在しない場合は送電装置10から送電する電力を低下(上記の例では送電停止)させるので、飛行体3が飛行エリア5から離れた場所に移動するのを防ぐことができる。
【0087】
尚、以上のように受電が不十分な場合に強制的に飛行体3を着陸させるのではなく、例えば、バッテリ260の残量に余裕がある場合は、制御回路25が飛行体3の強制着陸等を行わない(ユーザの操縦に任せる)ようにしてもよい。また例えば、バッテリ260の残量に余裕がある場合は、制御回路251が警告の出力のみを行うようにしてもよい。
【0088】
また例えば、飛行体3が、自身の現在位置を把握しつつ自身が飛行エリア5から逸脱しないように(飛行体3が飛行エリア5内(飛行エリア5の境界上を除く)に位置するように)制御する自律制御機構を備えている場合(もしくは飛行ステーション2が無線通信により飛行体3の現在位置をリアルタイムに把握し飛行体3が飛行エリア5から逸脱しないように飛行体3の飛行を自動制御する機構を備えている場合)、飛行体3が自動で飛行エリア5内を半永久的に飛び続けるようにすることができる。またその場合においても、何らかの理由(機器の故障や風等)で飛行体3が飛行エリア5を逸脱すれば送電が停止するので(
図9のS916〜S918)、飛行体3が飛行エリア5から離れた場所に移動するのを防ぐことができる。また以上の仕組みの応用例として、飛行体3が飛行エリア5内を自動的に半永久的に飛び続けるような玩具やディスプレイ品(展示物)等を実現することもできる。
【0089】
<効果>
以上に説明したように、本実施形態の飛行システム1においては、飛行中の飛行体3に非接触給電を利用して電力を供給し、飛行体3は受電した電力を利用して推力を得るので、バッテリは、飛行体3に搭載しないか、もしくは小容量(軽量)のもの(バッテリ260)でよく、飛行体3を軽量化することができる。そのため、飛行体3の飛行性能を向上することができ、また墜落時や衝突時の衝撃が少なくなり、飛行体3の耐久性や安全性を高めることができる。
【0090】
また飛行時間の制限がなく飛行体3を長時間に亘って飛行させることができ、例えば、長時間の操縦練習も可能である。また飛行前に充電する必要がないため、充電の煩わしさからも開放される。
【0091】
またバッテリは、飛行体3に搭載しないか、もしくは小容量(軽量)/低価格のもの(バッテリ260)でよいため、ランニングコストを抑えることができる。
【0092】
以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
【0093】
例えば、以上に説明した飛行システム1を、玩具や知育玩具などとして提供してもよい。また飛行システム1は、例えば、無線方式で遠隔操縦するタイプの飛行体3(ヘリコプタ、マルチコプタ、飛行機、飛行船、飛行ロボット等)の操縦練習に用いることができる。
【0094】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0095】
上記の各構成、機能部、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD等の記録媒体に置くことができる。
【0096】
上記の各図において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしも実装上の全ての制御線や情報線を示しているとは限らない。例えば、実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
【0097】
以上に説明した飛行システム1における各種機能部の配置形態は一例に過ぎない。各種機能部の配置形態は、飛行システム1が備えるハードウェアやソフトウェアの性能、処理効率、通信効率等の観点から最適な配置形態に変更し得る。
【0098】
例えば、飛行ステーション2側に設けられる機能の一部を飛行体3に設けてもよい。また例えば、飛行体3に設けられる機能の一部を飛行ステーション2側に設けてもよい。
【0099】
前述した飛行制御処理S1000では、飛行体3が飛行エリア5から外れてしまった場合に送電装置10からの送電を停止し、飛行体3が直ちに着陸動作を開始するようにしているが、例えば、送電装置10からの送電が停止した際のバッテリ260の充電量が所定値を超えている等、所定の条件を満たす場合は自動的に着陸動作に移行しないようにしてもよい。またその後に飛行体3が再び飛行エリア5内に入った場合に送電装置10から受電装置20への給電を再開するようにしてもよい。
飛行体3に、磁気共鳴方式の非接触給電により電力を受電する受電装置20、及び受電装置20により受電した電力によって飛行のための推力を得る推力発生機構(動力モータ255、モータ制御装置254)を設け、飛行体3の飛行中に、飛行体3から離隔して設けられた送電装置10から、非接触給電により受電装置20に電力を送電する。飛行体3が予め設定された飛行エリア5内に存在するか否かの判定に用いる情報を提供するセンサ(エリアセンサ15,測距センサ16)と、情報処理装置14とを設け、情報処理装置14が、上記情報に基づき、飛行体3が現在、飛行エリア5内に存在するか否かを判定し、飛行体3が飛行エリア5内に存在しないと判定した場合に送電装置10から送電する電力を低下させる。