特許第6185245号(P6185245)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

<>
  • 特許6185245-光学システム 図000002
  • 特許6185245-光学システム 図000003
  • 特許6185245-光学システム 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6185245
(24)【登録日】2017年8月4日
(45)【発行日】2017年8月23日
(54)【発明の名称】光学システム
(51)【国際特許分類】
   G02B 5/30 20060101AFI20170814BHJP
【FI】
   G02B5/30
【請求項の数】2
【全頁数】10
(21)【出願番号】特願2013-1711(P2013-1711)
(22)【出願日】2013年1月9日
(65)【公開番号】特開2014-134630(P2014-134630A)
(43)【公開日】2014年7月24日
【審査請求日】2015年11月16日
【前置審査】
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100121049
【弁理士】
【氏名又は名称】三輪 正義
(72)【発明者】
【氏名】井上 直樹
(72)【発明者】
【氏名】杉山 大
【審査官】 吉川 陽吾
(56)【参考文献】
【文献】 特開2009−213649(JP,A)
【文献】 米国特許第04679910(US,A)
【文献】 特許第2828451(JP,B2)
【文献】 特開2010−130655(JP,A)
【文献】 特開2007−025423(JP,A)
【文献】 特開平11−167026(JP,A)
【文献】 特開2012−118237(JP,A)
【文献】 特開2006−259124(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
被写体からの第1の特定波長光を反射すると共に、前記第1の特定波長光と波長領域が異なる第2の特定波長光を透過させる誘電体鏡と、
前記第2の特定波長光を偏光反射する反射偏光鏡と、
前記誘電体鏡で反射した第1の特定波長光を受けると共に、前記反射偏光鏡で偏光反射した光を受ける受光器と、を具備し、
前記誘電体鏡及び前記反射偏光鏡が前記被写体と前記受光器との間の光路上に設けられており、
前記反射偏光鏡は、前記誘電体鏡に貼着されているとともに、前記反射偏光鏡が入光する光の入光方向及び入光角度に、偏光分離された光の偏光軸方向が依存しない固有の偏光軸を有する偏光板を含み、
前記反射偏光鏡が前記誘電体鏡より前記被写体側に配置されていることを特徴とする光学システム。
【請求項2】
前記反射偏光鏡がワイヤグリッド偏光板であることを特徴とする請求項に記載の光学システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学システムに関する。
【背景技術】
【0002】
従来、複数の光学系を用いて複数の画像を同時に得る光学システムが知られており、例えば、可視光域の画像と近赤外光域の画像とをそれぞれ異なる光学システムで撮影し、この可視光域の画像と近赤外光域の画像の2つの画像を重畳して映像を表示する映像表示装置がある。上述のような、可視光域の画像と近赤外光域の画像とを異なる光学システムで撮影する場合、この光学システムでは、被写体との距離に応じてそれぞれの光学系の画角等を決定しなければならず、被写体との距離に応じた光学システムの設計が必要であった。また、光学系を複数設けることとなるため、コストが上昇し、大型化してしまうといった課題があった。
【0003】
この課題を解決する手法として、例えば、特許文献1には、第1の撮像領域と前記第1の撮像領域と異なる第2の撮像領域とを有する撮像素子と、第1の撮像領域に配置されるカラー画像撮像用フィルタと、第2の撮像領域に配置される不可視光画像撮像用フィルタとを備え、第1の撮像領域と第2の撮像領域とに跨って被写体像を撮像する撮像装置が記載されている。
【0004】
一方、偏光変換装置自体に赤外光波長帯域の光の除去機能を具有させ、液晶画像表示装置等の光学系の簡素化と小型化を実現する偏光ビームスプリッタが特許文献2に開示されている。前記偏光ビームスプリッタは、高屈折率の透明媒体の間に屈折率が異なる2種類の誘電体膜を交互に複数積層した偏光分離膜を挟装した誘電体積層型の偏光ビームスプリッタであって、前記偏光分離膜は、屈折率の異なる2種類の誘電体膜の光学的膜厚nd(n:誘電体膜の屈折率、d:誘電体膜の物理的膜厚)を一定にして多数層積層させた積層群を、群毎に光学的膜厚ndを異ならせた第1、第2及び第3の積層群を積層させ、前記第1の積層群の光学的膜厚ndを219nm≦nd≦235nmに設定したことを特徴とする。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−82855号公報
【特許文献2】特開平11−167026号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
生体認証分野においては、可視光域の画像と偏光分離された近赤外光域の画像とを重畳することにより、例えば、被写体である指紋等の人体表面の情報と静脈等の人体内の情報とを同時に認証できるため、認証精度の向上が期待できる。また、セキュリティ分野においては、監視カメラ等のカメラ撮影環境が明暗変化する際に生じる、被写体に関する画像劣化低減等の効果を期待できる。このような生体認証分野やセキュリティ分野で特許文献1に開示された光学システムの利用を考えた場合、画像情報を有する光が同一光路であるため、画像情報を高度に解析するための、所定の波長の光のみを偏光分離できる偏光分離素子(いわゆる検光フィルタ)が必要となる。また、特許文献2に記載の偏光変換装置は、液晶画像表示装置等に偏光した照明光を与えるもの(いわゆる偏光フィルタ)であって、認証装置の認証精度向上や監視カメラ等の画像劣化低減のために、撮像素子等の受光器に入光する光の偏光分離に用いられるもの(いわゆる検光フィルタ)ではない。
【0007】
本発明はかかる点に鑑みてなされたものであり、生体認証分野やセキュリティ分野で利用でき、簡素な構成で、異なる波長の光が有する情報を高精度に画像化できる光学システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の光学システムは、被写体からの第1の特定波長光を反射すると共に、前記第1の特定波長光と波長領域が異なる第2の特定波長光を透過させる誘電体鏡と、前記第2の特定波長光を偏光反射する反射偏光鏡と、前記誘電体鏡で反射した第1の特定波長光を受けると共に、前記反射偏光鏡で偏光反射した光を受ける受光器と、を具備し、前記誘電体鏡及び前記反射偏光鏡が前記被写体と前記受光器との間の光路上に設けられており、前記反射偏光鏡は、前記誘電体鏡に貼着されているとともに、前記反射偏光鏡が入光する光の入光方向及び入光角度に、偏光分離された光の偏光軸方向が依存しない固有の偏光軸を有する偏光板を含み、前記反射偏光鏡が前記誘電体鏡より前記被写体側に配置されていることを特徴とする
【0012】
本発明の光学システムにおいては、前記反射偏光鏡がワイヤグリッド偏光板であることが好ましい。
【発明の効果】
【0013】
本発明によれば、検光フィルタとして作用可能な、特定波長の光(第1の特定波長光)を反射できる誘電体鏡と、前記特定の波長以外で所望する波長の光(第2の特定波長の光)を偏光反射できる偏光反射鏡を有するため、簡素な構成により各波長の光が有する情報を高精度に画像化できる光学システムを得ることができる。
【図面の簡単な説明】
【0014】
図1】本発明の第1の実施形態に係る光学システムの概略構成を示す模式図である。
図2】ワイヤグリッド偏光板の断面模式図である。
図3】本発明の第2の実施形態に係る光学システムの概略構成を示す模式図である。
【発明を実施するための形態】
【0015】
以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の効果を奏する範囲内で適宜変更して実施することができる。
【0016】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る光学システムの概略構成を示す模式図である。図1に示す光学システムは、被写体からの第1の特定波長光(図1における実線矢印)を反射すると共に、この第1の特定波長光と波長領域が異なる第2の特定波長光(図1における破線矢印)を透過させる誘電体鏡11と、第2の特定波長光を偏光反射する反射偏光鏡12と、誘電体鏡11で反射した第1の特定波長光を受けると共に、反射偏光鏡12で偏光反射した光を受ける受光器13と、から主に構成されている。
【0017】
上記光学システムにおいては、誘電体鏡11及び反射偏光鏡12が被写体と受光器13との間の光路上に設けられており、誘電体鏡11が反射偏光鏡12より被写体側、受光器13側に配置されている。このため、被写体からの光が誘電体鏡11、反射偏光鏡12の順に透過する。
【0018】
被写体としては、異なる波長帯を有する2種類の波長光を照射したときに反射光によって異なる画像が取得される被写体であれば、特に限定されない。例えば、生体認証において指紋等の人体表面の画像と静脈等の人体内の画像とを同時に取得する場合の人体や、監視カメラにおいて可視光による画像と赤外光による画像を同時に取得する場合の監視対象が被写体となる。
【0019】
被写体が反射する光は、被写体に照射された光が反射したものであり、紫外光、可視光、赤外光等の波長帯の光のいずれでも良く、これらの光の偏光状態に制限はない。また、被写体に照射される光に制限はなく、本発明の光学システムをセンサー等に用いる場合はLED光やレーザー光等であり、カメラ等に用いる場合には外光を与える太陽光等となる。
【0020】
また、特定波長光とは、紫外光、可視光及び赤外光域等における所望の波長あるいは波長帯(波長範囲)を意味し、第1の特定波長の光と第2の特定波長の光の波長あるいは波長帯は異なる。ここで、第1の特定波長の光と第2の特定波長の光の波長あるいは波長帯が異なるとは、完全に一致しないことを意味するものであり、重畳する波長あるいは波長帯があっても構わない。また、第1及び第2の特定波長は、単数の波長帯あるいは複数の波長帯から構成しても良く、波長帯間は連続であっても、非連続であっても良い。
【0021】
誘電体鏡11は、少なくとも第1の特定波長光を反射し、且つ、第2の特定波長光は透過できる特性を有していれば特に制限は無いものの、光学的設定の容易性から、透光性基板の表面に誘電体層を有する構成が好ましい。このような誘電体鏡の例としては、赤外光を透過し可視光を反射するコールドミラーや、可視光を透過し赤外光を反射するホットミラー等がある。
【0022】
前記透光性基板は、特定波長の光を透過するものであれば、特に問題は無い。誘電体を構成する材料としては、TiO、CeO、ZrO、ZnS、CaF、MgF、SiO、Al、Fe、In、WO及びこれらの混合物を挙げることができ、所望する特性に応じて、異なる屈折率の誘電体からなる層を積層しても良い。
【0023】
なお、ここで反射とは、空気等の媒質中を進む光が、誘電体鏡11のような媒質の境界面に当たって向きを変え、もとの媒質に戻って進むことを意味し、反射における偏光状態は不問である。入光する光のうち、所望する波長の光が、受光器13において画像が形成される程度に反射されることが好ましく、50%以上の光が反射されることがさらに好ましい。また、第1の特定波長と第2の特定波長に重畳する波長(以下、重畳波長)がある場合には、前記重畳波長の光は反射されることになる。
【0024】
反射偏光鏡12としては、特定波長光を偏光反射及び偏光透過できる特性を有していれば、特に制限は無く、例えば、複屈折性樹脂の積層体からなる偏光板や、ワイヤグリッド型偏光板、コレステリック相液晶からなる偏光板、誘電体を積層した偏光板等の反射偏光板を用いることが可能である。なお、反射型偏光鏡で偏光分離された光のうち、偏光が透過することを偏光透過といい、偏光が反射することを偏光反射という。
【0025】
反射偏光鏡12は、固有の偏光軸を有する偏光板を含むことが好ましい。固有の偏光軸を有する偏光板(反射型偏光板)とは、偏光板の偏光分離をする層(偏光分離層)が固有の軸方向を有し、前記固有の軸方向に対して平行あるいは直交する光の成分を透過あるいは反射するものを意味する。したがって、前記偏光板へ入光する光の入光方向及び入光角度に、偏光分離された光の偏光軸方向は依存しないため、光源光が入光する面側に反射偏光鏡12を設けることにより、広角に入光する被写体からの光の偏光状態を変化させることなく偏光透過及び偏光反射でき、反射偏光鏡12で偏光反射された光と誘電体鏡11で反射された光を受光器13に入光させることができる。固有の偏光軸を有した反射型偏光板としては、例えば、ワイヤグリッド偏光板、相互に複屈折率が異なる複屈折性フィルムを積層した積層体フィルム等が挙げられる。中でも、偏光分離層が単層であるため、入光角度の変化に伴う透過ないし反射強度の変化が小さく、広帯域の光を偏光分離可能なワイヤグリッド偏光板が好ましい。
【0026】
ここで、ワイヤグリッド偏光板について説明する。図2は、ワイヤグリッド偏光板の断面模式図である。図2に示すように、ワイヤグリッド偏光板は、基材20と、この基材20の表面に設けられた微細凹凸構造20aと、微細凹凸構造の少なくとも凸部に形成された金属ワイヤ21と、を有する。微細凹凸構造20aは、光学素子の基準面の面内方向(図4の左右方向及び奥行方向)に連続して延在するように設けられた複数の凸部A及び複数の凹部Bを有する。
【0027】
基材20は、目的とする波長領域において実質的に透明であればよく、樹脂材料を用いることが好ましい。基材として樹脂基材を用いることにより、ロールプロセスが可能になる、ワイヤグリッド偏光板にフレキシブル性を持たすことができる、等のメリットがある。基材に用いることができる樹脂としては、例えば、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂などの非晶性熱可塑性樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂などの結晶性熱可塑性樹脂や、アクリル系、エポキシ系、ウレタン系などの紫外線(UV)硬化性樹脂や熱硬化性樹脂などが挙げられる。また、紫外線硬化性樹脂や熱硬化性樹脂と上記熱可塑性樹脂や、トリアセテート樹脂とを組み合わせたり、単独で用いて基材を構成させたりすることができる他、ガラス等の無機材料(例えば、ガラスフィラー)を組み合わせることも可能である。なお、前記UV硬化性樹脂を硬化させるために、UV光を発する光源を使用したり、電子線を発する光源を利用したりすることも可能である。
【0028】
基材20に設けられた微細凹凸構造20aの凸部Aに金属膜を選択的に設けることにより金属ワイヤを形成することができる。微細凹凸構造20aの周期(凸部間のピッチP)は特に限定されないが、偏光特性を発揮させる周期にすることが望ましい。一般に、ワイヤグリッド偏光板は、金属ワイヤの間隔(周期)が小さくなるほど幅広い波長帯域で良好な偏光特性を示す。金属ワイヤが空気(屈折率1.0)と接し、接着性物質で被覆されない場合には、金属ワイヤの間隔を、対象とする光の波長の1/4〜1/3とすることで、実用的に十分な偏光特性を示すことになるが、金属ワイヤを接着性物質で被覆する場合、接着性物質の屈折率の影響を考慮して、金属ワイヤの間隔を、対象とする光の波長の1/5〜1/4の周期とすることがさらに好ましい。このため、可視光領域の光の利用を考慮する場合、金属ワイヤの間隔を150nm以下とすることが好ましく、さらに好ましくは金属ワイヤの間隔を130nm以下とすることであり、最も好ましくは金属ワイヤの間隔を100nm以下とすることである。なお、金属ワイヤの間隔の下限は製造工程上50nmである。
【0029】
基材表面に形成する微細凹凸構造の形状としては、例えば、台形、矩形、方形、プリズム状や、半円状などの正弦波状などが挙げられる。ここで、正弦波状とは、凹部と凸部の繰り返しからなる曲線部を持つことを意味する。なお、曲線部は湾曲した曲線であればよく、例えば、凸部にくびれがある形状も正弦波状に含める。透過率の観点から基材断面形状は矩形又は正弦波状であることが好ましい。
【0030】
また、紫外線硬化性樹脂や熱硬化性樹脂等の樹脂被膜と、ガラスなどの無機基材(例えばガラスフィラー)、又は熱可塑性樹脂やトリアセテート樹脂等の樹脂基材とを組み合わせて基材を構成してもよい。この場合、無機基材又は樹脂基材上に形成された樹脂被膜の表面に所定の周期を有する微細凹凸構造を形成することもできる。鏡面性に優れた平滑性の高い表面が得られるという観点から、樹脂被膜の膜厚は、0.005μm以上3μm以下とすることが好ましい。
【0031】
金属ワイヤは、微細凹凸構造の少なくとも凸部に形成される。この場合、凸部の少なくとも側面に部分的に金属を被着させることにより所定の方向に連続して延在する金属ワイヤを設けることができる。
【0032】
金属ワイヤは、アルミニウム、銀、銅、白金、金またはこれらの各金属を主成分とする合金などの導電材料を用いて形成することができる。特に、アルミニウムもしくは銀を用いて金属ワイヤを形成することにより、可視域での吸収損失を小さくすることができる。
【0033】
金属ワイヤの周期(ピッチP)については、上記の通りであるが、金属ワイヤが連続して延在する方向に垂直な方向における断面視において、金属ワイヤのデューティ比は0.2以上0.8以下であることが好ましい。また、金属ワイヤのアスペクト比は0.5以上2.0以下であることが好ましい。これにより、全光透過率を向上することができる。
【0034】
金属ワイヤの形成方法に特に制限は無い。例えば、電子線リソグラフィ法又は干渉露光法によるマスクパターンニングとドライエッチングとを用いて形成する方法や、斜め蒸着法によって形成する方法などが挙げられる。金属ワイヤは非常に薄く形成する必要があるため、生産性、光学対称性の観点からは、斜め蒸着法を用いることが好ましい。
【0035】
また、光学特性の観点から、不要な金属はエッチングにより除去しても良い。エッチング方法は、基材や後述する誘電体層に悪影響を及ぼさず、金属部分が選択的に除去できる方法であれば特に限定は無いが、生産性の観点からアルカリ性の水溶液に浸漬させる方法が好ましい。ただし、金属ワイヤは非常に薄く形成されるため上記のエッチング除去は必須ではない。
【0036】
基材を構成する材料と金属ワイヤとの密着性向上のために、両者の間に両者と密着性の高い誘電体材料を介在させても良い。基材と金属ワイヤの密着性が高いと、基材からの金属ワイヤの剥離を防ぎ、偏光度の低下を抑えることができる。好適に用いることができる誘電体としては、例えば、珪素(Si)の酸化物、窒化物、ハロゲン化物、炭化物の単体又はその複合物(誘電体単体に他の元素、単体又は化合物が混じった誘電体)や、アルミニウム(Al)、クロム(Cr)、イットリウム(Y)、ジルコニア(Zr)、タンタル(Ta)、チタン(Ti)、バリウム(Ba)、インジウム(In)、錫(Sn)、亜鉛(Zn)、マグネシウム(Mg)、カルシウム(Ca)、セリウム(Ce)、銅(Cu)などの金属の酸化物、窒化物、ハロゲン化物、炭化物の単体又はそれらの複合物を用いることができる。誘電体材料は、透過偏光性能を得ようとする波長領域において実質的に透明であることが好ましい。誘電体材料の積層方法には特に限定は無く、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理的蒸着法を好適に用いることができる。
【0037】
反射偏光鏡12は、誘電体鏡11に貼着されていることが好ましい。これは、反射偏光鏡12と誘電体鏡11の間に空間が存在すると、界面反射による偏光状態の変化が生じるためである。また、例えば、画像情報を画像解析のために偏光分離する場合、反射偏光鏡12と誘電体鏡11の間の空間が画像の二重化(ゴースト)を発生させてしまう恐れがある。ゴーストを防止するためには、反射偏光鏡12を誘電体鏡11に貼着させることが有効である。なお、ゴーストを防止するためには、例えば、反射偏光鏡を構成する偏光分離層と誘電体鏡の誘電体の層の間の距離を短くすることが有効であり、基材が樹脂であるワイヤグリッド偏光板は厚みを薄くできるため、好適に用いられる。
【0038】
受光器13は、撮像素子やフォトレジスタ等を挙げることができるが、入射した光を画像に変換できるものであれば、特に制限は無い。
【0039】
上記構成を有する光学システムにおける前記誘電体鏡11及び反射偏光鏡12は、画像等情報を有する被写体からの光を高度に解析するための、第1の特定波長光は偏光分離せずに第2の特定波長光のみを偏光分離できる検光フィルタとして作用する。例えば、被写体である指紋等の人体表面の情報と静脈等の人体内の情報とを用いて高精度に認証するためには、人体表面の情報を可視光域の明るい映像として受光し、人体内の情報は被写体からの近赤外光域の特定の偏光状態の光を受光することにより、達成できる。前記誘電体鏡11及び反射偏光鏡12は、例えば、誘電体鏡11をコールドミラーとし、反射偏光鏡12をワイヤグリッド偏光板とすることにより、可視光域の光は偏光分離せずに反射できるために明るくでき、近赤外光域の光は偏光分離できるため、前記認証のための検光フィルタとして最適である。したがって、この構成を受光器とともに用いることで、簡素な構成で高精度に画像化できる光学システムを得ることができる。
【0040】
上記構成を有する光学システムにおいては、被写体から反射された光のうち、誘電体鏡11によって、第1の特定波長光(実線矢印)は反射し、第2の特定波長光(破線矢印)は透過する。反射した第1の特定波長光は、光路が変えられて受光器13に入射する。一方、誘電体鏡11で透過した第2の特定波長光は反射偏光鏡12によって偏光分離され、所定の偏光成分の光(偏光反射光)は反射して光路が変えられて、前記所定の偏光成分と直交する偏光成分の光(偏光透過光)は透過する。反射した赤外領域のS偏光成分は受光器13に入射する。
【0041】
これにより、被写体から反射された光から、第1の特定波長光を受光器13に入射させて画像化すると共に、第2の特定波長光のS偏光成分を受光器13に入射させて画像化することができる。このように、本実施形態の光学システムは、簡素な構成で、異なる波長の光が有する情報を高精度に画像化することができる。この光学システムは、生体認証分野やセキュリティ分野で利用することができる。
【0042】
(第2の実施形態)
図3は、本発明の第2の実施形態に係る光学システムの概略構成を示す模式図である。図3に示す光学システムは、図1に示す光学システムの誘電体鏡11と反射偏光鏡12の位置を変えた構成を有する。なお、図3において図1と同じ部材については図1と同じ符号を付してその詳細な説明は省略する。
【0043】
図3に示す光学システムは、被写体からの第1の特定波長光(図3における実線矢印)を反射すると共に、この第1の特定波長光と波長領域が異なる第2の特定波長光(図3における破線矢印)を透過させる誘電体鏡11と、第2の特定波長光を偏光反射する反射偏光鏡12と、誘電体鏡11で反射した第1の特定波長光を受けると共に、反射偏光鏡12で偏光反射した光を受ける受光器13と、から主に構成されている。
【0044】
上記光学システムにおいては、誘電体鏡11及び反射偏光鏡12が被写体と受光器13との間の光路上に設けられており、反射偏光鏡12が誘電体鏡11より被写体側、受光器13側に配置されている。このため、被写体からの光が反射偏光鏡12、誘電体鏡11の順に透過する。
【0045】
上記構成を有する光学システムにおいては、被写体から反射された光のうち、反射偏光鏡12によって、第2の特定波長光(破線矢印)の所定の偏光成分の光(偏光反射光)は反射し、第2の特定波長光の所定の偏光成分と直交する偏光成分の光(偏光透過光)及び第1の特定波長光(実線矢印)は透過する。反射した第2の特定波長光の偏光成分は、光路が変えられて受光器13に入射する。一方、反射偏光鏡12を透過した第1の特定波長光は誘電体鏡11によって反射して光路が変えられて受光器13に入射し、第2の特定波長光の偏光透過光は誘電体鏡11を透過する。反射偏光鏡12が誘電体鏡11より被写体側、受光器13側に配置されているため、第2の特定波長光は誘電体鏡11に入光する前に偏光反射鏡12に入光する。つまり、被写体からの第2の特定波長光の偏光状態を変化させることなく、偏光分離できるため、高精度に画像解析できる。さらに、固有の偏光軸を有する反射型偏光板を偏光反射鏡12として用いる場合、偏光分離層が固有の軸方向を有するため、入光する光の入光方向及び入光角度に依存することなく偏光分離できるため、さらに高精度に画像解析できるため、好ましい。
【0046】
これにより、被写体から反射された光から、第2の特定波長光の所定の偏光成分を受光器13に入射させて画像化すると共に、第1の特定波長光を受光器13に入射させて画像化することができる。このように、本実施形態の光学システムは、簡素な構成で、異なる波長の光が有する情報を高精度に画像化することができる。この光学システムは、生体認証分野やセキュリティ分野で利用することができる。
【0047】
特に、被写体に照射した偏光が被写体で反射して本光学システムに入射する場合は、誘電体からなる誘電体鏡11が、入光する光源光の入射方向と偏光軸方向次第で、入射する光の偏光状態を変化させてしまう場合がある。そのため、本実施形態のように、反射偏光鏡12を、被写体と受光器13との間の光路上で、誘電体鏡11より被写体側に配置することにより、入射する光の偏光状態が変化することを防止できる。
【0048】
本発明は、上記実施の形態に限定されず、種々変更して実施することが可能である。また、上記実施の形態において、添付図面に図示されている大きさ、形状、材質、数量等については、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
【産業上の利用可能性】
【0049】
本発明の光学システムは、生体認証分野やセキュリティ分野における画像検査装置、撮像装置等において好適に用いられる。
【符号の説明】
【0050】
11 誘電体鏡
12 反射偏光鏡
13 受光器
20 基材
20a 微細凹凸構造
21 金属ワイヤ
A 凸部
B 凹部
図1
図2
図3