【文献】
F. DUAN et al.,Microporous and Mesoporous Materials,2009年,126,26-31.
【文献】
S. PAI et al.,Microporous and Mesoporous Materials,2006年,96,135-140.
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
はじめに
以下の用語は明細書全体を通して使用され、特に断りがなければ以下の意味を有するであろう。
【0014】
「活性源」という用語は少なくとも1種の元素を、反応し得る、モレキュラーシーブ構造内に挿入され得る形態で提供することのできる試薬又は前駆体を意味する。「源」及び「活性源」の用語はここでは相互に同じ意味のものとして使用される。
【0015】
「コバルトアルミノホスフェートモレキュラーシーブ」という用語は、[CoO
2]、[AlO
2]及び[PO
2]四面体単位を含む三次元微多孔質フレームワークを有するモレキュラーシーブをいう。任意に、コバルトアルミノホスフェートモレキュラーシーブはフレームワーク構造に挿入された[MO
2]四面体単位を含むこともでき、ここでMは、ケイ素(Si)、マグネシウム(Mg)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、亜鉛(Zn)、及びこれらの混合物からなる群から選ばれる金属である。
【0016】
「イオン性液体」という用語はカチオン及びアニオンの組み合わせとしてイオンだけからなる液体を意味する。「イオン性液体」という用語は低温イオン性液体を包含し、これは一般に100℃以下の、しばしば室温より低いことすらある融点を有する有機塩である。
【0017】
SSZ−85は、従来の水熱合成を介してというよりも、イオン性液体を溶媒と構造指向剤(SDA)の両方として用いるイオノサーマル合成によって調製される。イミダゾリウム系イオン性液体は極めて一般に用いられているイオン性液体である。1,3−ジイソプロピルイミダゾリウムイオン性液体はSSZ−85のイオノサーマル合成に用いられ、以下の構造(1)で表される。
【化1】
A
−はモレキュラーシーブの形成に悪影響を及ぼさないアニオン性カウンターイオンである。代表的なアニオンとしては、ハロゲン(例えば、フッ化物、塩化物、臭化物、及びヨウ化物)、水酸化物、アセテート、スルフェート、テトラフルオロボレート、カルボキシレート等が挙げられる。
【0018】
反応混合物
一般に、モレキュラーシーブSSZ−85は、(a)(1)少なくとも1つのコバルト源、(2)少なくとも1つのアルミニウム源、(3)少なくとも1つのリン源、(4)フッ化物イオン、及び(5)1,3−ジイソプロピルイミダゾリウムイオン性液体を含む反応混合物を調製し、(b)モレキュラーシーブの結晶を形成するのに十分な条件下で反応混合物を維持することにより調製される。
【0019】
モレキュラーシーブを形成する反応混合物の組成はモル比で以下の表1で同定される。
表1
【表1】
Qは1,3−ジイソプロピルイミダゾリウムカチオンである。
【0020】
実施態様では、Q/Al
2O
3モル比は少なくとも5(例えば、5〜5000、5〜1000、5〜500、5〜250、又は5〜100)である。
【0021】
コバルト(Co)の適切な源は、酸化物、水酸化物、硝酸塩、硫酸塩、ハロゲン化物、及びカルボン酸塩のような水溶性コバルト塩を包含する。
【0022】
適切なアルミニウム(Al)源の例としては、水和酸化アルミニウム(例えば、ベーマイト、シュードベーマイト)及びアルミニウムトリアルコキシドが挙げられる。
【0023】
リン(P)の適切な源はリン酸である。
【0024】
フッ化物イオン(F)の適切な源の例としては、フッ化水素及びフッ化アンモニウムが挙げられる。
【0025】
任意に、反応混合物は第二の二価金属(例えば、Mn及び/又はZn)の源を含むことができる。これらの例では、これらの金属が格子中でAlを置換し、反応混合物に提供されるAlの量がそれに従い減少することが予期される。二価金属の適切な源の例は、塩化物、酢酸塩、硝酸塩、及び硫酸塩のような金属塩である。
【0026】
場合により、反応混合物はケイ素源を含んでもよい。典型的には、Siが格子中でPを置換し、反応混合物に提供されるPの量がそれに従い減少する。ケイ素の適切な源の例としては、ヒュームドシリカ、沈殿シリケート、シリカヒドロゲル、ケイ酸、コロイダルシリカ、テトラアルキルオルトシリケート(例えば、テトラエチルオルトシリケート)、及び水酸化シリカが挙げられる。
【0027】
本明細書に記載される各実施態様では、モレキュラーシーブ反応混合物は2種以上の源により供給することができる。また、2種以上の反応成分を一つの源により提供することもできる。
【0028】
反応混合物はバッチ式又は連続式のいずれでも調製することができる。本明細書に記載されたモレキュラーシーブの結晶サイズ、モルホロジー、及び結晶化時間は、反応混合物の性質及び合成条件とともに変動し得る。
【0029】
結晶化及び合成後処理
実際、モレキュラーシーブは、(a)本明細書に上述した反応混合物を調製し;(b)該反応混合物をモレキュラーシーブの結晶を形成するのに十分な結晶化条件下に維持することにより調製される。
【0030】
反応混合物をモレキュラーシーブの結晶が形成されるまで高温に維持する。結晶化は通常125℃と200℃の間(例えば、150℃から200℃まで、又は150℃から170℃まで)の温度でオートクレーブ中で行われる。
【0031】
反応混合物は結晶化工程の間、穏やかな混合又は攪拌に付すことができる。当業者であれば、本明細書に記載されたモレキュラーシーブが、非晶質材料のような不純物、モレキュラーシーブと一致しないフレームワークトポロジーを有する単位格子、及び/又は他の不純物(例えば、有機炭化水素類)を含み得ることが理解されよう。
【0032】
結晶化工程の間、モレキュラーシーブ結晶は反応混合物から自発的に核形成させることができる。種材料としてのモレキュラーシーブの結晶の使用は完全な結晶化が起きるのに必要な時間を短縮する点で有利であり得る。また、種結晶を形成することは、望ましくない相以上に核形成及び/又はモレキュラーシーブの形成を促進することにより得られる生成物の純度を上げることにつながり得る。種として使用する場合、種結晶は反応混合物の合計重量に対して、少なくとも0.1ppmの量で反応混合物に添加される(例えば、少なくとも10ppm、少なくとも100ppm、少なくとも500ppm)。
【0033】
モレキュラーシーブ結晶が一旦形成されたら、固体生成物をろ過のような標準的な機械的分離技術により反応混合物から分離する。結晶を水洗し、次いで乾燥して合成されたままのモレキュラーシーブ結晶を得る。乾燥工程は大気圧下で又は真空下で行うことができる。
【0034】
任意に、イオン性液体は次の使用のために、様々な手法(例えば、溶媒抽出、デカンテーション)のいずれを用いても反応混合物から回収することができる。
【0035】
モレキュラーシーブは合成されたままで用いることができるが、典型的には熱処理(か焼)される。「合成されたままの」という用語は、SDAカチオンの除去前の、結晶後の形態にあるモレキュラーシーブをいう。SDAカチオンは熱処理(例えば、か焼)により、好ましくは酸化的雰囲気(例えば、空気、0kPaより高い酸素分圧の気体)で、モレキュラーシーブからSDAカチオンを除去するのに十分であると当業者によって容易に決定できる温度で除去することができる。SDAカチオンはまた、米国特許第6,960,327号に記載されている光分解技術(例えば、モレキュラーシーブから有機化合物を選択的に除去するのに十分な条件下で可視光よりも短い波長を有する光又は電磁放射にSDA含有モレキュラーシーブ生成物を曝露すること)により除去することもできる。
【0036】
モレキュラーシーブは引き続いて蒸気、空気、又は不活性気体中で200℃から800℃までの範囲の温度で1〜48時間又はそれ以上の時間、か焼することができる。
【0037】
本明細書に記載された方法から作成されたモレキュラーシーブは広く様々な物理的形状に形成することができる。一般的に言えば、モレキュラーシーブは粉末、顆粒、又は成形物、例えば2メッシュ(Tyler)ふるいを通過し、400メッシュ(Tyler)ふるい上に残るのに十分な粒径を有する押出成形物の形状にすることができる。触媒を、例えば有機バインダーとともに押出成形により成形する場合は、モレキュラーシーブは乾燥する前に押出成形するか、又は乾燥若しくは部分的に乾燥してから押出成形することができる。
【0038】
モレキュラーシーブは、有機転換プロセスで使われる温度及び他の条件に耐性の他の材料と複合化することができる。このような母材材料には、活性及び不活性材料及び合成又は天然のゼオライト、並びに粘土、シリカ、及び金属酸化物のような無機材料が挙げられる。そのような材料及びそれらを使用する態様の例は、米国特許第4,910,006号及び5,316,753号に記載されている。
【0039】
SSZ−85は、水素添加分解、脱ろう、オレフィン異性化、部分酸化、及び芳香族化合物のアルキル化、トランスアルキル化又は異性化のような様々な炭化水素変換反応のための触媒に有用である。SSZ−85はまた、気体分離のための吸着剤としても有用である。
【0040】
モレキュラーシーブの特性評価
合成されたままの形態で、無水ベースで、SSZ−85は以下の実験式で表される。
pQ:aF:(Co
xAl
yP
z)O
2
ここで、pは(Co
xAl
yP
z)O
2の1モル当たりの1,3−ジイソプロピルイミダゾリウムカチオン(Q)のモル数であり、pは0.001から1までの値を有し、aは(Co
xAl
yP
z)O
2の1モル当たりのフッ化物イオン(F)のモル数であり、aは0から1までの値を有し、両端の値を含む(0≦a≦1)、x、y、及びzは四面体単位としてCo、Al、及びPのモル分率をそれぞれ表し、x、y、及びzは各々0より大きく1より小さい値であり、x、y、及びzの合計は1である。ある実施形態では、pは、0.001から0.5、0.001から0.4、0.001から0.3、又は0.001から0.2までの値を有する。実施態様では、aは0.1から0.8まで、又は0.2から0.6までの値を有する。一つの態様では、xが0.01から0.5まで、yが0.25から0.7まで、zが0.25から0.7までである。他の態様では、xが0.01から0.25まで、yが0.4から0.6まで、zが0.4から0.6までである。
【0041】
本明細書に記載された方法により作製されたモレキュラーシーブはそのXRDパターンにより特徴付けることができる。表2のXRDパターン線は合成されたままのSSZ−85の代表的なものである。回折パターンのマイナーな変動は格子定数の変化による特定の試料のフレームワーク種のモル比の変動による可能性がある。また、十分に小さい結晶はピークの形状と強度に影響を与え、大きなピークのブロード化をもたらすであろう。調製に用いた有機化合物の変動によりマイナーな変動も見られる。か焼がXRD線回折パターンのマイナーなシフトを引き起こすこともある。これらのマイナーな揺らぎにもかかわらず、基本的な結晶構造は変わらないままである。
表2
合成されたままのSSZ−85の特徴的ピーク
【表2】
(a)± 0.20
(b)提示されたX線パターンは、X線パターン中の最も強いラインを100の値に帰属させた相対強度スケールに基づいている。W=弱い(>0から≦20まで);M=中(>20から≦40まで);S=強い(>40から≦60まで);VS=非常に強い(>60から≦100まで)。
【0042】
表3のXRDパターン線はか焼されたSSZ−85の代表的なものである。
表3
か焼されたSSZ−85の特徴的ピーク
【表3】
(a)±0.20
(b)提示されたX線パターンは、X線パターン中の最も強いラインを100の値に帰属させた相対強度スケールに基づいている。W=弱い(>0から≦20まで);M=中(>20から≦40まで);S=強い(>40から≦60まで);VS=非常に強い(>60から≦100まで)。
【0043】
本明細書に提示された粉末X線回折パターンは標準的技術により収集した。放射線はCuKα線であった。ピーク高さと、2θの関数(θはブラッグ角である)としての位置は、ピークの相対強度(バックグラウンドについて調整)から読み取り、d、即ち記録された線に対応する面間距離を計算した。
【実施例】
【0044】
以下の例示的実施例は非制限的であることを意図している。
【0045】
実施例1
SSZ−85の合成
SSZ−85を、テフロン(登録商標)カップ中で、0.11gのアルミニウムイソプロポキシドを、0.20gの濃リン酸、0.21gの酢酸コバルト(II)四水塩、2gの1,3−ジイソプロピルイミダゾリウムブロミド、及び最終的に0.02gの濃フッ化水素酸の溶液と混合することにより調製した。得られた混合物をペースト中で攪拌し、次いで23mlParr反応器中で、自己生成圧力下3日間160℃で43rpmタンブリングしながら加熱した。
【0046】
固形反応生成物をろ過により回収し、水洗し、周囲温度で空気中で乾燥した。
【0047】
走査型電子顕微鏡(SEM)での試料のエネルギー分散X線(EDX)解析により、コバルトが生成物中に存在することを確認した。
【0048】
得られた生成物の元素分析により以下の結果が得られた。Al 8.59重量%、P 11.5重量%、Co 6.76重量%、及びF 2.44重量%。
【0049】
合成されたままの生成物の得られた粉末XRDパターンを
図1に示す。
【0050】
実施例2
SSZ−87のか焼
実施例1の生成物を1℃/分の割合で595℃に加熱し、595℃で5時間保持した2%酸素/98%窒素の気流下でマッフル炉内でか焼し、冷却し、次いで粉末XRDにより分析した。か焼物の得られた粉末XRDパターンを
図2に示す。粉末XRDパターンは、材料が有機SDAを除去するためのか焼の後も安定なままであったことを示している。
【0051】
実施例3
窒素吸着(マイクロ波容積解析)
実施例2のか焼したSSZ−85を、吸着質としてN
2を用いたBET法による表面積及び細孔容積解析に付した。実施例2のか焼生成物の窒素物理吸着データのt−プロット解析によれば、細孔容積0.902cm
3/g及び外部BET表面積255.97m
2/gであった。
【0052】
実施例4
制限指数測定
実施例2のか焼したSSZ−85を4〜5kpsiでペレット化し、粉砕し、20〜40に篩い分けした。0.50gを、ゼオライト床の両側にアランダムを入れた3/8インチステンレススチール管に詰めた。反応管を加熱するのにリンドバーグ炉を用いた。ヘリウムを大気圧で10mL/分で反応管に導入した。反応器を約700°F(371℃)に加熱し、n−ヘキサンと3−メチルペンタンの50/50(w/w)供給量を8μL/分の割合で反応器に導入した。供給量の送達はブラウンリーポンプで行った。ガスクロマトグラフへの直接的サンプリングを供給量導入の10分後に始めた。制限指数値(2−メチルペンタンを含まない)を当業界で公知の方法を用いてガスクロマトグラフィーデータから計算したところ、10分から100分までの稼働中の時間、0.33と0.35の間にあることがわかった。700°F(371℃)で稼働中10分間、供給転換率は約7%であった。稼働中100分後、転換率は約5.5%であった。
【0053】
実施例5
炭化水素取り込み
実施例2のSSZ−85の気相n−ヘキサンの吸着能を、Chen et al.,Microporous Mesoporous Mater.2007,104,39−45に記載のように測定した。
図3はSSZ−85及び他の様々なモレキュラーシーブ中へのn−ヘキサンの吸着を示す。SSZ−85は、n−ヘキサン吸着質への曝露の約30分後、約0.05mL/gの、該吸着質への曝露の約90分後、約0.055mL/gのn−ヘキサンに対する吸着能を有することが示された。
【0054】
実施例6〜9
コバルトのモル比を調製時に変更したほかは実施例1のようにSSZ−85の合成を繰り返した。試薬に対する他の調整は行わなかった。結果を表4に示すが、これはすべての比でSSZ−85の作成がうまくいくわけではなかったことを示している。
表4
【表4】
【0055】
実施例10〜13
一連の温度をSSZ−85の合成について検討した。各場合において、反応を実施例1に記載のように調製し、各運転につき43rpmでタンブリングし3日間運転した。結果を表5に示す。
表5
【表5】
【0056】
実施例14
1,3−ジイソプロピルイミダゾリウムカチオンの元素分析を実施例1の生成物について測定した。合計炭化水素細孔充填は約14%であることがわかった。生成物のC/N比は4.42であり、一方出発テンプレートは4.50のC/N比を有し、これは相関性が高いことを示している。
【0057】
本明細書と添付の特許請求の範囲の目的のために、他に断りのない限り、量、パーセンテージ、又は比率を表すすべての数字、及び明細書及び特許請求の範囲で使われている他の数値は、「約」という言葉によりすべての場合に変更されるものとして理解されるべきである。従って、そうでないとの断りがなければ、以下の明細書及び添付の特許請求の範囲で示される数値パラメータは、得ようとする所望の特性に応じて変更しうる概数である。本明細書及び添付の特許請求の範囲で使用されるように、単数形「a」、「an」及び「the」は明示的にはっきりと一つの参照に制限されるというのでなければ、複数形の参照を包含するものであることは留意されるべきである。本明細書で使用されるように、「包含する」(「含む」又は「としては・・・が挙げられる」)(include)という言葉及びその文法的変化形は、非制限的であることが意図され、その結果、リストでの品目の記載は、置き換えたり、リストされた品目に追加したりすることのできる他の同様の品目を排除することを意図するものではない。本明細書に使用されるものとして、「含む」(comprising)という用語はその用語の後に同定される要素又は工程を包含することを意味するが、そのような要素又は工程のいずれもそれらがすべてということではなく、或る実施態様は他の要素又は工程を包含することができる。
【0058】
特に断りがない限り、個々の成分又は成分の混合物を選択することのできる一つの属の要素、材料又は他の成分を記載することは、列挙された成分及びその混合物のすべての可能性のある下位の属の組み合わせを包含することを意図している。また、「包含する」という言葉及びその変化形は、非制限的であることが意図されており、その結果、リストにある品目の記載は、本発明の材料や組成及び方法にも有効な、他の同様の品目を排除するものではない。
【0059】
この明細書の記載は、ベストモードを含む発明を開示するための、そしてまた当業者に本発明を作り、使用することを可能にするための実施例を用いている。特許可能な範囲は特許請求の範囲により定義され、当業者に思いつく他の実施例を包含することもできる。このような他の実施例は、特許請求の範囲の文言と異ならない構造上の要素を有しているか、又は特許請求の範囲の文言と非実質的な差異しか有さない均等な構造上の要素を含んでいるのであれば、特許請求の範囲内にあることが意図される。本明細書の記載と矛盾しない限りにおいて、本明細書で参照されるすべての引用は、参照することにより本明細書に取り込まれるものとされる。