特許第6183211号(P6183211)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6183211
(24)【登録日】2017年8月4日
(45)【発行日】2017年8月23日
(54)【発明の名称】発光素子材料および発光素子
(51)【国際特許分類】
   H01L 51/50 20060101AFI20170814BHJP
   C09K 11/06 20060101ALI20170814BHJP
   C07D 209/86 20060101ALI20170814BHJP
   C07D 487/14 20060101ALI20170814BHJP
   C07D 235/18 20060101ALI20170814BHJP
   C07D 487/04 20060101ALI20170814BHJP
   C07D 403/14 20060101ALI20170814BHJP
【FI】
   H05B33/22 D
   H05B33/14 B
   H05B33/22 C
   H05B33/22 A
   C09K11/06 690
   C07D209/86
   C07D487/14
   C07D235/18
   C07D487/04 137
   C07D403/14
   C09K11/06 645
   C09K11/06 640
【請求項の数】13
【全頁数】40
(21)【出願番号】特願2013-526236(P2013-526236)
(86)(22)【出願日】2013年3月5日
(86)【国際出願番号】JP2013055960
(87)【国際公開番号】WO2013146117
(87)【国際公開日】20131003
【審査請求日】2016年2月18日
(31)【優先権主張番号】特願2012-68901(P2012-68901)
(32)【優先日】2012年3月26日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】松木 真一
(72)【発明者】
【氏名】長尾 和真
(72)【発明者】
【氏名】富永 剛
【審査官】 野尻 悠平
(56)【参考文献】
【文献】 国際公開第2010/044342(WO,A1)
【文献】 国際公開第2008/056746(WO,A1)
【文献】 国際公開第2012/029253(WO,A1)
【文献】 特開2011−243979(JP,A)
【文献】 国際公開第2012/008281(WO,A1)
【文献】 国際公開第2010/084852(WO,A1)
【文献】 特開2012−049159(JP,A)
【文献】 国際公開第2013/032278(WO,A1)
【文献】 韓国公開特許第10−2010−0079458(KR,A)
【文献】 国際公開第2007/072240(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/50
H05B 33/22
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
一般式(1)で表される化合物を有する発光素子材料。
【化1】
(R〜R13はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アリール基、複素環基、ヘテロアリール基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、−P(=O)R1617およびシリル基からなる群より選ばれる。R16およびR17はそれぞれアリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。R14およびR15はそれぞれ同じでも異なっていてもよく、核炭素数6〜12の無置換のアリール基(ただしフルオレニル基およびフルオランテニル基を除く)から選ばれる。Arは置換もしくは無置換の4−メチルフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換の2−フルオレニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のトリフェニレニル基または下記の基であり、置換基を含め炭素数6〜18で構成される。ただし、置換される場合はアミノ基により置換される場合を除く。また、ArとRは異なる基である。)
【化2】
【請求項2】
前記一般式(1)において、Arが置換もしくは無置換の4−メチルフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換の2−フルオレニル基、置換もしくは無置換のターフェニル基または置換もしくは無置換のトリフェニレニル基である請求項1記載の発光素子材料。
【請求項3】
前記一般式(1)において、R14およびR15が無置換のフェニル基である請求項1または2記載の発光素子材料。
【請求項4】
前記一般式(1)において、R〜R13が水素である請求項1〜のいずれか記載の発光素子材料。
【請求項5】
陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であって、請求項1〜のいずれか記載の発光素子材料を前記有機層に含有する発光素子。
【請求項6】
前記有機層として少なくとも正孔輸送層が存在し、一般式(1)で表される化合物を該正孔輸送層に含有する請求項記載の発光素子。
【請求項7】
前記有機層として少なくとも発光層が存在し、一般式(2)で表される化合物を該発光層に含有する請求項または記載の発光素子。
【化3】
(ZおよびR18〜R22は、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、−P(=O)R2324からなる群より選ばれる。R23およびR24はアリール基またはヘテロアリール基である。R18〜R22は隣接する置換基同士で環を形成してもよい。Lは、単結合または二価の連結基である。X〜Xは炭素原子または窒素原子を表し、窒素原子の場合には窒素原子上の置換基であるR18〜R22は存在しない。X〜Xにおいて窒素原子の数は1〜4である。m、nはそれぞれ独立に1〜5の整数である。)
【請求項8】
前記一般式(2)において、X、XおよびXが窒素原子であることを特徴とする請求項記載の発光素子。
【請求項9】
前記有機層として少なくとも発光層が存在し、発光層がアントラセン骨格またはピレン骨格を有する化合物を含有する請求項または記載の発光素子。
【請求項10】
前記有機層として少なくとも三重項発光材料を含有する発光層が存在する請求項または記載の発光素子。
【請求項11】
前記正孔輸送層と陽極の間に正孔注入層が存在し、正孔注入層がアクセプター性化合物単独で構成されているか、またはアクセプター性化合物を含有する請求項10のいずれか記載の発光素子。
【請求項12】
前記有機層と陰極の間に少なくとも電子輸送層が存在し、電子輸送層が電子受容性窒素を有するヘテロアリール環から成る化合物が炭素、水素、窒素、酸素、ケイ素、リンから選ばれる一つ以上の元素で構成されていることを特徴とする請求項11のいずれか記載の発光素子。
【請求項13】
前記電子輸送層がドナー性化合物を含有し、該ドナー性化合物がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物の錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、またはアルカリ土類金属と有機物との錯体であることを特徴とする請求項12記載の発光素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気エネルギーを光に変換できる発光素子およびそれに用いられる発光素子材料に関する。より詳しくは、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子およびそれに用いられる発光素子材料に関するものである。
【背景技術】
【0002】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、蛍光材料を選ぶことによる多色発光が特徴であり、注目を集めている。
【0003】
この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多数の実用化検討がなされており、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の高効率化と長寿命化の両立は大きな課題のひとつである。
【0004】
素子の駆動電圧は、正孔や電子といったキャリアを発光層まで輸送するキャリア輸送材料に大きく左右される。このうち正孔や電子を輸送する材料(正孔輸送材料・電子輸送材料)としてカルバゾール骨格を有する材料が知られている(例えば、特許文献1〜11参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平8−3547号公報
【特許文献2】韓国特許公開第2010−0079458号
【特許文献3】特開平9−249876号
【特許文献4】韓国特許公開第2009−0028943号
【特許文献5】国際公開第2009/61145号
【特許文献6】特開2008−294161号公報
【特許文献7】国際公開第2010/41872号
【特許文献8】国際公開第2010/44342号
【特許文献9】特開2008−135498号公報
【特許文献10】国際公開第2012/108388号
【特許文献11】国際公開第2012/165256号
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の技術では素子の駆動電圧を十分に下げることは困難であり、また駆動電圧を下げることができたとしても、素子の発光効率、耐久寿命が不十分であった。このように、低い駆動電圧、高い発光効率、さらに耐久寿命も両立させる技術は未だ見出されていない。
【0007】
本発明は、かかる従来技術の問題を解決し、駆動電圧を低く保ちつつ、発光効率および耐久寿命を改善した有機薄膜発光素子を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
本発明は、下記一般式(1)で表される化合物を含有することを特徴とする発光素子材料である。
【0009】
【化1】
【0010】
〜R13はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アリール基、複素環基、ヘテロアリール基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、−P(=O)R1617およびシリル基からなる群より選ばれる。R16およびR17はそれぞれアリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。R14およびR15はそれぞれ同じでも異なっていてもよく、核炭素数6〜12の無置換のアリール基(ただしフルオレニル基およびフルオランテニル基を除く)から選ばれる。Arは置換もしくは無置換の4−メチルフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換の2−フルオレニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のトリフェニレニル基または後述の所定の基であり、置換基を含め炭素数6〜18で構成される。ただし、置換される場合はアミノ基により置換される場合を除く。また、ArとRは異なる基である。
【発明の効果】
【0011】
本発明により、駆動電圧が低く、高い発光効率を有し、さらに十分な耐久寿命も兼ね備えた有機電界発光素子を提供することができる。
【発明を実施するための形態】
【0012】
本発明における一般式(1)で表される化合物について詳細に説明する。
【0013】
【化2】
【0014】
〜R13はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アリール基、複素環基、ヘテロアリール基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、−P(=O)R1617およびシリル基からなる群より選ばれる。R16およびR17はそれぞれアリール基またはヘテロアリール基である。これらの置換基はさらに置換されていてもよいし、隣り合う置換基同士でさらに環を形成していてもよい。R14およびR15はそれぞれ同じでも異なっていてもよく、アルキル基、アリール基(ただしフルオレニル基およびフルオランテニル基を除く)、アルケニル基、アルキルチオ基、アリールチオ基、複素環基からなる群より選ばれる。Arは置換もしくは無置換のアリール基(ただしフルオランテニル基を除く)であり、置換基を含め炭素数6〜18で構成される。ただし、置換のアリール基である場合はアミノ基により置換される場合を除く。また、ArとRは異なる基である。
【0015】
これらの置換基のうち、水素は重水素であってもよい。また、アルキル基とは、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。
【0016】
シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。
【0017】
アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、アントラセニル基、クリセニル基、トリフェニレニル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0018】
複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0019】
ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、ピラジニル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。
【0020】
アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0021】
シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。シクロアルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0022】
アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0023】
アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
【0024】
アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
【0025】
アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0026】
アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0027】
ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
【0028】
カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基は、置換基を有していても有していなくてもよく、置換基としては例えばアルキル基、シクロアルキル基、アリール基などが挙げられ、これら置換基はさらに置換されてもよい。
【0029】
シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また、ケイ素数は、通常、1以上6以下の範囲である。
【0030】
アルキレン基とはアルキル基から導かれる2価の基を示し、例えば、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、sec−ブチレン基、tert−ブチレン基などが例示される。これらは置換基を有していても有していなくてもよい。アルキレン基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
【0031】
上記の中でもR〜R13は水素、アルキル基、シクロアルキル基およびアルコキシ基であることが好ましい。アルキル基、シクロアルキル基およびアルコキシ基は水素と同様母骨格に与える影響が小さいので、一般式(1)で表される化合物の三重項準位を低下させず、イオン化ポテンシャルを大きくする影響も少ないからである。これらの基はさらに置換されていてもよい。また、R〜R13は原料入手の容易さや、合成コストを考慮すると、その全てが水素であることが最も好ましい。なお、前述の通りであるが、ここでの水素も重水素であってもかまわない。
【0032】
また、R14およびR15は材料の熱安定性や電気化学的安定性を考慮すると、置換もしくは無置換のアリール基(ただしフルオレニル基およびフルオランテニル基を除く)が好ましい。これらの基が置換されている場合の好ましい置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基などが挙げられる。さらに、R14およびR15は核炭素数が6〜30のアリール基が好ましく、核炭素数が6〜12のアリール基がさらに好ましい。R14およびR15の分子量が大きすぎると蒸着時の熱分解の懸念があるからである。これらの中でも、フェニル基またはビフェニル基がより好ましい。さらに、三重項準位を低下させないという観点から、無置換のフェニル基またはアルキル置換フェニル基がさらに好ましく、無置換のフェニル基が特に好ましい。
【0033】
Arは材料の熱安定性や電気化学的安定性を考慮して、置換もしくは無置換のアリール基から選ばれ(ただしフルオランテニル基を除く)、更に材料の膜質の安定性を考慮してRと異なる基である。Arは、昇華精製時の熱安定性を考慮して、置換基を含め核炭素数6〜18で構成される。ただし、置換のアリール基である場合はアミノ基により置換される場合を除く。アミノ基が置換すると、電気化学的安定性に欠けるため、素子駆動時の安定性が低下するためである。
【0034】
中でも、共役を広げることで正孔移動度を向上させ、さらに三重項準位を低下させないために、Arは置換もしくは無置換の4−メチルフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換の2−フルオレニル基、置換もしくは無置換のターフェニル基または置換もしくは無置換のトリフェニレニル基であることが好ましい。4−メチルフェニル基、ビフェニル基、2−フルオレニル基は無置換であることが好ましいが、分子量の増加に大きく影響を与えず、三重項準位を低下させないメチル基が置換していてもよい。さらに、イオン化ポテンシャルをより浅くし、正孔注入性を向上させるため2−フルオレニル基がより好ましい。2−フルオレニル基の中でも、9,9−ジメチルフルオレニル基がイオン化ポテンシャルを更に浅く、正孔注入性を向上させるため、最も好ましい。ターフェニル基、トリフェニル基は合成上、および分子量の観点から無置換が最も好ましい。
【0035】
Arの構造としては、具体的に以下のような骨格が挙げられる。
【0036】
【化3】
【0037】
また、このような一般式(1)で表される化合物として、具体的には以下のような化合物が挙げられる。なお、一般式(1)で表される化合物の例はこれらに限られるものではない。
【0038】
【化4】
【0039】
【化5】
【0040】
【化6】
【0041】
【化7】
【0042】
【化8】
【0043】
【化9】
【0044】
一般式(1)で表される化合物は公知の方法で製造できる。まず、9位が置換されたカルバゾールの3−ヨード−6−ブロモ体と、9位が置換されたカルバゾールの3−ボロン酸との鈴木カップリング反応により、カルバゾール二量体のモノブロモ体を合成する。一方、アリールボロン酸、アリールボロン酸エステルや、ブロモアリールをボロン酸もしくはボロン酸エステル体に変換し、前述したカルバゾール二量体のモノブロモ体との鈴木カップリング反応により、一般式(1)で表される化合物が容易に合成できるが、製造方法はこれに限定されない。
【0045】
本発明における一般式(1)で表される化合物は発光素子材料として用いられる。ここで本発明における発光素子材料とは、発光素子のいずれかの層に使用される材料を表し、後述するように、正孔注入層、正孔輸送層、発光層および/または電子輸送層に使用される材料であるほか、陰極の保護膜に使用される材料も含む。本発明における一般式(1)で表される化合物を発光素子のいずれかの層に使用することにより、高い発光効率が得られ、かつ耐久性に優れた発光素子が得られる。
【0046】
次に、本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層が電気エネルギーにより発光する。
【0047】
このような発光素子における陽極と陰極の間の層構成は、発光層のみからなる構成の他に、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。
【0048】
一般式(1)で表される化合物は、発光素子において上記のいずれの層に用いられてもよいが、正孔輸送層に特に好適に用いられる。
【0049】
本発明の発光素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される陽極を透明電極とする。
【0050】
陽極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50〜300nmの間で用いられることが多い。
【0051】
また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
【0052】
陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。
【0053】
さらに、陰極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として陰極上に積層することが好ましい例として挙げられる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。
【0054】
正孔注入層は陽極と正孔輸送層の間に挿入される層である。正孔注入層は1層であっても複数の層が積層されていてもどちらでもよい。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧駆動し、耐久寿命も向上するだけでなく、さらに素子のキャリアバランスが向上して発光効率も向上するため好ましい。
【0055】
正孔注入層に用いられる材料は特に限定されないが、例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル(TPD)、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(NPD)、4,4’−ビス(N,N−ビス(4−ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’−ジフェニル−4−アミノフェニル)−N,N−ジフェニル−4,4’ −ジアミノ−1,1’−ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス(1−ナフチル(フェニル)アミノ)トリフェニルアミン(1−TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが用いられる。また、一般式(1)で表される化合物を用いることもできる。中でも一般式(1)で表される化合物より浅いHOMO準位を有し、陽極から正孔輸送層へ円滑に正孔を注入輸送するという観点からベンジジン誘導体、スターバーストアリールアミン系材料群がより好ましく用いられる。
【0056】
これらの材料は単独で用いてもよいし、2種以上の材料を混合して用いてもよい。また、複数の材料を積層して正孔注入層としてもよい。さらにこの正孔注入層が、アクセプター性化合物単独で構成されているか、または上記のような正孔注入材料にアクセプター性化合物をドープして用いると、上述した効果がより顕著に得られるのでより好ましい。アクセプター性化合物とは、単層膜として用いる場合は接している正孔輸送層と、ドープして用いる場合は正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このような材料を用いると正孔注入層の導電性が向上し、より素子の駆動電圧低下に寄与し、発光効率の向上、耐久寿命向上といった効果が得られる。
【0057】
アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4−ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4−TCNQ)、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
【0058】
これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されて構成されていてもよい。
【0059】
正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は単層であっても複数の層が積層されて構成されていてもどちらでもよい。
【0060】
一般式(1)で表される化合物は、5.3〜5.5eVのイオン化ポテンシャル(蒸着膜のAC-2(理研計器)測定値)、高い三重項準位、高い正孔輸送性および薄膜安定性を有しているため、発光素子の正孔注入層および正孔輸送層に用いることが好ましい。また、一般式(1)で表される化合物は、従来のベンジジン骨格を有する正孔輸送材料に対してエネルギーギャップが大きいため、LUMO準位が高く電子ブロック性に優れる。さらに、一般式(1)で表される化合物は三重項発光材料を使用した素子の正孔輸送材料として用いることが好ましい。従来材料であるベンジジン骨格を有する正孔輸送材料は三重項準位が低く、三重項発光性ドーパントを含有する発光層に直接接していると三重項励起エネルギーの漏れが発生し、発光効率が低下するが、一般式(1)で表される化合物は高い三重項準位を有しており、そのような問題が生じないからである。
【0061】
複数層の正孔輸送層から構成される場合は、一般式(1)で表される化合物を含む正孔輸送層は発光層に直接接していることが好ましい。一般式(1)で表される化合物は高い電子ブロック性を有しており、発光層から流れ出る電子の侵入を防止することができるからである。さらに、一般式(1)で表される化合物は、高い三重項準位を有しているため、三重項発光材料の励起エネルギーを閉じ込める効果も有している。そのため、発光層に三重項発光材料が含まれる場合も、一般式(1)で表される化合物を含む正孔輸送層は、発光層に直接接していることが好ましい。
【0062】
正孔輸送層は一般式(1)で表される化合物のみから構成されていてもよいし、本発明の効果を損なわない範囲で他の材料が混合されていてもよい。この場合、用いられる他の材料としては、例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル(TPD)、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(NPD)、4,4’−ビス(N,N−ビス(4−ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’−ジフェニル−4−アミノフェニル)−N,N−ジフェニル−4,4’−ジアミノ−1,1’−ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス(1−ナフチル(フェニル)アミノ)トリフェニルアミン(1−TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが挙げられる。
【0063】
発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
【0064】
発光材料は、一般式(1)で表される化合物の他に、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラート)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。
【0065】
発光材料に含有されるホスト材料は、化合物一種のみに限る必要はなく、本発明の複数の化合物を混合して用いたり、その他のホスト材料の一種類以上を混合して用いたりしてもよい。混合しうるホスト材料としては、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどの芳香族アミン誘導体、トリス(8−キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。中でも、発光層が三重項発光(りん光発光)を行う際に用いられるホストとしては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体などが好適に用いられる。
【0066】
三重項発光系におけるホスト材料のなかでも、一般式(2)で表される化合物を該発光層に含有することが好ましい。
【0067】
【化10】
【0068】
ZおよびR18〜R22は、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、−P(=O)R2324からなる群より選ばれる。R23およびR24はアリール基またはヘテロアリール基である。R18〜R22は隣接する置換基同士で環を形成してもよい。Lは、単結合または二価の連結基である。X〜Xは炭素原子または窒素原子を表し、窒素原子の場合には窒素原子上の置換基であるR18〜R22は存在しない。X〜Xにおいて窒素原子の数は1〜4である。m、nはそれぞれ独立に1〜5の整数である。
【0069】
Zの好ましい置換基のうち、カルバゾール骨格を有すると、イオン化ポテンシャルが小さくなり、正孔注入が容易になるため好ましい。カルバゾール骨格は、2量化したり、縮環することで正孔輸送性がさらに向上するため好ましい。縮環している場合はインドロカルバゾール骨格またはジヒドロインデノカルバゾール骨格であることが合成上の観点からより好ましい。縮環の方向は特に限定されない。また、電子注入をより促進させるため、インドロカルバゾール骨格やジヒドロインドロカルバゾール骨格内に窒素原子を含んでいてもよい。
【0070】
は、分子量の観点から単結合無置換のアリーレン基または無置換のヘテロアリーレン基であることが好ましい。
【0071】
〜Xのうち、窒素原子の数は2以上であることが好ましく、3であることがより好ましい。そのなかでもX、XおよびXが窒素原子、XおよびXが炭素原子であると、トリアジン骨格となり、電子求引性がより向上し、電子注入が容易になるため好ましい。
【0072】
m、nは分子量の観点からmが1〜2、nは1であることが好ましい。
【0073】
このような一般式(2)で表される化合物として、具体的には以下のような化合物が挙げられる。なお、一般式(2)で表される化合物の例はこれらに限られるものではない。
【0074】
【化11】
【0075】
また、青色蛍光ドーパントと組み合わせて用いられるホスト材料は、アントラセン骨格またはピレン骨格を有する化合物であることが好ましく、具体的にはWO2008/108256、WO2007/029798、WO2010/114266、WO2011/115378、WO2005/113531、特開2011−204844に記載の化合物などが含まれるが、これらに限られるものではない。
【0076】
ドーパント材料として用いられる三重項発光材料としては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物であることが好ましい。配位子は、フェニルピリジン骨格またはフェニルキノリン骨格などの含窒素芳香族複素環を有することが好ましい。しかしながら、これらに限定されるものではなく、要求される発光色、素子性能、ホスト化合物との関係から適切な錯体が選ばれる。具体的には、トリス(2−フェニルピリジル)イリジウム錯体、トリス{2−(2−チオフェニル)ピリジル}イリジウム錯体、トリス{2−(2−ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2−フェニルベンゾチアゾール)イリジウム錯体、トリス(2−フェニルベンゾオキサゾール)イリジウム錯体、トリスベンゾキノリンイリジウム錯体、ビス(2−フェニルピリジル)(アセチルアセトナート)イリジウム錯体、ビス{2−(2−チオフェニル)ピリジル}イリジウム錯体、ビス{2−(2−ベンゾチオフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾチアゾール)(アセチルアセトナート)イリジウム錯体、ビス(2−フェニルベンゾオキサゾール)(アセチルアセトナート)イリジウム錯体、ビスベンゾキノリン(アセチルアセトナート)イリジウム錯体、ビス{2−(2,4−ジフルオロフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、テトラエチルポルフィリン白金錯体、{トリス(セノイルトリフルオロアセトン)モノ(1,10−フェナントロリン)}ユーロピウム錯体、{トリス(セノイルトリフルオロアセトン)モノ(4,7−ジフェニル−1,10−フェナントロリン)}ユーロピウム錯体、{トリス(1,3−ジフェニル−1,3−プロパンジオン)モノ(1,10−フェナントロリン)}ユーロピウム錯体、トリスアセチルアセトンテルビウム錯体などが挙げられる。また、特開2009−130141号に記載されているリン光ドーパントも好適に用いられる。これらに限定されるものではないが、高効率発光が得られやすいことから、イリジウム錯体または白金錯体が好ましく用いられる。
【0077】
ドーパント材料として用いられる上記三重項発光材料は、発光層中に各々一種類のみが含まれていてもよいし、二種以上を混合して用いてもよい。三重項発光材料を二種以上用いる際には、ドーパント材料の総重量がホスト材料に対して20重量%以下であることが好ましい。
【0078】
また、発光層には上記ホスト材料および三重項発光材料の他に、発光層内のキャリアバランスを調整するためや発光層の層構造を安定化させるための第3成分を更に含んでいてもよい。但し、第3成分としては、上記カルバゾール骨格を有する化合物からなるホスト材料および三重項発光材料からなるドーパント材料との間で相互作用を起こさないような材料を選択する。
【0079】
三重項発光系における好ましいドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
【0080】
【化12】
【0081】
本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。特に膜厚を厚く積層する場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、安定な膜質を保つ分子量400以上の化合物が好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
【0082】
電子輸送層に用いられる電子輸送材料としては、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられるが、駆動電圧を低減し、高効率発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。
【0083】
ここで言う電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率が向上する。
【0084】
電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
【0085】
これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N−フェニルベンズイミダゾール−2−イル)ベンゼンなどのイミダゾール誘導体、1,3−ビス[(4−tert−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン誘導体、2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなどのベンゾキノリン誘導体、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン誘導体、1,3−ビス(4’−(2,2’:6’2”−ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子耐久寿命が向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はアントラセン骨格、ピレン骨格またはフェナントロリン骨格であることが特に好ましい。上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いたりしても構わない。
【0086】
好ましい電子輸送材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
【0087】
【化13】
【0088】
上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いたりしても構わない。また、ドナー性化合物を含有してもよい。ここで、ドナー性化合物とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。
【0089】
ドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、カリウム、ルビジウム、セシウムといったアルカリ金属や、マグネシウム、カルシウム、セリウム、バリウムといったアルカリ土類金属が挙げられる。
【0090】
また、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、Li2O等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、大きな低電圧駆動効果が得られるという観点ではリチウム、セシウムが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、より発光素子の低電圧化の効果が大きいという観点ではアルカリ金属と有機物との錯体が好ましく、さらに合成のしやすさ、熱安定性という観点からリチウムと有機物との錯体がより好ましく、比較的安価で入手できるリチウムキノリノールが特に好ましい。
【0091】
電子輸送層のイオン化ポテンシャルは、特に限定されないが、好ましくは5.6eV以上8.0eV以下であり、より好ましくは6.0eV以上7.5eV以下である。
【0092】
発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
【0093】
有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
【0094】
本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。
【0095】
本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
【0096】
マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0097】
本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0098】
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。
【実施例】
【0099】
以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は上記に記載した化合物の番号を指すものである。
【0100】
合成例1
HT−1の合成
3−ヨード−9−フェニル−9H−カルバゾール46.7g、N-ブロモスクシンイミド22.5g、テトラヒドロフラン1264mlの混合溶液を窒素気流下、4時間室温で攪拌した。反応溶液を濃縮後、水300mlを加えて固体を析出させ、濾過を行った。得られた固体を水洗いして真空乾燥した後、3−ブロモ−6−ヨード−9−フェニル−9H−カルバゾール55.5gを得た。
【0101】
次に、3−ブロモ−6−ヨード−9−フェニル−9H−カルバゾール体55.0g、フェニルカルバゾール−3−ボロン酸35.2g、酢酸パラジウム(II)1.29g、2M炭酸ナトリウム水溶液260ml、ジメトキシエタン613mlの混合溶液を窒素気流下、6時間還流した。室温に冷却した後、水を加えて濾過し真空乾燥した。得られた個体を酢酸エチル500mlでリフラックス洗浄し、室温で2時間攪拌した後濾過を行い、真空乾燥し6−ブロモ−9,9’−ジフェニル−9H,9’H−3,3’−ビカルバゾール49.3gを得た。
【0102】
更に、6−ブロモ−9,9’−ジフェニル−9H,9’H−3,3’−ビカルバゾール3.69g、9,9−ジメチル−2−フルオレンボロン酸1.71g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド46mg、2M炭酸ナトリウム水溶液8ml、ジメトキシエタン66mlの混合溶液を窒素気流下、5時間還流した。反応終了後、降温しトルエン抽出を行い、濃縮した。得られた褐色オイル状固体をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、白色粉末1.3gを得た。
【0103】
得られた粉末のH−NMR分析結果は次の通りであり、上記で得られた白色結晶がHT−1であることが確認された。
H−NMR(CDCl(d=ppm)):1.596(s,6H),7.33−7.85(m,26H)8.24−8.27(d,1H,J=8.10Hz),8.45−8.55(m,4H)。
【0104】
尚、HT−1は、油拡散ポンプを用いて1×10−3Paの圧力下、約320℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.8%、昇華精製後が99.9%であった。
【0105】
【化14】
【0106】
実施例1
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層としてHI−1を10nm蒸着した。次に、正孔輸送層として、HT−1を60nm蒸着した。次に、発光層として、ホスト材料に化合物H−1を、ドーパント材料に化合物D−1を用い、ドーパント材料のドープ濃度が5重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として、化合物E−1を20nmの厚さに積層した。
【0107】
次に、フッ化リチウムを0.5nm、アルミニウムを60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、駆動電圧4.5V、外部量子効率5.3%の青色発光が得られた。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は560時間であった。なお化合物HI−1、H−1、D−1、E−1は以下に示す化合物である。
【0108】
【化15】
【0109】
実施例2〜10
正孔輸送層として表1に記載した材料を用いたこと以外は実施例1と同様にして発光素子を作製し、評価した。結果を表1に示す。なお、HT−2〜HT−10は以下に示す化合物である。
【0110】
【化16】
【0111】
実施例11〜25
正孔輸送層、発光層のホスト材料およびドーパント材料として表1に記載した材料を用いたこと以外は実施例1と同様にして発光素子を作製し、評価した。結果を表1に示す。なお、H−2、H−3、D−2は以下に示す構造である。
【0112】
【化17】
【0113】
比較例1〜12
正孔輸送層として表2に記載した材料を用いたこと以外は実施例1と同様にして発光素子を作製し、評価した。結果を表2に示す。なお、HT−11〜HT−22は以下に示す化合物である。
【0114】
【化18】
【0115】
実施例26
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層としてHI−1を10nm蒸着した。次に、正孔輸送層として、HT−1を60nm蒸着した。次に、発光層として、ホスト材料に化合物H−4を、ドーパント材料に化合物D−3を用い、ドーパント材料のドープ濃度が10重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として、化合物E−2を20nmの厚さに積層した。
【0116】
次に、フッ化リチウムを0.5nm、アルミニウムを60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、駆動電圧3.5V、外部量子効率15.2%の赤色発光が得られた。この素子を初期輝度1000cd/mに設定し、耐久寿命を測定したところ、初期輝度から20%減の時間は390時間であった。なお化合物H−4、D−3、E−2は以下に示す化合物である。
【0117】
【化19】
【0118】
実施例27〜40
正孔輸送層および発光層のホスト材として表3に記載した材料を用いたこと以外は実施例26と同様にして発光素子を作製し、評価した。結果を表3に示す。なお、化合物H−5は以下に示す化合物である。
【0119】
【化20】
【0120】
比較例13〜24
正孔輸送層として表3に記載した材料を用いたこと以外は実施例26と同様にして発光素子を作製し、評価した。結果を表3に示す。
【0121】
実施例41〜55(緑リン光素子)
正孔輸送層、発光層のホスト材料およびドーパント材料として表4に記載した材料を用いたこと以外は実施例26と同様に発光素子を作製し、評価した。結果を表4に示す。なお化合物H−6、H−7、D−4は以下に示す化合物である。
【0122】
【化21】
【0123】
比較例25〜36
正孔輸送層として表4に記載した化合物を用いたこと以外は実施例41と同様にして発光素子を作製し、評価した。結果を表4に示す。
【0124】
実施例56〜70
正孔輸送層、発光層のホスト材料およびドーパント材料として表5に記載した材料を用いたこと以外は実施例26と同様に発光素子を作製し、評価した。結果を表5に示す。なお化合物H−8、H−9、D−5は以下に示す化合物である。
【0125】
【化22】
【0126】
比較例37〜48
正孔輸送層として表5に記載した化合物を用いたこと以外は実施例56と同様にして発光素子を作製し、評価した。結果を表5に示す。
【0127】
【表1】
【0128】
【表2】
【0129】
【表3】
【0130】
【表4】
【0131】
【表5】