【実施例】
【0025】
以下に、本発明の実施例,比較例を示し説明する。
実施例1
(正極の作製)
マンガン酸リチウム(LiMn2O4)粉末92質量部、カーボンブラック5質量部、ポリフッ化ビニリデン3質量部をNMPと共に混練して正極スラリーを調製した。得られた正極スラリーを厚さ20μmのアルミニウム箔の両面に塗布乾燥の後、ロールによって正極面を押圧した。
次いで、正極活物質を塗布したアルミニウム箔を切断し、長さ105mm、幅55mmの正極に、長さ15mm、幅10mmの正極タブを一体に形成した正極電極を作製した。
【0026】
(負極の作製)
グラファイト91質量部、カーボンブラック1質量部、ポリフッ化ビニリデン8質量部をNMPと共に混練して負極スラリーを調製した。得られた負極スラリーを厚さ10μmの銅箔の両面に塗布乾燥の後、ロールによって負極面を押圧した。
次いで、負極活物質を塗布した銅箔を切断し、長さ109mm、幅59mmの負極に、長さ12mm、幅10mmの負極タブを一体に形成した負極電極を作製した。
【0027】
(発電要素の作製)
作製した正極電極と負極電極を、長さ111mm、幅59mm、厚さ25μmのポリプロピレン製のセパレーターを介して最外層が負極となるように交互に積層して発電要素を作製した。それぞれの積層枚数は、正極電極15枚、負極電極16枚とした。
フィルム状外装体の外部に導出するための正極リード端子として長さ30mm、幅10mm、厚さ200μmのアルミニウム箔を用いた。また、封口時にフィルム状外装材と一体となる合成樹脂層を形成したアルミリード端子を積層した正極電極の正極タブに接合した。
また、負極電極にも負極リード端子として長さ30mm、幅10mm、厚さ200μmの銅箔を用いた。また、封口時にフィルム状外装材と一体となる合成樹脂層を形成した銅製リード端子を積層した負極タブに接合した。
【0028】
(フィルム外装電池の作製)
フィルム外装材としては、以下の積層フィルムを用いた。
表面保護層:厚さ25μmのナイロン製
バリア層:厚さ40μmのアルミニウム箔
接着性内面層:厚さ50μmの融点145℃、軟化点120℃のランダム−ブロック−ランダム三層構造を有するポリプロピレンフィルム
上記の長さ180mm、幅100mmの厚さ115μmのフィルム状外装材を2枚用意した。このフィルム状外装材の中央に長さ120mm、幅70mm、深さ3mmの凹部をエンボス加工により形成した。
【0029】
エンボス加工によって作製した凹部に発電要素を収納し、1辺から正極リード端子、負極リード端子をフィルム状外装材の外部に導出した。
リード端子を取り出す辺と、リード端子を取り出す辺と接する2辺を封止して、正極電極端子、負極電極端子を形成した。
次いで、両電極端子を取り出した辺と対向する辺を注液辺として、電解液を注液して最後に注液辺を封止した。電解液としては、エチレンカーボネートおよびジエチルカーボネートからなる混合溶媒に、リチウム塩としてLiPF6を含む電解液を使用した。
【0030】
端子辺は温度180℃の幅5mmの2本の加熱部材を、加熱部材のエンボス加工部側の端面が、フィルム状外装材のエンボス加工部と平坦部境目から平坦部側へ0.5mm離れた位置に配置した。次いで、2本の加熱部材間の間隔が0.2mmとなるように6秒間挟み込んで封止した。
この後、25℃の幅5.6mmの2本の冷却部材を、2本の冷却部材のエンボス加工部側の端面がエンボス加工部と平坦部境目となる位置に配置した。次いで、2本の冷却部材間の間隔が0.2mmとなるようにして1.5秒間挟み込んで冷却した。
【0031】
側辺には温度160℃の幅7.5mmの2本の加熱部材を、加熱部材のエンボス加工部側の端面を、フィルム状外装材のエンボス加工部と平坦部境目から0.5mm離れた位置に配置した。加熱部材の間隔が0.1mmとなるように5秒間挟み込んで加熱して封止した。
この後、室温の幅10mmの2本の冷却部材を、2本の冷却部材のエンボス加工部側の端面がエンボス加工部とフィルム外装平坦部境目になる位置に配置した。冷却部材の間隔が0.15mmとなるように3秒間挟み込んで冷却した。
上記のようにして作製した注液前のフィルム外装電池に、注液辺より電解液を注入した。
この後、注液辺を170℃に加熱した幅7.5mmの2本の加熱部材を、加熱部材のエンボス加工部側の端面がエンボス加工部とフィルム状外装材の平坦部境目から0.5mm離れた位置に配置した。次いで、加熱部材の間隔が0.075mmとなるように5秒間挟み込んで加熱して封止した。
この後、室温の幅10mmの2本の冷却棒を、2本の冷却部材のエンボス加工部側の端面がエンボス加工部とフィルム状外装材の平坦部境目になる位置に配置した。次いで、冷却棒の間隔0.15mmで3秒間挟み込んで冷却した。
最後に側辺および注液辺の溶着部分を5mm残し、その他の部分を切断して外形を整えて、
図2に示す断面構造を有するフィルム外装電池を得た。
【0032】
本発明では、溶着個所の温度特性が異なる点を考慮して、溶着個所に応じた温度設定によってすべての溶着個所で、凝集溶着層と界面接着層が形成されるようにした。
【0033】
実施例2
実施例1における2本の加熱部材のうち一方の加熱部材を加熱部材の端面がエンボス加工部とフィルム外装材の平坦部境目から0.5mmに配置した。また、他方の加熱部材を加熱部材の端面がエンボス加工部とフィルム外装材の平坦部境目から平坦部側へ0.6mmに配置して封止を行った。
その他の条件は実施例1と同様にしてフィルム外装電池を作製した。その結果、
図4に断面構造を持つフィルム外装電池を得た。
【0034】
加熱した2本の加熱部材によるフィルム状外装材の挟み込みに、多少のずれを生じさせたことで封止部の熱溶着層が軟化する位置にずれが生じた。
その結果、加熱部材のエンボス加工部側の端面がエンボス加工部とフィルム状外装材の平坦部境目により近い側に接しているフィルム状外装材の熱溶着層が押し出された。それによって他方の加熱部材が接しているフィルム状外装材の熱溶着層より電池内部側へ押し出された。このために界面接着部が現れる界面が歪曲した歪曲部が形成されるためと考えられる。
作製した電池を実施例1と同様に劣化加速試験を行いその結果を表1、表2に示す。
【0035】
実施例3
実施例1における加熱部材を、加熱部材の端面がエンボス加工部とフィルム状外装材の平坦部境目から平坦部側へ0.3mmとして封止を行った。その他の条件は実施例1と同じにしてフィルム外装電池を作製した。その結果、
図5に示す断面構造を持つフィルム外装電池を得た。
これは加熱部材の端面をエンボス加工部とフィルム状外装材との境目から0.3mmの距離だけフィルム状外装材の平坦部との境目側へ近づけて封止したものである。
その結果、封止部よりも内側へ押し出した熱溶着層が発生し、それが樹脂塊32として形成したためである。
作製した電池を実施例1と同様に劣化加速試験を行いその結果を表1、表2に示す。
【0036】
実施例4
実施例3における一方の加熱部材を加熱部材の端面がエンボス加工部とフィルム状外装材の平坦部との境目から0.3mmとした。
また、他方の加熱部材を加熱部材のエンボス加工部側の端面をエンボス加工部とフィルム状外装材の平坦部境目から平坦部側へ0.4mmとなるようにして封止を行った。その他の条件は実施例1と同様にしてフィルム外装電池を作製した。その結果、
図6に示す断面構造を持つフィルム外装電池を得た。
作製した電池を実施例1と同様に劣化加速試験を行いその結果を表1、表2に示す。
【0037】
この実施例の電池では、加熱した2本の加熱部材によるフィルム状外装材の挟み込みに多少のずれを生じさせる結果、封止部の熱溶着層の軟化される位置にずれを生じている。 そして、加熱部材のエンボス加工部側の端面がエンボス加工部とフィルム状外装材の平坦部との境目により近い側に接しているフィルム状外装材の熱溶着層が押し出されることとなる。すなわち、他方の加熱部材が接しているフィルム状外装材の熱溶着層より電池内部側へ押し出されることとなる。
更に、界面接着部に現れる界面31が歪曲し、その歪曲部が樹脂塊32にまで及んでいるためと考えられる。
作製した電池を実施例1と同様に劣化加速試験を行いその結果を表1、表2に示す。
【0038】
実施例5
実施例4における一方の加熱部材を、加熱部材の端面がエンボス加工部とフィルム状外装材の平坦部境目から平坦部側へ0.2mm移動した。また、他方の加熱部材を加熱部材のエンボス加工部側の端面がエンボス加工部とフィルム状外装材の平坦部境目から平坦部側へ0.4mmに配置して封止を行った。
その他の条件は実施例3と同じにしてフィルム外装電池を作製した。その結果、
図7に示す断面構造を持つフィルム外装電池を得た。
2本の加熱部材によるフィルム状外装材の挟み込みのズレをより大きくしたので加熱部材の端面がエンボス加工部とフィルム状外装材の平坦部境目に近づけて封止することとなる。
その結果、加熱部材のずれの分だけ、樹脂が偏って押し出されるとともに界面接着部に現れる界面が歪曲しためと考えられる。
作製した電池を実施例1と同様に劣化加速試験を行いその結果を表1、表2に示す。
【0039】
実施例6
実施例1における各冷却部材による冷却を、加熱部材による加熱熱完了後4秒後とした点を除き、実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0040】
実施例7
実施例2に実施例1における各冷却部材による冷却を、加熱部材による加熱熱完了後4秒後とした点を除き、実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0041】
実施例8
実施例3における各冷却部材による冷却を、加熱部材による加熱熱完了後4秒後とした点を除き、実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0042】
実施例9
実施例4における各冷却部材による冷却を加熱部材による加熱熱完了後4秒後とした点を除き実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0043】
実施例10
実施例5における各冷却部材による冷却を、加熱部材による加熱熱完了後4秒後とした点を除き、実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0044】
比較例1
封止部の熱溶着時の加熱部材の温度を端子取出辺は200℃、側辺は180℃、注液辺は190℃と設定することで、それぞれの封止部の熱溶着部の温度を155〜165℃にした。
これによって、熱溶着部の溶着温度を融点より十分高い温度としたことで、封止部および樹脂塊が結晶部のみからなるようにした。
その他の条件は実施例3と同じにしてフィルム外装電池を作製した。その結果、
図10に示すように凝集溶着部19には、樹脂塊32が形成された。
実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0045】
比較例2
比較例1における各冷却部材による冷却を過熱完了後4秒後とした点を除き比較例1と同様にして電池を作製した。
実施例1と同様にして劣化加速試験を行いその結果を表1、表2に示す。
【0046】
評価試験方法1
引張り試験結果
作製した電池を以下の評価方法によって試験を行ってその結果を表に示す。
側面部のフィルム外装材を熱溶着方向に対して垂直方向に幅15mm、長さ50mmに切り取り、引っ張り試験用の試験片を作製した。この試験片を未溶着部2枚が一直線になるよう折り曲げ、T字型の試験片を作製した。このT字型試験片の未溶着部の一方を固定し、もう一方を引っ張りゲージで10mm/minの速度で鉛直方向に引っ張り、最大の引っ張り強度とアルミニウム層の露出が見られる位置を確認した。その結果を表1に示す。
【0047】
引っ張り強度については、加熱後の冷却までの時間が1秒間である実施例1〜5、および比較例1においては140N/15mm前後であった。また、加熱後の冷却までの時間が4秒間である実施例6〜10および比較例2においては110N/15mm前後となった。これは、冷却までの間隔が開くことにより熱溶着層の再結晶化が進み、凝集溶着部の脆化が進んだものと考えられる。
アルミニウム層の露出までの距離については、比較例1、2に対し、実施例1、3では0.5mm、実施例2は0.6mm、実施例4では0.7mm、実施例5では0.9mmとなった。
また、比較例1,2に対し、実施例1〜10は形成された界面接着層が裂けて凝縮溶着層に達してからアルミニウム層の露出が起きていた。また、実施例2,4,5,7,9,10においては界面接着層が湾曲することで裂ける距離が延びるため、実施例1、3、6、8よりも金属層露出までの距離が大きいためと考えられる。
【0048】
表1
引っ張り強度(N/15mm) アルミニウム層露出位置(mm)
実施例1 143 0.5
実施例2 141 0.6
実施例3 138 0.5
実施例4 142 0.8
実施例5 144 0.9
実施例6 112 0.5
実施例7 115 0.6
実施例8 114 0.5
実施例9 112 0.8
実施例10 116 0.9
比較例1 140 0.0
比較例2 142 0.0
【0049】
評価試験方法2
劣化加速試験結果
以上の実施例1〜10および比較例1,2についてそれぞれ40個ずつを満充電状態に充電した後に以下の試験を行った。
アルミニウム製の治具で電池の厚さ方向を定寸で固定することで溶着部分付近のみが膨れるようにした。
20個を70℃の環境下に2ヶ月間、残り20個を85℃の環境下に2ヶ月間に放置することで電池の劣化加速試験を行った。
これらの試験電池について、試験前に対して体積比10%以上の膨れの有無、外装体の封止部付近にリトマス試験紙を貼りつけて電解液の漏液の有無を確認した。
外装体の膨れが確認されたものについては
図1におけるA−A’断面状態の観察を行った。
【0050】
70℃劣化評価結果を表2に示し、85℃評価結果を表3に示す。
なお、治具で固定することで電池の厚さが変わらない状態で試験電池が10%以上膨れた場合、膨れにより溶着部分に負荷がかかり始めることを確認した。
また、70℃劣化試験では実施例1〜10においては漏液が確認できなかったのに対し、比較例1においては3個、比較例2においては5個について漏液を確認した。
【0051】
一方、85℃劣化試験では実施例4、5においては漏液が確認できなかった。
以下の実施例では、それぞれ、以下の個数の漏液を確認した。
実施例1は5個、実施例2は3個、実施例3は4個、実施例6は9個、実施例7は7個、実施例8は9個、比較例1は14個、比較例2は18個
【0052】
70℃劣化試験後に断面積を観察した結果、実施例1、2、6、7において膨れを観察したものはいずれも
図8のように界面接着部に界面溶着剥離部を形成したものであった。
また、アルミニウム層の露出はなかった。
また、実施例3〜5、8〜10において膨れを確認したものはいずれも
図8のように界面接着部15に界面溶着剥離部16を形成していたが、アルミニウム層の露出はなかった。
これは、封止部や樹脂塊に一体化せずに接着している界面接着部15が存在しているものと考えられる。
前記接着部15は、加熱後の冷却までの時間が、熱溶着層や一体化して接着した凝集溶着部19より強度が小さいために、界面接着部15の端部が優先的に剥離するためであると考えられる。
加えて、界面接着部に接して樹脂塊が形成されているものについては樹脂塊中の面で剥離が止まっており、封止部にすら到達していないものも確認できた。
さらに、実施例2、4、5、7、9、10のように界面接着部に歪曲部を形成したものは、剥離距離は同じであるが、湾曲により界面接着層の距離が延びるため、それぞれ実施例1、3、6,8よりも界面接着部の接着力が大きなものとなる。
【0053】
また、85℃劣化試験後に断面を観察した結果、実施例1〜3、6〜8において膨れを確認したもののうち、漏液があるものは界面溶着剥離部が凝集接着面まで達していた。また、その部分から樹脂層の破断が起きてアルミニウム層が露出しており、電解液による腐食を確認した。
一方、漏液がないものは界面溶着剥離部が凝集溶着部まで達しておらず、アルミニウム層の露出はなかった。
実施例1〜3と実施例6〜8を比較すると、実施例6〜8においては冷却までの間隔が長くなったことで熱溶着層の脆化が進んだものと考えられる。そして、脆化が進み、凝集接着面に達した場合に熱溶着層の亀裂が生じやすくなっているものと考えられる。
【0054】
また、実施例4、5、9、10において膨れを確認したものいずれも
図9のように界面溶着剥離部が凝集接着面まで達しておらず、アルミニウム層の露出はなかった。これは、樹脂塊32が存在するとともに界面接着部が湾曲することで界面溶着剥離部が凝集接着面まで達する距離が他の例に比べて長いことによるものと考えられる。
【0055】
一方、比較例1、2において膨れの観察されたものうち、それぞれ3個、5個は
図11のように樹脂塊と封止部とは反対側の熱溶着層の境目に亀裂が生じ、アルミニウム層が内部側に露出しており、電解液による腐食が確認された。
【0056】
表2
漏液数 膨れの有無 アルミニウム層の腐食
実施例1 0 7 0
実施例2 0 6 0
実施例3 0 5 0
実施例4 0 8 0
実施例5 0 6 0
実施例6 0 5 0
実施例7 0 6 0
実施例8 0 7 0
実施例9 0 6 0
実施例10 0 7 0
比較例1 3 11 3
比較例2 5 14 5
【0057】
表3
漏液数 膨れの有無 アルミニウム層の腐食
実施例1 5 20 5
実施例2 3 20 3
実施例3 4 20 4
実施例4 0 20 0
実施例5 0 20 0
実施例6 9 20 9
実施例7 7 20 7
実施例8 0 20 9
実施例9 0 20 0
実施例10 0 20 0
比較例1 14 20 14
比較例2 18 20 18