(58)【調査した分野】(Int.Cl.,DB名)
少なくとも3つの物理的表面を含む自由形状導波路プリズムであって、該物理的表面の各々は、該物理的表面上に配置された複数の反射および屈折自由形状光学表面を含み、該物理的表面の内部空間は、1より大きい屈折指数(n)を有する屈折媒質によって充填され、該複数の反射表面は、該導波路が眼鏡の形に適合されることが可能であるように光路長を折り曲げて延長し、該眼鏡の形は、画像ディスプレイユニットが頭の側面に置かれることを可能にし、内側および外側表面は、眼鏡形状因子および30mmという最大厚さに適合する制約内で設計され、該複数の自由形状反射表面は、画像をゆがめることなしに光をユーザーの瞳孔へ導き、
該物理的および光学表面は、
a.該ユーザーの該瞳孔に向いて配置された物理的内側表面115であって、該物理的内側表面は、眼鏡形状因子のための事前指定された曲がった表面とほぼ同じであるように制約され、該内側表面は、最小量のひずみを有する画像を該ユーザーの眼球へ反射するように最適化された複数の自由形状反射表面と、少なくとも1つの屈折表面とを含む、物理的内側表面115と、
b.外部シーンに向いて配置された物理的外側表面125であって、該物理的外側表面は、最小量のひずみを有する画像を該ユーザーの該瞳孔へ反射するように最適化された複数の自由形状反射表面を含み、該物理的外側表面は、すべての点において該内側表面からの30mmという最大距離以内にあり、該物理的外側表面は、少なくとも1つの屈折表面を含むことにより、該外部シーンからの光が、該導波路を通過して該ユーザーの該眼球に到達することを可能にする、物理的外側表面125と、
c.画像ディスプレイユニットからの光が該導波路に入るための屈折表面を必要に応じて含む物理的縁表面120と、
d.該物理的表面のうちの1つに配置された屈折入力表面130であって、画像ディスプレイユニットからの光が該導波路に入ることを可能にする屈折入力表面130と、
e.該ユーザーの該瞳孔の近くで該物理的内側表面に配置された屈折出力表面135であって、光が該導波路から出ることを可能にする屈折出力表面135と、
f.該物理的内側および外側表面に配置された複数の3つ以上の自由形状反射表面であって、各反射は、全反射基準を満足すること、または、半透明な部分的に反射するコーティングを該導波路の該表面に塗布することのどちらかによって生成され、これらの反射は、最小のひずみを有する該光を該プリズムの該内部に沿って導くように最適化され、該複数の反射は、該プリズムが、広いシースルー視野およびヒトの頭に適合することに適したサイズを可能にするように該光路長を延長する、複数の3つ以上の自由形状反射表面と
を含み、
画像ディスプレイユニット105からの光140は、第一の屈折表面130を通って該導波路に入り、
該光140は、該第一の屈折表面130から第二の屈折表面135まで、該複数の反射表面の複数の反射を含む該導波路に沿った経路145をたどり、各反射は、全反射の条件を満足すること、または、半透明コーティングが該表面に塗布されていることのどちらかによって生成され、
光140は、該第二の屈折表面135を通過し、該第二の屈折表面135を越えた場所に、該ユーザーは、該画像を眺めるために自身の瞳孔150を置き、
現実世界のシーンからの光198は、該瞳孔150に到達する前に、該導波路100の該物理的外側表面125および該導波路の該物理的内側表面115を通って屈折させられる、自由形状導波路プリズム。
前記内側表面の形は、指定された眼鏡形状因子の外見とほぼ同じにすることによって制約され、該眼鏡形状因子は、2ベース、3ベース、4ベース、5ベース、6ベース、7ベース、8ベース、9ベースを含むがこれらに制限されない、請求項3に記載の自由形状導波路プリズム。
水平の寸法における前記内側表面区分の形は、50mmと100mmとの間の半径を有するカーブとほぼ同じにすることにより、8ベースの眼鏡形状因子の外見とほぼ同じである、請求項3に記載の自由形状導波路プリズム。
水平の寸法における前記内側表面区分の形は、100mmと500mmとの間の半径を有するカーブとほぼ同じにすることにより、4ベースの眼鏡形状因子の外見とほぼ同じである、請求項3に記載の自由形状導波路プリズム。
前記導波路の各物理的表面は、1つ以上の自由形状表面区分を含み、各表面区分はパラメータの特有の組によって説明される、請求項1に記載の自由形状導波路プリズム。
前記表面区分間の任意の交わる点は、前記頭のこめかみ側に向かう前記シースルー視野290の上位の限界290aの外側にあるように制約される、請求項8に記載の自由形状導波路プリズム。
前記交わる点の位置は、該交わる点の周りに最小1mmの光線のないギャップがあるように制約され、前記第一の屈折表面において前記プリズムに入る光は、該ギャップに到達しない、請求項10に記載の自由形状導波路プリズム。
半透明コーティングが、全反射の条件を満足する表面に塗布され、誘電性半透明コーティングが、該表面が該条件を満足し続けるように塗布される、請求項1に記載の自由形状導波路プリズム。
ミラーコーティングが、前記導波路の前記外側表面の一部に塗布され、該一部は、前記頭のこめかみ側に向かう前記シースルー視野290の上位の限界290aの外側にある、請求項1に記載の自由形状導波路プリズム。
前記表面は、前記導波路に入る光線を、該導波路の内側の中間点において再集束させて、中間画像を生成するように設計され、該中間画像を生成することの結果は、延長された光路長を有する該導波路の増加した光パワーである、請求項1に記載の自由形状導波路プリズム。
前記導波路は、5つの反射表面を含み、該導波路に入る光は、屈折表面435を通って出る前に、該反射表面によって連続して5回(R1〜R5)反射され、前記外側反射表面は、同じ表面パラメータを有する1つの滑らかな外側表面425の一部であり、前記内側表面は、同じ表面パラメータを有する別の1つの滑らかな内側表面415の一部であり、該内側表面は、8ベースの眼鏡形状因子に従って制約され、光線束440a、440bおよび440cは、前記プリズムの前記縁沿いにある屈折表面430を通って該プリズムに入り、該プリズムに入った後、該第一(R1)および第二(R2)の反射は、全反射の条件を満足し、該第三(R3)、第四(R4)および第五(R5)の反射は、全反射の条件を満足せず、代わりに半透明コーティングが塗布されている、請求項1または請求項2に記載の自由形状導波路プリズム。
前記導波路の前記内側物理的表面は、異なったパラメータを有する2つの別個の自由形状表面に分割され、該導波路は、5つの反射表面を含み、該導波路に入る光は、屈折表面535を通って出る前に、反射表面によって5回(R1〜R5)反射され、前記外側反射表面は、同じ表面パラメータを有する1つの滑らかな表面525の一部であり、前記内側は、2つの表面区分515aおよび515bに分けられ、該表面区分の各々は、特有のパラメータの組を有する1つの滑らかな表面であり、前記第一の屈折表面530および該第一の内側表面区分515aは、自由形状表面パラメータの同じ組によって説明され、該第二の内側表面区分515bは、8ベースの眼鏡形状因子に適合するように制約され、該第一および第二の内側表面区分は、中間区分515cによって接続され、光は、該第一の屈折表面530を通って前記プリズムに入って、該第二の屈折表面535を通って出、それから光は、前記ユーザーの眼球に投影され、該光の経路に沿った該第一および最後の反射は、全反射基準を満足せず、これらの表面は、半透明コーティングを塗布され、該第二、第三および第四の反射は、全反射基準を満足し、該第三の反射は、誘電性コーティングを塗布されている、請求項1または請求項2に記載の自由形状導波路プリズム。
前記中間区分515cは、前記第一または第二の内側表面区分515a、515bとの一次の連続を維持するように設計される、請求項16に記載の自由形状導波路プリズム。
前記第一の反射(R1)を促進するために、ミラーコーティングが、前記シースルー視野の前記上位の境界590aの外側の前記外側物理的表面525に塗布される、請求項16に記載の自由形状導波路プリズム。
少なくとも3つの物理的表面を含む自由形状導波路プリズムであって、該物理的表面の各々は、該物理的表面上に配置された複数の反射および屈折自由形状光学表面を含み、該物理的表面の内部空間は、1より大きい屈折指数(n)を有する屈折媒質によって充填され、該複数の反射表面は、該導波路が眼鏡の形に適合されることが可能であるように光路長を折り曲げて延長し、該眼鏡の形は、画像ディスプレイユニットが頭の側面に置かれることを可能にし、内側および外側表面は、眼鏡形状因子および30mmという最大厚さに適合する制約内で設計され、該複数の自由形状反射表面は、画像をゆがめることなしに光をユーザーの瞳孔へ導き、
該物理的および光学表面は、
a.該ユーザーの該瞳孔に向いて配置された物理的内側表面115であって、該内側表面は、最小量のひずみを有する画像を該ユーザーの眼球へ反射するように最適化された複数の自由形状反射表面と、少なくとも1つの屈折表面とを含む、物理的内側表面115と、
b.外部シーンに向いて配置された物理的外側表面125であって、該物理的外側表面は、最小量のひずみを有する画像を該ユーザーの該瞳孔へ反射するように最適化された複数の自由形状反射表面を含み、該物理的外側表面は、すべての点において該内側表面からの30mmという最大距離以内にあり、該物理的外側表面は、少なくとも1つの屈折表面を含むことにより、該外部シーンからの光が、該導波路を通過して該ユーザーの該眼球に到達することを可能にする、物理的外側表面125と、
c.画像ディスプレイユニットからの光が該導波路に入るための屈折表面を必要に応じて含む物理的縁表面120と、
d.該物理的表面のうちの1つに配置された屈折入力表面130であって、画像ディスプレイユニットからの光が該導波路に入ることを可能にする屈折入力表面130と、
e.該ユーザーの該瞳孔の近くで該物理的内側表面に配置された屈折出力表面135であって、光が該導波路から出ることを可能にする屈折出力表面135と、
f.該物理的内側および外側表面に配置された複数の3つ以上の自由形状反射表面であって、各反射は、全反射基準を満足すること、または、半透明な部分的に反射するコーティングを該導波路の該表面に塗布することのどちらかによって生成され、これらの反射は、最小のひずみを有する該光を該プリズムの該内部に沿って導くように最適化され、該複数の反射は、該プリズムが、広いシースルー視野およびヒトの頭に適合することに適したサイズを可能にするように該光路長を延長する、複数の3つ以上の自由形状反射表面と
を含み、
画像ディスプレイユニット105からの光140は、第一の屈折表面130を通って該導波路に入り、
該光140は、該第一の屈折表面130から第二の屈折表面135まで、該複数の反射表面の複数の反射を含む該導波路に沿った経路145をたどり、各反射は、全反射の条件を満足すること、または、半透明コーティングが該表面に塗布されていることのどちらかによって生成され、
光140は、該第二の屈折表面135を通過し、該第二の屈折表面135を越えた場所に、該ユーザーは、該画像を眺めるために自身の瞳孔150を置き、
現実世界のシーンからの光198は、該瞳孔150に到達する前に、該導波路100の該物理的外側表面125および該導波路の該物理的内側表面115を通って屈折させられ、
該導波路は、5つの反射表面を含み、光は、該第一の屈折表面630に入り、該光線は、該反射表面によって5回反射され、該外側反射表面は、同じ表面パラメータを有する1つの滑らかな外側表面625の一部であり、該内側表面615は、同じ表面パラメータを有する別の1つの滑らかな表面であるが、該屈折表面630とは別個であり、該光線は、屈折させられて該導波路から外へ向かい、該射出瞳650まで、該光線は、カラー画像を含み、該第一および最後の反射は、全反射基準を満足せず、半透明コーティングを塗布され、該第二、第三および第四の表面は、全反射率基準を満足し、該第三の反射は、誘電性コーティングを塗布され、ミラーコーティングが、該シースルー視野690の上限690aを越えた該導波路の該外側表面625aに塗布されている、自由形状導波路プリズム。
前記導波路自身が、光学収差を補正するのに十分である場合、該導波路の光学特性は、連結レンズが必要ないように設計される、請求項1または請求項2に記載の自由形状導波路プリズム。
前記外側表面は、2つの区分725a、725bに分けられ、該2つの区分は、第三の区分725cによって接続され、前記内側表面715は、4ベースの眼鏡形状因子を満たすように制約され、該外側表面の該分割は、該眼鏡形状因子の制約の範囲内で光学的要件を満たすことを容易にする、請求項1または請求項2に記載の自由形状導波路プリズム。
前記中間の外側表面区分725cは、前記第一または第二の外側表面区分725aおよび725bとの一次の連続を維持するように設計される、請求項21に記載の自由形状導波路プリズム。
前記導波路は、5つの反射表面を含み、前記内側物理的表面と前記外側物理的表面との両方は、異なった区分に分割され、該第一の内側表面815aは、前記第一の屈折表面と前記第二の反射表面とを含み、該第二の内側表面区分815bは、前記第四の反射表面と前記第二の屈折表面835とを含み、該第一の外側表面区分825aは、前記第一の反射表面を含み、該第二の外側表面区分825bは、前記第三および第五の反射表面を含み、第三の内側表面区分815cは、該第一および第二の内側表面区分を接続し、第三の外側表面区分825cは、該第一および第二の外側表面区分を接続し、かつ、該第一および第二の外側表面区分との一次の連続を維持するように設計され、該内側表面区分815bは、8ベースの眼鏡形状因子とほぼ同じであるように制約され、光は、該導波路の該第一の屈折表面830に入って、該第二の屈折表面835において該導波路から出る前に、5回(R1〜R5)反射される、請求項1または請求項2に記載の自由形状導波路プリズム。
前記導波路915の前記内側物理的表面は、8ベースの形状因子の代わりに4ベースの形状因子とほぼ同じであるように制約される、請求項23に記載の自由形状導波路プリズム。
前記導波路は、3つの反射表面を含み、光は、該導波路の前記第一の屈折表面1030に入り、該光線は、該反射表面によって3回反射され、前記外側反射表面は、同じ表面パラメータを有する1つの滑らかな表面1025の一部であり、該第一の屈折表面1030は、該導波路の前記内側表面1015の一部ではなく、該光は、射出瞳1050に到達する前に、前記屈折表面1035から外に投影され、該第一および第二の反射(R1〜R2)は、全反射の条件を満足し、該第三の反射表面R3は、全反射の条件を満足せず、半透明コーティングを該外側表面1025に塗布され、誘電性コーティングが、該外側表面に塗布され、該内側表面は、8ベースの形状因子に適合するように制約され、該表面は、広いシースルー視野を提供するように一緒に設計される、請求項1または請求項2に記載の自由形状導波路プリズム。
全反射率を満足しない表面と同じ物理的表面の一部である、全反射率基準を満足する表面は、半透明コーティングも塗布され、全反射率基準を満足する該表面の半透明コーティングは、誘電性半透明コーティングであり、該全反射率基準を満足する該表面は、該全反射率基準を満たし続ける、請求項1に記載の自由形状導波路プリズム。
画像ディスプレイユニット105の同じ画素からの複数の光線は、前記導波路100の内側で少なくとも一度交差し、中間画像を前記中間点において生成する、請求項1に記載の自由形状導波路プリズム。
現実世界からの光は、前記導波路プリズムを通過するより前に、補償レンズ160を最初に通過し、該補償レンズ160は、該導波路プリズムを通して該世界を眺めることによって引き起こされる光学的なひずみを補正し、該補償レンズは、
i.外部シーンに向いて配置された屈折外側表面170であって、該外部シーンからの光198が該補償レンズに入ることを可能にする屈折外側表面170と、
ii.該導波路プリズム100の前記外側表面に向いて配置された屈折内側表面165であって、光が該補償レンズから出て該導波路プリズム内に入ることを可能にする屈折内側表面165と
を含み、
該補償レンズの該屈折内側表面165および該屈折外側表面は、該世界を両方のレンズを通して観察する場合に、該ユーザーが澄んだシースルーの眺めを維持するように、該導波路によって引き起こされる光線シフトおよびひずみの影響を補償するように設計され、該屈折内側表面165は、典型的に、該導波路プリズム100の該外側表面125の形とほぼ同じであるように制約され、
該現実世界のシーンからの光198は、該導波路100に到達する前に、補償レンズ160の該屈折外側表面170および該屈折内側表面165を通って屈折させられる、請求項1に記載の自由形状導波路プリズム。
【図面の簡単な説明】
【0014】
【
図1】
図1は、本発明の典型的な実施形態の概念例証である。
【
図2a】
図2aは、YZ平面内の断面図において本発明の設計のための重要な構造上の制約の組を図示する。
【
図2b】
図2bは、XZ平面内の断面図において本発明の設計のための追加の構造上の制約を図示する。
【
図3】
図3は、3D図において基準表面230を図示する。
【
図4】
図4は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの5−反射の好ましい実施形態を示す。
【
図5】
図5は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。
【
図6】
図6は、こめかみ側に平らな内側カーブを有する本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。
【
図7】
図7は、
図6における前の実施形態と同様の形状を有する本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。
【
図8】
図8は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの別の5−反射の好ましい実施形態を示し、この実施形態は、反射タイプのマイクロディスプレイに基づく。
【
図9】
図9は、
図8における前の実施形態と同様であるが、内側表面が4ベースカーブとほぼ同じである本発明の別の好ましい実施形態を示す。
【
図10】
図10は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの3−反射の好ましい実施形態を示す。
【
図11】
図11は、
図8に示された実施形態5についての記号および要素の定義を示す。
【
図12-1】
図12は、実施形態5についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図12-2】
図12は、実施形態5についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図12-3】
図12は、実施形態5についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図13】
図13は、
図9に示された実施形態6についての記号および要素の定義を示す。
【
図14-1】
図14は、実施形態6についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図14-2】
図14は、実施形態6についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図14-3】
図14は、実施形態6についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図15】
図15は、実施形態6についてのシースルー経路の光線追跡例を示す。
【
図16】
図16は、本発明の実施形態6に従う、4ベースカーブの外見を有する例証のOST−HMD設計を示す。
【
図18-1】
図18は、実施形態7についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図18-2】
図18は、実施形態7についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図18-3】
図18は、実施形態7についての、赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットを示す。
【
図19】
図19は、
図10に示された実施形態7についての補償レンズの記号および要素の定義を示す。
【
図20】
図20は、
図10に示された実施形態7についてのシースルー経路の光線追跡例を示す。
【
図21-1】
図21は、
図10に示された実施形態7についての、シースルー経路のために選択されたフィールドの多色のMTFプロットを示す。
【
図21-2】
図21は、
図10に示された実施形態7についての、シースルー経路のために選択されたフィールドの多色のMTFプロットを示す。
【
図21-3】
図21は、
図10に示された実施形態7についての、シースルー経路のために選択されたフィールドの多色のMTFプロットを示す。
【
図22】
図22は、本発明の実施形態7の形を整えられていない3Dモデルを示す。
【
図23】
図23は、本発明の実施形態7に従う、8ベースカーブのラップアラウンド型の外見を有する例証のOST−HMD設計を示す。
【
図24】
図24は、自由形状表面の形を定義する数学的方程式を示す。
【
図26】
図26は、
図8および
図11に示された実施形態5の連結レンズおよびフィールドレンズについての表面パラメータを示す。
【
図29】
図29は、
図9および
図13に示された実施形態6の連結レンズおよびフィールドレンズについての表面パラメータを示す。
【
図31】
図31は、
図10示された実施形態7の導波路プリズムについての表面パラメータを示す。
【
図32】
図32は、
図10および
図17に示された実施形態7の連結レンズおよびフィールドレンズについての表面パラメータを示す。
【発明を実施するための形態】
【0015】
本発明に従う実施形態は、添付の図面に関連して完全に説明される。説明は、本発明の理解を提供するために述べられる。しかし、本発明は、これらの詳細なしに実施され得るということが明白である。さらに、本発明は、種々の形状において実装され得る。しかし、以下に説明される本発明の実施形態は、本明細書中に述べられる実施形態に制限されるように構成されない。むしろ、これらの実施形態、図面および例は、例証となるものであり、かつ本発明を不明瞭にすることを避けることが意図されている。
【0016】
本発明は、眼鏡形状の外見および広いシースルー視野(FOV)を有する光学シースルーHMDにおける光学ビューイングデバイスとしての使用のための人間工学的に設計された自由形状光学システムに関連する。
図1に示される本発明の典型的な実施形態は、表示された仮想画像を自由形状導波路プリズムを通してユーザーの目の瞳孔内に投影する画像ディスプレイシステムであり、そのシステムは、ユーザーが、現実世界のシーンにかぶせられた表示された内容を見ることを可能にし、そのシステムは、
a.画像源として役立ち、かつ光を導波路内に投影する小型の画像ディスプレイユニット105と、
b.ディスプレイユニットからの光を自由形状導波路プリズム100内に導き、かつ光学収差を補正する1つ以上のレンズから成り立つ自由選択連結レンズ群110と、
c.説明されるような透明な自由形状光学導波路プリズム100であって、その透明な自由形状光学導波路プリズム100は、ディスプレイユニット105からの光を受け入れて、画像がユーザーの目の瞳孔内に投影されるまでその光を伝搬し、導波路は、現実世界のシーンからの光が通過してユーザーの目の瞳孔に入ることを可能にし、導波路は、物理的内側表面115、物理的縁表面120および物理的外側表面125、第一の屈折表面130および第二の屈折表面135、ならびに複数の反射表面を有する、透明な自由形状光学導波路プリズム100と、
d.導波路の物理的外側表面125に固定された自由形状補償レンズ160であって、その自由形状補償レンズ160は、導波路プリズムを通して世界を眺めることによって引き起こされる光学的なひずみを補正し、補償レンズ160の内側物理的表面165は、導波路プリズム100の外側物理的表面125の形とほぼ同じであり、小さなギャップ195は、TIR基準が、導波路の外側物理的表面125について満足される表面において、導波路100と補償レンズ160との間に維持され、補償レンズ160は、ユーザーが澄んだシースルー視野190を維持するために、導波路100によって引き起こされる光線シフトおよびひずみの影響を補償するように設計される、自由形状補償レンズ160と
を含み、画像ディスプレイユニット105は、画像源として役立ち得る任意のタイプの自己放射または照明された画素アレイであり得、シリコン上液晶(LCoS)ディスプレイデバイス、液晶ディスプレイ(LCD)パネル、有機発光ディスプレイ(OLED)、シリコン上強誘電性液晶(LCoSデバイス、デジタルミラーデバイス(DMD)、またはこれら前記または他のタイプのマイクロディスプレイデバイスを基礎としたマイクロプロジェクターを含むが、これらに制限されず、
画像ディスプレイユニット105は、光140を自由選択連結レンズ110、引き続いて導波路100内に伝導するか、または直接導波路に第一の屈折表面130を通して伝導し、
光140は、第一の屈折表面130から第二の屈折表面135まで、複数の反射を含む導波路に沿った経路145をたどり、
導波路に沿った経路145をたどる光140の光線は、交差しかつ導波路100の内側に中間画像155を形成し得、
光140は、第二の屈折表面135を通過し、その第二の屈折表面135を越えた場所に、ユーザーは、画像を眺めるために自身の瞳孔150を置き、
現実世界のシーンからの光198は、瞳孔150に到達する前に、補償レンズ160および導波路100を通過する。
【0017】
本発明の一局面は、人間工学的に成形された自由形状導波路プリズムであり、その自由形状導波路プリズムは、画像がプリズムの1つの屈折入力表面に投影されることを可能にし、それから、その画像は、ユーザーの目に到達するまで、反射されかつ屈折させられる。導波路プリズムの形、光路長、および厚さは、意図的に最適化され、ヒトの頭との人間工学的適合および魅力的な眼鏡のような外見を提供する光学シースルーHMDのラップアラウンド型の設計を可能にする。
【0018】
典型的な実施形態において、本発明の自由形状導波路プリズムは、少なくとも3つの物理的表面を含み、その物理的表面の各々は、物理的表面上に配置された複数の反射および屈折光学表面を含み、物理的表面の内部空間は、1より大きい指数(n)を有する屈折媒質によって充填され、物理的および光学表面は、
a.ユーザーの眼球に向いて配置された物理的内側表面115であって、画像をユーザーの眼球に伝搬するのに適切な複数の反射および屈折表面を含む物理的内側表面は、ヒトの頭の人間工学的因子に適合するように制約される、物理的内側表面115と、
b.外部シーンに向いて配置された物理的外側表面125であって、物理的外側表面は、画像をユーザーの眼球に反射するのに適切な複数の反射表面を含み、物理的外側表面は、すべての点において、内側表面から概して30mm以内であり、物理的外側表面は、外部シーンからの光が、導波路を通過してユーザーの眼球に到達することを可能にする少なくとも1つの屈折表面を含む、物理的外側表面125と、
c.画像ディスプレイユニットからの光が導波路に入る屈折表面を潜在的に含み得る物理的縁表面120と、
d.物理的表面のうちの1つに配置された、画像ディスプレイユニットからの光が導波路に入ることを可能にする屈折入力表面130と、
e.ユーザーの瞳孔の近くで物理的内側表面に配置された、光が導波路から出ることを可能にする屈折出力表面135であって、屈折表面は、半透明コーティングによって覆われても、覆われなくてもよい、屈折出力表面135と、
f.物理的内側および外側表面に配置された複数の反射表面であって、各反射は、TIR条件を満足すること、または半透明な部分的に反射するコーティングを導波路の表面に塗布することのどちらかによって生成される、複数の反射表面と
を含み、画像ディスプレイユニット105からの光140は、第一の屈折表面130を通って導波路に入り、
光140は、第一の屈折表面130から第二の屈折表面135まで、複数の反射表面上の複数の反射を含む導波路に沿った経路145をたどり、各反射は、全反射の条件を満足すること、または半透明コーティングを表面に塗布することのどちらかによって生成され、
光140は、第二の屈折表面135を通過し、その第二の屈折表面135越えた場所に、ユーザーは、画像を眺めるために自身の瞳孔150を置き、
現実世界のシーンからの光198は、補償レンズ160によって屈折させられた後、瞳孔150に到達する前に、導波路100の物理的外側表面125および導波路の物理的内側表面115を通って屈折させられる。
【0019】
典型的な実施形態において、導波路の内側表面115および外側表面125は、画像をゆがめることなしにユーザーの瞳孔へ光を導く複数の反射を生成すように適切に設計される。複数の反射は、導波路プリズムの幅が平均のヒトの頭の幅とぴったりと適合するように、光路長を延長する。長い光路長は、導波路プリズムの設計を人間工学的形にすることを可能にする。プリズムの長い光路は、画像ディスプレイユニット105をディスプレイフレームの側面に移動させることをさらに可能にし、それは、HMDシステムの前方重量を減らし、かつシステムの人間工学的適合を向上させる。
【0020】
典型的な実施形態において、内側表面115は、所望の眼鏡形状因子のために、事前設計された曲がった表面とほぼ同じであるように制約される。外側表面125は、内側表面と外側表面との間の概してわずか30mmの薄さを有する薄いプロファイルを達成するようにさらに制約される。技術の一実施において、発明者らは、内側表面と外側表面との間の全体の薄さをわずか12mmであるように制約した。したがって、導波路の内側表面および外側表面のパラメータは、投影される画像が、導波路の出口点において最小のひずみを有するように最適化される。
【0021】
典型的な実施形態において、導波路100の内側表面115は、複数の表面区分を含み得る。各表面区分は、パラメータの1つの特有の組によって説明される。
【0022】
典型的な実施形態において、導波路100の外側表面125は、複数の表面区分を含み得る。各表面区分は、パラメータの1つの特有の組によって説明される。
【0023】
いくつかの実施形態において、連結レンズ110は、小型の画像ディスプレイユニット105と、導波路100の第一の屈折表面130との間に追加され、ディスプレイユニット105からの光を導波路内に伝導することを容易にし得る。連結レンズは、導波路の光学収差を補正するために使用され得る。
【0024】
本発明の1つの他の局面は、導波路プリズム100に物理的に取り付けられた自由形状シースルー補償レンズ160である。補償レンズ160は、導波路プリズム100によって引き起こされる光線シフトおよびひずみを打ち消すように設計され、かつ広い視野にわたった現実世界のシーンの澄んだシースルーの眺めを可能にする。
【0025】
典型的な実施形態において、本発明の自由形状補償レンズ160は、複数(概して2以上)の自由形状屈折表面を含み、屈折表面の内部空間は、1より大きい指数(n)を有する屈折媒質によって充填され、光学表面は、
a.外部シーンに向いて配置された、外部シーンからの光198が補償レンズに入ることを可能にする屈折外側表面170であって、屈折外側表面は、概して連続的な1つの屈折表面であり、かつすべての点において、導波路プリズム100の物理的内側表面115から概して30mm以内である、屈折外側表面170と、
b.導波路プリズム100の外側表面125に向いて配置された、光が補償レンズを出て導波路プリズム100内に入ることを可能にする屈折内側表面165であって、複数の屈折表面を含む屈折内側表面165は、概して、導波路プリズム100の外側表面125の形とほぼ同じであるかまたは合うように制約される、屈折内側表面165と
を含み、現実世界のシーンからの光198は、瞳孔150に到達する前に、補償レンズ160の屈折外側表面170および屈折内側表面165、導波路100の物理的外側表面125および物理的内側表面115を通って屈折させられる。
【0026】
典型的な実施形態において、補償レンズ160および導波路プリズム100は、非常に広い視野190にわたった周囲の環境の適切な眺めを可能にするように、意図的に共に最適化される。補償レンズ160の内側表面165および外側表面170は、補償レンズ160が導波路プリズム100と結合される場合に現実世界のシーンからの光線に導入されるシフトおよびひずみを最小にするように最適化される。補償レンズ160の内側表面165は、z軸に沿った小さなオフセットを有する、導波路プリズム100の外側表面125の正確な複製物であり得る。導波路プリズム100の取り付けられた外側表面125上の反射が、仮想画像ディスプレイ経路においてTIR条件を満足する場合、導波路プリズム100と補償レンズ160との間の小さなエアギャップ195を維持することが必要である。導波路プリズム100の外側表面125にTIR要件がない場合、指数整合接着剤が、補償レンズ160を導波路プリズム100と接着するために、エアギャップ195内を充填し得る。補償レンズ160の内側表面165はまた、より良いシースルー性能のために、補償レンズ160の外側表面170と一緒に再設計され得る。この場合について、導波路プリズム100と補償160との間のギャップ195は、表面に沿った任意の点において、6mmより小さいように制約され得る。外側表面170は、導波路プリズム100および補償レンズ160の全体の厚さを概してわずか30mmであるように制限するようにさらに制約される。技術の一実施において、発明者らは、プリズムおよびレンズの全体の厚さをわずか15mmであるように制約した。補償レンズ160の内側表面165と外側表面170との両方は、指定されたシースルーFOV190のために十分に大きくあるべきである。補償レンズの形および厚さは、意図的に最適化され、ヒトの頭との人間工学的適合および魅力的な眼鏡のような外見を提供する光学シースルーHMDのラップアラウンド型の設計を可能にする。
【0027】
典型的な実施形態において、補償レンズ160および導波路プリズム100上の内側および外側表面は、十分に大きいことにより、ヒトの視野(たとえば、視野の中心に対して、水平方向においてこめかみ側に90°および鼻側に60°まで、ならびに垂直方向において高くかつ低く60°まで)と同じくらい大きい広いシースルー視野190を可能にする。導波路プリズム100および補償レンズ160上の自由形状表面は、光線シフトおよびひずみを補正するように最適化されることにより、大きなFOVにわたった高いシースルー性能を保証する。
【0028】
すべての前述の表面は、自由形状表面であり、球面、非球面、アナモルフィック非球面、XYP多項式、または他の任意のタイプの数学的規定を含むが、それらに制限されず、他の任意のタイプの数学的規定は、
図1に示されるようなグローバル座標のYZ平面において非対称であり、座標系の原点は、射出瞳150の中心に定められ、Z軸175は外部シーンを指し示し、Y軸180はこめかみ側を指し示し、X軸185は頭に沿って垂直に指し示している。本開示を通じて、特別な告知がなければ、同じ座標系は、すべての図面および説明について使用される。
【0029】
本発明の主要な目標は、眼鏡形状の外見および広いシースルー視野(FOV)を達成している光学シースルーHMDにおける光学ビューイングデバイスとしての使用のための自由形状光学システムを設計することである。このように、導波路プリズムを設計することは、適切な光学誤差関数(たとえば、波面誤差またはシステム変調伝達関数(MTF))を最小にするように各個々の表面のパラメータを最適化することを要求する。
図1に提示された導波路プリズムは、従来の回転対称の光学表面のものよりも多くの設計の自由さを提供する複数の自由形状表面を含む。したがって、自由形状設計アプローチは、従来の回転対称の光学表面を使用する同様の明細書の光学ビューイングデバイスと比べてより少ない表面を使用しながら、よりよい光学性能および人間工学的適合を有する光学ビューイングデバイスを設計する能力を提供する。しかし、導波路プリズムの確かな設計をするために、適切な制約は、表面のすべてに適用されなければならず、それにより、所望の形状因子を維持することおよび大きなシースルーFOVを提供することの発明者らの主要な目標を達成する。
【0030】
図2および3は、発明者らが、発明者らの設計工程中に用いた構造上の制約を図示する。これらの制御方法は、構造上の特性を発明者らの設計に与える。
【0031】
図2は、導波路プリズム設計のための重要な構造上の制約の組を図示する。
図2aは、YZ平面における断面図を、
図2bはXZ平面における断面図を図示する。図において、導波路200の射出瞳250は、ヒトの目の瞳孔に位置を調整される。破線230は、導波路200の内側表面215の形、および小型の画像ディスプレイユニット205の位置を制約するために使用される基準表面である。基準表面230は、顔の鼻側から耳側までのヒトの頭の普通の曲率とほぼ同じである、(
図3において示されるような)3D空間における円筒形表面である。水平なYZ平面における基準平面230の半径は、対象のユーザー集団の頭のサイズに応じて、40mmから100mmほどまで変化し得る。垂直なXZ平面における基準平面230の半径は、プリズムの内側表面がユーザーの顔と抵触しない限り、まっすぐであるか、または曲げられ得る。技術の一実施において、発明者らは、水平方向において65mmの半径を選び、この半径は、8ベースカーブ眼鏡の半径と同様である。基準カーブの中心232は、基準寸法Y
ref1234、Z
ref1236、およびY
HIPD238によって定義され、寸法Y
HIPD238は、ユーザーの瞳孔間距離(IPD)の半分であり、IPDは、集団の95%以上について40mmから80mmまでの典型的な範囲を有する。基準寸法234、236、および238は、特定の設計目標に従って選ばれる。技術の一実施において、8ベースカーブおよび64mmのIPDの例のために、寸法234は10mmであるように、寸法236は50mmであるように、寸法238は32mmであるように選ばれる。寸法Z
ref2242によって定義される破線240は、内側表面215の形を制約するための別の基準表面である。所望の形の平らな表面または曲がった表面であり得る基準表面240は、補償レンズ260がユーザーの顔から離れて突き出すぎないことを保証し、補償レンズ260がユーザーの顔から離れて突き出ることは、非常に貧相な外見を有する光学設計をもたらし得る。破線290aおよび290bは、水平方向における、こめかみから鼻までの指定されたシースルーFOV290の境界を表す一方、破線290cおよび290dは、垂直方向における指定されたシースルーFOV290の境界を表す。
【0032】
発明者らの人間工学的設計目標および所望のシースルーFOVを満たすために、下記の制約が、導波路200の内側表面215に適用される。
【0033】
a.全体の内側表面215は、プリズムがユーザーの頭と抵触しないことを保証するために、基準表面230の外側にあるように制約される。
【0034】
b.内側表面215は、基準表面230から離れて逸れ得るが、内側表面215は、基準表面240を通過しないように制約される。
【0035】
c.内側表面215を1つの表面描写から複数の表面区分に分けることが必要である場合、表面区分の各々は、設計の自由さを増やすために、独自の数学的な式を有し、分割点が、シースルーFOV290の上位の境界290aの外側になければならないか、または分割区分が、一次の連続を維持する程度に、中間の区分によって接合されなければならない。言い換えれば、シースルーFOV290の内側の内側表面215の表面区分215aは、連続的な滑らかな光学表面でなければならない。表面区分215aの局所的な曲率半径は、許容可能なレベルにおけるシースルーひずみを維持するために、20mmほど大きくあるべきである。
【0036】
d.表面区分215aは、設計された曲率とほぼ同じであるように制約される。補償レンズ260の外側表面270が、内側表面区分215aと同様の形を有するので、内側表面区分215aの形は、導波路プリズムの外見を決定する。技術の一実施において、表面区分215aは、基準表面230の外側10mmに置かれたベース8カーブに従うように設計されることにより、8ベースのラップアラウンド型の設計を達成する。
【0037】
導波路プリズム200の外側表面225は、内側表面215よりもはるかに多い自由さを有する。外側表面は、必要とされる場合、複数の表面区分に分けられ得る。分割点は、シースルーFOV290の内側または外側にあり得る。分割点がシースルーFOV290の内側にある場合、2つの区分間の滑らかな遷移を保証するために、2つの隣接した表面区分の交わる線の周りに少なくとも1mmの光線のないギャップがあることが要求される。外側表面225は、指定されたシースルーFOV290ために、X方向とY方向との両方に沿って十分に広くなければならない。外側表面225と内側表面215との間の最大距離は、導波路プリズムが厚すぎないことを保証するために、概して30mmより小さく制約される。技術のいくつかの実施において、発明者らは、最大距離を15mmより小さいように制約した。低い光の損失が所望されるが、外側表面225上の反射についてTIR条件は、要求されない。TIR条件が満足されない場合、ハーフミラーコーティングが、シースルーFOV290の内側の表面区分に要求される。TIR条件が満足されない場合、高反射ミラーコーティングが、シースルーFOV290の外側の表面区分に推奨される。
【0038】
導波路プリズムの内側および外側表面に適用される制約に加えて、Y方向において目の瞳孔250からこめかみ側まで測定される導波路プリズム200の幅244は、導波路プリズムが、所望のシースルーFOV290をこめかみ側に提供するのに十分に広いように、下限を用いて制約される。人間工学的適合および魅力的な外見の目的のために、結果として生じる導波路プリズムが、ヒトの頭のこめかみ側に突き出すぎないことを保証するために、幅244は、上限を用いてさらに制約される。技術の一実施において、幅244は、Y方向において射出瞳250から50mmの上限を用いて設定される。
【0039】
Y方向において目の瞳孔250から鼻側まで測定される導波路プリズムの幅246は、導波路プリズム200が、所望のシースルーFOV290を鼻側に提供するのに十分に広いように、下限を用いて制約される。結果として生じる導波路プリズムが、ヒトの頭の鼻梁と抵触しないことを保証するために、幅246は、上限を用いてさらに制約される。技術の一実施において、幅246は、Y方向において瞳孔250から30mmの上限を用いて設定される。
【0040】
X方向において目の瞳孔250から額まで測定される高さ252および目の瞳孔250から頬まで測定される高さ254は、導波路プリズム200が、所望のシースルーFOV290を垂直の寸法において上および下に提供するのに十分に高いように、下限を用いて制約される。
【0041】
2つの位置制約が、小型の画像ディスプレイユニット205に適用される。(1)ディスプレイユニットの任意の部分は、基準表面230の外側にあるべきである。(2)ディスプレイユニットは、Y方向において射出瞳250から離れすぎるべきではない。
【0042】
補償レンズ260は、導波路プリズム200によって引き起こされる光線シフトおよびひずみを打ち消すように設計され、かつ導波路プリズム200に物理的に取り付けられる。補償レンズ260の内側表面265および外側表面270は、補償レンズ260が導波路プリズム200と結合される場合に現実世界のシーンからの光線に導入されるシフトおよびひずみを最小にするように最適化される。補償レンズ260の内側表面265は、z軸に沿った小さなオフセットを有する、導波路プリズム200の外側表面225の正確な複製物であり得る。導波路プリズム200の取り付けられた外側表面225上の反射が、仮想画像ディスプレイ経路においてTIR条件を満足する場合、導波路プリズム200と補償レンズ260との間の小さなエアギャップ295を維持することが必要である。導波路プリズム200の外側表面225にTIR要件がない場合、指数整合接着剤が、補償レンズを導波路プリズムと接着するために、エアギャップ295内を充填し得る。補償レンズ260の内側表面265はまた、より良いシースルー性能のために、補償レンズ260の外側表面270と一緒に再設計され得る。この場合について、導波路プリズム200と補償260との間のギャップ295は、表面に沿った任意の点において、6mmより小さいように制約され得る。外側表面は、導波路プリズム200および補償レンズ260の全体の厚さを概してわずか30mmであるように制限するようにさらに制約される。技術の一実施において、発明者らは、プリズムおよびレンズの全体の厚さをわずか15mmであるように制約した。補償レンズ260の内側表面265と外側表面270との両方は、指定されたシースルーFOV290のために十分に大きくあるべきである。
【0043】
図3は、3D図における基準表面230を図示する。
図2における基準カーブ230は、X軸に沿ってスイープされて円筒形表面330になる。導波路プリズム300の全内側表面325は、プリズムがユーザーの顔と物理的に抵触しないことを保証するために、円筒形表面330の外側にあるべきである。円350は、導波路300の射出瞳位置を表す。
【0044】
下記の図は、前記制約のうちのいくつかまたはすべてが実施され、かつ異なるベースカーブスタイルのための異なる設計構造をもたらしている本発明の実施形態の例を示す。
【0045】
図4は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの5−反射の好ましい実施形態を示す。本実施形態は、8ベースのラップアラウンド型の眼鏡形状因子を有するHMDシステムを実装するために使用され得る。本実施形態において、導波路プリズム400の内側物理的表面415および外側物理的表面425は、2つの連続的な滑らかな表面であり、その表面の各々は、自由形状表面パラメータの組によって説明される。導波路プリズム400の屈折表面430は、内側表面415の一部でなく、表面パラメータの異なる組によって説明される。この図面において、光線束440a、440bおよび440cは、小型の画像ディスプレイユニット405上の3つの異なる画素から生じる。ディスプレイユニット405と導波路プリズム400との間で、連結レンズ410は、光学収差を補正することおよび画像品質を向上させることを助けるために使用される。本実施形態において、光線束440a、440bおよび440cは、屈折表面430を通って導波路プリズム400に入って、外側表面425および内側表面415によって連続して5回(R1からR5まで)反射されて、それから屈折表面435を通って伝導されて、射出瞳450に到達する。5つの反射の中で、外側表面425上の反射R1および内側表面415上の反射R2は、TIR条件を満足する一方、内側表面415上の反射R4ならびに外側表面425上の反射R3およびR5は、TIR条件を満足しない。反射R3、R4およびR5についての反射効率を増やすために、内側表面415と外側表面425との両方に半透明コーティングを塗布することが必要である。反射R1およびR2についてのTIR条件を維持するために、誘電性コーティングが好ましい。8ベースカーブのラップアラウンド型の形状因子を保証するために、内側表面415は、水平の寸法において事前定義された8ベースカーブとほぼ同じであるように制約される。導波路プリズム400の内側で、光線束440aは、再集束させられて中間画像455aを形成し、光線束440bは、再集束させられて中間画像455bを形成し、光線束440cは、再集束させられて中間画像455cを形成する。
【0046】
図5は、内側表面が8ベースカーブとほぼ同じである本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。本実施形態において、導波路プリズム500の内側物理的表面515は、2つの表面区分515aおよび515bに分けられ、その表面区分の各々は、自由形状表面パラメータの異なる組によって説明される滑らかな表面である。導波路プリズム500の外側物理的表面525は、自由形状表面パラメータの組によって説明される連続的な滑らかな表面である。屈折表面530および反射表面515aは、自由形状表面パラメータの同じ組によって説明され、したがって、1つの滑らかな表面である。反射表面515bおよび屈折表面535は、自由形状表面パラメータの同じ組によって説明され、かつ1つの滑らかな表面である。表面区分515aおよび515bは、表面区分515cによって接続される。表面515bと515cとの間の交わりがシースルーFOV590の上位の境界590aの内側にある場合、表面区分515cは、表面515bと515cとの間の交わりにおいて一次の連続を維持するように設計される。同様に、表面515aと515cとの間の交わりにおける一次の連続はまた、その交わりがシースルーFOV590の上位の境界590aの内側にある場合、必要であり得る。5つの反射の中で、反射R2、R3およびR4は、TIR条件を満足する一方、反射R1およびR5は、TIR条件を満足しない。反射効率を増やすために、外側表面525は、半透明コーティングを用いてコーティングされる。反射R3のために、表面525上の反射R3についてのTIR条件を維持するために、誘電性コーティングが好ましい。区分525aが、シースルーFOV590の上位の境界590aの外側にある場合、ミラーコーティングが、上位表面区分525aに塗布され得る。画像ディスプレイユニット505と導波路プリズム500の屈折表面530との間で、連結レンズ510は、光学収差を補正することおよび画像品質を向上させることを助けるために使用される。表面区分515bは、8ベースカーブとほぼ同じであるように制約される一方、表面区分515aは、導波路プリズム500の全重量を減らすために、外側表面525のより近くに移動するように制約される。
【0047】
図6は、こめかみ側に平らな内側カーブを有する本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。本実施形態において、導波路プリズム600の屈折表面630は、内側表面615の一部でなく、表面パラメータの異なる組によって説明される一方、内側表面615は、連続的な滑らかな表面である。屈折表面635は、表面615と同じ表面パラメータの組を共有する。導波路プリズム600の外側物理的表面625は、自由形状表面パラメータの組によって説明される連続的な滑らかな表面である。5つの反射の中で、反射R2、R3およびR4は、TIR条件を満足する一方、反射R1およびR5は、TIR条件を満足しない。反射効率を増やすために、外側表面625は、半透明コーティングを用いてコーティングされる。表面625上の反射R3についてのTIR条件を維持するために、誘電性コーティングが好ましい。表面区分625aが、シースルーFOV690の上位の境界690aの外側にある場合、ミラーコーティングが、上位表面区分625aに塗布され得る。内側表面615は、いずれの事前定義された曲率にも制約されないが、表面の位置は、プリズムがヒトの顔から離れすぎないことを保証するために、制約される。画像ディスプレイユニット605と導波路プリズム600の屈折表面630との間で、連結レンズ610は、光学収差を補正することおよび画像品質を向上させることを助けるために使用される。
【0048】
図7は、
図6に示される実施形態と同様の本発明の導波路プリズムの別の5−反射の好ましい実施形態を示す。本実施形態において、導波路プリズム700の屈折表面730は、内側表面715の一部でなく、表面パラメータの異なる組によって説明される一方、内側表面715は、連続的な滑らかな表面である。屈折表面735は、表面715と同じ表面パラメータの組を共有する。導波路プリズム700の外側物理的表面725は、2つの区分725aおよび725bに分けられ、その区分の各々は、自由形状表面パラメータの異なる組によって説明される滑らかな表面である。表面区分725aおよび725bは、表面区分725cによって接続される。表面725bと725cとの間の交わりがシースルーFOV790の上位の境界790aの内側にある場合、表面区分725cは、表面725bと725cとの間の交わりにおいて一次の連続を維持するように設計される。同様に、表面725aと725cとの間の交わりにおける一次の連続はまた、その交わりがシースルーFOV790の上位の境界790aの内側にある場合、必要であり得る。そのうえ、本実施形態は、プリズム自身が光学収差を補正するのに十分であるので、導波路プリズム700と小型の画像ディスプレイユニット705との間の連結レンズを要求しない。
【0049】
図8は、内側表面が8ベースカーブとほぼ同じである本発明の導波路プリズムの5−反射の好ましい実施形態を示し、本実施形態は、特に、反射タイプの照明された画素アレイ(たとえば、LCoSまたはFLCoSタイプのマイクロディスプレイパネル)のために設計される。本実施形態において、導波路プリズム800の内側物理的表面815は、2つの表面区分815aおよび815bに分けられ、その表面区分の各々は、自由形状表面パラメータの異なる組によって説明される滑らかな表面である。屈折表面830および反射表面815aは、1つの滑らかな表面であり、かつ表面パラメータの同じ組によって説明される。反射表面815bおよび屈折表面835は、1つの滑らかな表面であり、かつ表面パラメータの同じ組によって説明される。表面区分815aおよび815bは、表面区分815cによって接続される。表面815bと815cとの間の交わりがシースルーFOV890の上位の境界890aの内側にある場合、表面区分815cは、表面815bと815cとの間の交わりにおいて一次の連続を維持するように設計される。同様に、表面815aと815cとの間の交わりにおける一次の連続はまた、その交わりがシースルーFOV890の上位の境界890aの内側にある場合、必要であり得る。導波路プリズム800の外側物理的表面825は、2つの区分825aおよび825bに分けられ、その区分の各々は、自由形状表面パラメータの異なる組によって説明される滑らかな表面である。表面区分825aおよび825bは、表面区分825cによって接続される。表面825bと825cとの間の交わりがシースルーFOV890の上位の境界890aの内側にある場合、表面区分825cは、表面825bと825cとの間の交わりにおいて一次の連続を維持するように設計される。同様に、表面825aと825cとの間の交わりにおける一次の連続はまた、その交わりがシースルーFOV890の上位の境界890aの内側にある場合、必要であり得る。表面区分815bは、8ベースカーブとほぼ同じであるように制約される一方、表面区分815aは、プリズムの全重量を減らすために、外側表面825aにより近いように制約される。5つの反射の中で、反射R2、R3およびR4は、TIR条件を満足する一方、反射R1およびR5は、TIR条件を満足しない。したがって、反射効率を増やすために、半透明コーティングが、外側表面825に要求される。表面825b上の反射R3についてのTIR条件を維持するために、誘電性コーティングが好ましい。表面区分825aが、シースルーFOV890の上位の境界890aの外側にある場合、ミラーコーティングが、上位表面区分825aに塗布され得る。小型の画像ディスプレイユニット805と導波路プリズム800の屈折表面830との間で、連結レンズ810は、光学収差を補正することおよび画像品質を向上させることを助けるために使用される。本実施形態において、小型の画像ディスプレイユニット805は、反射マイクロディスプレイパネル805a(たとえば、LCoSディスプレイパネル)と、フィールドレンズ805bと、偏光ビームスプリッター805cとを含む。フィールドレンズ805bは、マイクロディスプレイ表面において光のテレセントリシティを強化するために用いられる。偏光ビームスプリッター805cは、ビームコンバイナーとして働くことにより、ディスプレイ照明経路(示されていない)とディスプレイ結像経路とを結合する。偏光ビームスプリッター805cは、マイクロディスプレイパネル805aに対して入ってくる光および出て行く光のためのポーラライザー、それからアナライザーとしても働く。本実施形態のための要素の定義は、
図11に示され、パラメータは、
図25〜27(表2〜4)に与えられる。
【0050】
図9は、導波路プリズム900の内側物理的表面915が、8ベースカーブの代わりに4ベースカーブとほぼ同じであるように最適化されていることを除いて、
図8に示される実施形態と同様の本発明の別の好ましい実施形態得を示す。本実施形態において、導波路プリズム900は、
図8における実施形態のものと同様の構造上の特性を有する。しかし、内側表面区分915bは、4ベースカーブとほぼ同じであるように制約される。その結果、本実施形態は、一対の4ベースカーブ眼鏡のような平らな外見を有する4ベース眼鏡形状因子を有するHMDシステムを実装するために使用され得る。
図8に示される実施形態と同様に、本実施形態は、特に、反射タイプの照明された画素アレイ(たとえば、LCoSまたはFLCoSタイプのマイクロディスプレイパネル)のために設計される。本実施形態のための要素の定義は、
図13に示され、パラメータは、
図28〜30(表5〜7)に与えられる。
【0051】
図10は、内側表面が8ベースカーブのラップアラウンド型の外見とほぼ同じである本発明の導波路プリズムの3−反射の好ましい実施形態を示す。本実施形態は、8ベースカーブのラップアラウンド型の形状因子を有するHMDシステムを実装するために使用され得る。本実施形態において、導波路プリズム1000の内側物理的表面1015および外側物理的表面1025は、2つの連続的な滑らかな表面であり、その表面の各々は、自由形状表面パラメータの組によって説明される。導波路プリズム1000の屈折表面1030は、内側表面1015の一部でなく、表面パラメータの異なる組によって説明される。小型の画像ディスプレイユニット1005は、マイクロディスプレイパネル1005aとフィールドレンズ1005bとを含み、そのフィールドレンズ1005bは、マイクロディスプレイ表面において光のテレセントリシティを達成するために使用される。マイクロディスプレイパネル1005aは、反射タイプのマイクロディスプレイ(たとえば、LCoS、FLCoS、またはDMDパネル)、透過タイプのマイクロディスプレイ(たとえば、LCDパネル)、または自己放射タイプのマイクロディスプレイ(たとえば、OLEDパネル)のいずれかであり得る。反射タイプのマイクロディスプレイパネルの場合において、ビームスプリッター(示されていない)は、照明経路(示されていない)を導入するためにフィールドレンズ1005bのあとに要求される。画像ディスプレイユニット1005と導波路プリズム1000との間で、連結レンズ1010は、光学収差を補正することおよび画像品質を向上させることを助けるために使用される。この設計例において、マイクロディスプレイ1005a上の3つの異なる画素から生じる光線束1040a、1040bおよび1040cは、屈折表面1030を通って導波路プリズム1000に入って、内側表面1015および外側表面1025によって3回反射されて、それから屈折表面1035を通って伝導されて、射出瞳1050に到達する。この例において、3つの反射の中で、反射R1およびR2は、TIR条件を満足し、外側表面1025上の反射R3は、TIR条件を満足しない。反射R3についての反射効率を増やすために、外側表面1025に半透明コーティングを塗布することが必要である。R1についてのTIR条件を維持するために、誘電性コーティングが好ましい。8ベース眼鏡形状因子を保証するために、内側表面1015は、事前定義された8ベースカーブとほぼ同じであるように制約される。導波路プリズム1000の内側で、光線束1040aは、再集束させられて中間画像1055aを形成し、光線束1040bは、再集束させられて中間画像1055bを形成し、光線束1040cは、再集束させられて中間画像1055cを形成する。本実施形態のための要素の定義は、
図17に示され、パラメータは、
図31〜33(表8〜10)に与えられる。
【0052】
種々の実施形態において、画像ディスプレイユニットは、レンズの形、反射の数および所望の眼鏡形状因子に応じて、内側表面、外側表面、または縁表面に向いて配置され得る。特定の実施形態において、8ベース眼鏡形状因子のために、画像ディスプレイ装置は、導波路の縁表面に向いて通例配置される一方、4ベース眼鏡形状因子のために、画像ディスプレイ装置は、内側表面に向いて通例配置される。
【0053】
設計された8ベースおよび4ベースの眼鏡が、本明細書中に説明されてきたが、本発明の概念を使用することによって、他の任意の眼鏡の形(たとえば、2ベース、3ベース、4ベース、5ベース、6ベース、7ベース、8ベース、および9ベースを含むがこれらに制限されない工業規格眼鏡形状因子)の設計をすることが可能である。
【0054】
本発明の特徴は、延長された光路長が、光線束がプリズムを通る中間点において再集束させられるように表面が設計されるように要求することである。この光の再集束は、プリズムを通る途中で中間画像を生成し、その結果、光線は、射出屈折表面において少なく発散し、この発散が少ないことの利点は、仮想画像経路の視野がOST−HMDにおいて増える場合、導波路の全体の厚さが急速に増えないことである。
【0055】
7つの実施形態(
図4〜10)は、本発明に従って提示される。下記のセクションにおいて、実施形態5〜7(
図8〜10)の数値データが提示される。3つのタイプの自由形状表面が、実施形態において用いられ、各表面タイプの数学的方程式は、
図24(表1)に記載される。
図24(表1)における方程式は、表面の頂点に原点を有する局所座標系において与えられる。表面の位置および配向は、グローバル座標系において直接定義されるか、基準座標系を通すかのどちらかである。
図1の詳細な説明において説明されたように、グローバル座標は、射出瞳の中心に定められ、x軸は紙面の内側を指し示し、y軸は上を指し示し、z軸は外部シーンに向いた右を指し示している。
【0056】
((
図8において説明された)実施形態5の数値データ)
図11は、実施形態5(
図8)についての記号および要素の定義を示す。実施形態は、0.37”反射タイプのディスプレイ(たとえば、LCoSまたはFLCoS)のために設計され、Y方向に26.5°およびX方向に15°、ならびに斜めに30°の仮想FOVを生み出す。システムFナンバーは2である。
図25(表2)は、導波路プリズム800についての表面パラメータを記載し、
図26(表3)は、連結レンズ810およびフィールドレンズ805bについての表面パラメータを記載する。すべての光学表面の位置および配向、ならびに各光学要素の光学材料は、
図27(表4)に記載される。
【0057】
赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットが、
図12に示される。MTF性能は、6.25μmの同等な画素サイズに対応する80サイクル/mmのカットオフ空間周波数において、中心にある3mmの瞳孔について評価された。
【0058】
((
図9において説明された)実施形態6の数値データ)
図13は、実施形態6(
図9)についての記号および要素の定義を示す。実施形態は、0.37”反射タイプのディスプレイ(たとえば、LCoSまたはFLCoS)のために設計され、Y方向に26.5°およびX方向に15°、ならびに斜めに30°の仮想FOVを生み出す。システムFナンバーは2である。
図28(表5)は、導波路プリズム900についての表面パラメータを記載し、
図29(表6)は、連結レンズ910およびフィールドレンズ905bについての表面パラメータを記載する。すべての光学表面の位置および配向、ならびに各光学要素の光学材料は、
図30(表7)に記載される。
【0059】
赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットが、
図14に示される。MTF性能は、6.25μmの同等な画素サイズに対応する80サイクル/mmのカットオフ空間周波数において、中心にある3mmの瞳孔について評価された。
【0060】
図15は、実施形態6についてのシースルー経路の光線追跡例を示す。全体の補正されたシースルーFOVは、水平方向に75°および垂直方向に70°である。
【0061】
図16は、本発明の実施形態6に従う、4ベースカーブの外見を有する例証のOST−HMD設計を示す。OST−HMDデバイスは、実施形態6の一対の光学アセンブリと、フレーム1602と、電子回路ユニット1604とを含む。各光学アセンブリは、自由形状導波路プリズム1600と、補償レンズ1660と、連結レンズ1610と、ビームスプリッター1605cと、フィールドレンズ1605bと、マイクロディスプレイパネル1605aとを含む。フレーム1602の2つのアームの内側の電子回路ユニット1604は、必要な電子回路を統合し得、その電子回路は、マイクロディスプレイユニットおよびディスプレイ照明ユニット、画像およびビデオ受信および処理ユニット、オーディオ入力および出力ユニット、グラフィック処理ユニット、位置把握ユニット、無線通信ユニット、ならびに計算処理ユニット等のための回路基板を含むがこれらに制限されない。本実施形態の指定されたシースルーFOV1690は、水平の寸法においてこめかみ側に45°および鼻側に30°、ならびに垂直の寸法(示されていない)において±35°である。
【0062】
((
図10において説明された)実施形態7の数値データ)
図17は、実施形態7(
図10)についての記号および要素の定義を示す。実施形態は、0.37”反射タイプのディスプレイ(たとえば、LCoSまたはFLCoS)のために設計され、Y方向に26.5°およびX方向に15°、ならびに斜めに30°の仮想FOVを生み出す。システムFナンバーは2である。
図31(表8)は、導波路プリズム1000についての表面パラメータを記載し、
図32(表9)は、連結レンズ1010およびフィールドレンズ1005bについての表面パラメータを記載する。すべての光学表面の位置および配向、ならびに各光学要素の光学材料は、
図33(表10)に記載される。
【0063】
赤(625nm)、緑(525nm)および青(465nm)の波長のために選択されたフィールドのMTFプロットが、
図18に示される。MTF性能は、6.25μmの同等な画素サイズに対応する80サイクル/mmのカットオフ空間周波数において、中心にある3mm瞳孔について評価された。
【0064】
図19は、実施形態7(
図10)の補償レンズについての記号および要素の定義を示す。
【0065】
図20は、実施形態6についてのシースルー経路の光線追跡例を示す。全体の補正されたシースルーFOVは、水平方向に80°および垂直方向に70°である。
【0066】
シースルー経路のために選択されたフィールドの多色のMTFプロットが、
図21に示される。MTF性能は、60サイクル/mmのカットオフ空間周波数において、中心にある3mmの瞳孔について評価された。
【0067】
図22は、実施形態7の形を整えられていない3Dモデルを示す。モデルは、導波路プリズムと、補償レンズと、連結レンズと、フィールドレンズとを含む。モデルは、ビームスプリッター空間も含むことにより、反射タイプのマイクロディスプレイのための照明経路を導入するビームスプリッターを挿入する余地を提供する。モデルは、マイクロディスプレイのためのカバーガラスをさらに含む。
【0068】
図23は、本発明の実施形態7に従う、8ベースカーブの外見を有する例証のOST−HMD設計を示す。OST−HMDデバイスは、実施形態7の一対の光学アセンブリと、フレーム2302と、電子回路ユニット2304とを含む。各光学アセンブリは、自由形状導波路プリズム2300と、補償レンズ2360と、連結レンズ2310と、フィールドレンズ2305bと、マイクロディスプレイパネル2305aとを含む。フレーム2302の2つのアームの内側の電子回路ユニット2304は、必要な電子回路を統合し得、その電子回路は、マイクロディスプレイユニットおよびディスプレイ照明ユニット、画像およびビデオ受信および処理ユニット、オーディオ入力および出力ユニット、グラフィック処理ユニット、位置把握ユニット、無線通信ユニット、ならびに計算処理ユニット等のための回路基板を含むがこれらに制限されない。本実施形態の指定されたシースルーFOV2390は、水平の寸法においてこめかみ側に65°および鼻側に35°、ならびに垂直の寸法(示されていない)において±35°である。
【0069】
本明細書中に説明された改変に加えて、本発明の種々の改変は、前述の説明から当業者にとって明らかである。そのような改変は、添付の特許請求の範囲の範囲内にあることも意図されている。本出願において引用された各参照は、その全体が参照により本明細書中に援用される。
【0070】
本発明の好ましい実施形態が示されかつ説明されてきたが、改変が、添付の特許請求の範囲を超えないものに対してなされ得ることが、当業者にとって容易に明らかである。したがって、本発明の範囲は、下記の特許請求の範囲によってのみ制限される。
【0071】
以下の特許請求の範囲において記述される参照数字は、単に本特許出願の審査の容易さのためのものであり、例示的であり、特許請求の範囲を、図面において対応する参照数字を有する特定の特徴に制限することは決して意図されない。