【実施例】
【0013】
以下、本発明を適用したハイブリッド車両のSOC表示装置(以下、単にSOC表示装置と称する)の実施例について説明する。
実施例のSOC表示装置は、例えば、乗用車等の自動車であって、プラグイン充電機能及び主にモータのみを用いて走行するEV走行モードを有するエンジン−電気ハイブリッド車両に設けられるものである。
図1は、実施例のSOC表示装置を有するハイブリッド車両のパワートレーン等の構成を模式的に示すブロック図である。
【0014】
図1に示すように、車両は、エンジン10、トルクコンバータ20、エンジンクラッチ30、前後進切替部40、バリエータ50、出力クラッチ60、フロントディファレンシャル70、リアディファレンシャル80、トランスファクラッチ90、モータジェネレータ100、エンジン制御ユニット210、トランスミッション制御ユニット220、モータジェネレータ制御ユニット230、ハイブリッド統合制御ユニット240、バッテリ300、充電装置310、コンビネーションメータ410、マルチファンクションディスプレイ(MFD)420等を備えたエンジン電気ハイブリッドAWD車両である。
【0015】
エンジン10は、モータジェネレータ100とともに車両の走行用動力源として用いられる内燃機関である。
エンジン10として、例えば、4ストロークのガソリンエンジンを用いることができる。
エンジン10は、その本体及び補器類をエンジン制御ユニット210によって制御され、ドライバのアクセル操作等に基づいてハイブリッド統合制御ユニット240が設定する要求トルクに応じた出力トルクを発生する。
【0016】
トルクコンバータ20は、エンジン10の出力をエンジンクラッチ30に伝達する流体継手である。
トルクコンバータ20は、車両が停止状態からエンジントルクを伝達可能な発進デバイスとしての機能を有する。
また、トルクコンバータ20は、トランスミッション制御ユニット220によって制御され、入力側(インペラ側)と出力側(タービン側)とを直結する図示しないロックアップクラッチを備えている。
【0017】
エンジンクラッチ30は、トルクコンバータ20と前後進切替部40との間に設けられ、これらの間の動力伝達経路を接続又は切断するものである。
エンジンクラッチ30は、例えば、車両がモータジェネレータ100の出力のみによって走行するEV走行モード時等において、トランスミッション制御ユニット220からの指令に応じて切断される。
【0018】
前後進切替部40は、エンジンクラッチ30とバリエータ50との間に設けられ、トルクコンバータ20とバリエータ50とを直結する前進モードと、トルクコンバータ20の回転出力を逆転させてバリエータ50に伝達する後退モードとを、トランスミッション制御ユニット220からの指令に応じて切替えるものである。
前後進切替部40は、例えば、プラネタリギヤセット等を有して構成されている。
【0019】
バリエータ50は、前後進切替部40から伝達されるエンジン10の回転出力、及び、モータジェネレータ100の回転出力を、無段階に変速する変速機構部である。
バリエータ50は、例えば、プライマリプーリ51、セカンダリプーリ52、チェーン53等を有するチェーン式無段変速機(CVT)である。
プライマリプーリ51は、車両の駆動時におけるバリエータ50の入力側(回生発電時においては出力側)に設けられ、エンジン10及びモータジェネレータ100の回転出力が入力される。
セカンダリプーリ52は、車両の駆動時におけるバリエータ50の出力側(回生発電時においては入力側)に設けられている。
セカンダリプーリ52は、プライマリプーリ51と隣接しかつプライマリプーリ51の回転軸と平行な回転軸回りに回動可能となっている。
チェーン53は、環状に形成されてプライマリプーリ51及びセカンダリプーリ52に巻き掛けられ、これらの間で動力伝達を行うものである。
【0020】
プライマリプーリ51及びセカンダリプーリ52は、それぞれチェーン53を挟持する一対のシーブを有するとともに、トランスミッション制御ユニット220による変速制御に応じて各シーブ間の間隔を変更することによって、有効径を無段階に変更可能となっている。
【0021】
出力クラッチ60は、バリエータ50のセカンダリプーリ52と、フロントディファレンシャル70及びトランスファクラッチ90との間に設けられ、これらの間の動力伝達経路を接続又は切断するものである。
出力クラッチ60は、車両の走行時には通常接続状態とされるとともに、例えば車両の停車中にエンジン10の出力によってモータジェネレータ100を駆動してバッテリの充電を行う場合等に切断される。
【0022】
フロントディファレンシャル70は、出力クラッチ60から伝達される駆動力を、左右の前輪に伝達するものである。
フロントディファレンシャル70は、最終減速装置、及び、左右前輪の回転速度差を吸収する差動機構を備えている。
出力クラッチ60とフロントディファレンシャル70との間は、実質的に直結されている。
【0023】
リアディファレンシャル80は、出力クラッチ60から伝達される駆動力を、左右の後輪に伝達するものである。
リアディファレンシャル80は、最終減速装置、及び、左右後輪の回転速度差を吸収する差動機構を備えている。
【0024】
トランスファクラッチ90は、出力クラッチ60からリアディファレンシャル80へ駆動力を伝達する後輪駆動力伝達機構の途中に設けられ、これらの間の動力伝達経路を接続又は切断するものである。
トランスファクラッチ90は、例えば、接続時の締結力(伝達トルク容量)を無段階に変更可能な油圧式あるいは電磁式の湿式多板クラッチである。
トランスファクラッチ90の締結力は、トランスミッション制御ユニット220によって制御されている。
トランスファクラッチ90は、締結力を変更することによって、前後輪の駆動トルク配分を調節可能となっている。
【0025】
また、トランスファクラッチ90は、車両の旋回時や、ブレーキのアンチロック制御、車両挙動制御などの実行時に、前後輪の回転速度差を許容する必要がある場合には、締結力を低下(開放)させスリップさせることによって回転速度差を吸収する。
トランスファクラッチ90は、モータジェネレータ100によるエネルギ回生時には、リアディファレンシャル80等を介して後輪側から入力されるトルクを、出力クラッチ60及びバリエータ50を介してモータジェネレータ100に伝達する。
【0026】
モータジェネレータ100は、車両の駆動力を発生するとともに、減速時に車輪側から伝達されるトルクによって回生発電を行い、エネルギ回生を行う回転電機である。
モータジェネレータ100は、バリエータ50のプライマリプーリ51と同心に設けられている。
プライマリプーリ51は、モータジェネレータ100の図示しないロータと回転軸を介して接続されている。
モータジェネレータ100として、例えば、永久磁石式同期電動機が用いられる。
モータジェネレータ100は、モータジェネレータ制御ユニット230によって駆動時の出力トルクや回生発電時の回生エネルギ量(入力トルク)を制御されている。
【0027】
エンジン制御ユニット210は、エンジン10及びその補器類を統括的に制御するものである。
トランスミッション制御ユニット220は、トルクコンバータ20のロックアップクラッチ、エンジンクラッチ30、前後進切替部40、バリエータ50、出力クラッチ60、トランスファクラッチ90等を統括的に制御するものである。
モータジェネレータ制御ユニット230は、モータジェネレータ100の出力トルクや回生エネルギ量等を制御するものである。
ハイブリッド統合制御ユニット240は、ドライバのアクセル操作等に基づいて設定される要求トルクに応じて、エンジン制御ユニット210、トランスミッション制御ユニット220、モータジェネレータ制御ユニット230等を統合制御するものである。
【0028】
これらの各ユニットは、それぞれCPU等の情報処理手段、RAMやROM等の記憶手段、入出力インターフェイス、及び、これらを接続するバス等を有して構成されている。
また、これらの各ユニットは、例えば車載LANシステムの一種であるCAN通信システム等を介して、相互に通信し、必用な情報の伝達が可能となっている。
【0029】
ハイブリッド統合制御ユニット240は、バッテリ300の残存電力量であるSOCに基づいて、車両の走行モードを、電動車両(EV)走行モードとハイブリッド車両(HV)走行モードとの間で切替を行う。
【0030】
EV走行モードは、バッテリ300の電力によってモータジェネレータ100を駆動し、その出力のみによる走行を優先する走行モードである。
EV走行モードにおいては、ドライバ要求トルクが大きく、モータジェネレータ100のみで十分なトルクを発生することが不可能な場合にのみエンジン10を始動し、エンジントルクを併用した走行を行う。
これ以外の場合には、エンジンクラッチ30を切断し、モータジェネレータ100の出力のみを利用して車両を走行させる。
【0031】
HV走行モードは、エンジン10及びモータジェネレータ100の出力トルクを併用して車両を走行させるモードである。
HV走行モードにおいては、ドライバ要求トルクが小さくかつSOCに余裕がある状態ではモータジェネレータ100の出力トルクによって車両を走行させ、その他の場合にはエンジン10の出力トルクによって車両を走行させる。
また、ドライバ要求トルクが大きい領域では、エンジン10及びモータジェネレータ100の出力トルクをともに利用して車両を走行させる。
【0032】
ハイブリッド統合制御ユニット240は、EV走行モードにおいて、バッテリ300のSOCが予め設定された第1の閾値を下回った際に、HV走行モードに自動的に移行させる。
また、ハイブリッド統合制御ユニット240は、HV走行モードにおいて、バッテリ300のSOCが予め設定された第2の閾値を上回った際に、EV走行モードに自動的に復帰させる。
【0033】
モータジェネレータ制御ユニット230は、ハイブリッド統合制御ユニット240からの指示に応じて、バッテリ300からモータジェネレータ100への駆動用電力の供給を行う。
モータジェネレータ制御ユニット230は、バッテリ300から供給されるDC電力をAC変換してモータジェネレータ100に供給するインバータ、モータジェネレータ100から供給されるAC電力をDC変換してバッテリ300に供給するコンバータ等を備えている。
【0034】
バッテリ300は、モータジェネレータ100に走行用電力を供給する電源(蓄電手段)である。
バッテリ300として、例えば、リチウムイオン電池、ニッケル水素電池等の二次電池が用いられる。
バッテリ300は、SOC(残存電力量のバッテリ全容量に対するパーセンテージ)を検出するSOC検出装置を備え、SOCの検出値はハイブリッド統合制御ユニット240に伝達される。
バッテリ300は、例えば回生ブレーキの使用時等にモータジェネレータ100が発電する電力によって充電される。
また、バッテリ300は、外部の電源によって充電を行うプラグイン充電機能を備えている。
充電装置310は、例えば家庭用電源や商用電源などの外部電源から供給される電力を用いてバッテリ300を充電するものである。
充電装置310は、外部電源との接続装置や、AC−DCコンバータ、変圧装置等を備えて構成されている。
【0035】
コンビネーションメータ410は、車室内において例えばドライバに対面して配置された計器盤である。
コンビネーションメータ410は、例えば、速度計、エンジン回転計、燃料計、水温計などの各種計器類や、各種表示灯などを共通のハウジング内にユニット化して構成したものである。
コンビネーションメータ410は、以下説明する指針式SOCメータ411を備えている。
【0036】
図2は、実施例のSOC表示装置における指針式SOCメータを示す図である。
図2に示すように、指針式SOCメータ411は、指針412、及び、目盛413a〜413iを備えている。
指針412は、所定の回転軸回りに、例えば約180°の角度範囲内で揺動する回転式の可動指標である。
指針412は、バッテリ300のSOCがEV走行モード時における実用上の上限(例えば85%)であるときに可動範囲の一方の端部(例えば
図2に示す例においては上方)を指し、SOCがEV走行モード、HV走行モードにおける実用上の下限値(例えば15%)であるときに、可動範囲の他方の端部(例えば
図2に示す例においては下方)を指すようになっている。
【0037】
目盛413a〜413iは、指針412の背面側(ドライバから遠い側)に配置された平板状の部材である文字盤(目盛盤)に表示された固定指標である。
目盛413a〜413iは、指針412の先端部の移動軌跡(実質的に中心角180°の円弧状)にほぼ沿って、その可動範囲の一方の端部側から他方の端部側にかけて、実質的に等間隔かつ離散的に配置されている。
上端部に配置された目盛413aの近傍には、実質的に満充電であることを示す「F」の文字が表示されている。
また、下端部に配置された目盛413iの近傍には、実質的に利用可能な電力が枯渇していることを示す「E」の文字が表示されている。
【0038】
目盛413aは、目盛413a〜413eからなる第1群、目盛413f,413gからなる第2群、目盛413h,413iからなる第3群を有し、これらの各群は、相互に表示色が異なっている。
一例として、第1群は緑色、第2群は水色、第3群は青色に表示される。
【0039】
第1群の目盛413a〜413eが配置された領域は、EV走行モードのみが行われる領域を示している。
指針412が目盛413aを指している状態は実用上の満充電であることを意味し、SOCの減少に応じて、指針412は反時計回りに回動し、目盛413b,413c,413d,413eを順次指示する。
【0040】
第2群の目盛413f,413gが配置された領域は、EV走行モード、HV走行モードがどちらも実行され得る領域を示している。
すなわち、EV走行モードにおいてSOCが減少して指針412が目盛413f,413gを含む第2群の領域を指示している時には、EV走行モードが維持される。
また、HV走行モードにおいてSOCが増加して指針412が目盛413f,413gを含む第2群の領域を指示している時には、HV走行モードが維持される。
ここで、目盛413fは、HV走行モードからEV走行モードへの切替え(自動復帰)が行われるHV→EV自動復帰ライン(本発明にいう第2の標識)であることを示しており、HV走行モードにおいてSOCが目盛413fに相当する値まで増加した場合には、HV走行モードからEV走行モードへの変更が自動的に行われる。
【0041】
第3群の目盛413h,413iが配置された領域は、HV走行モードのみが行われる領域を示している。
ここで、目盛413hは、EV走行モードからHV走行モードへの切替が行われるEV→HV自動切替ライン(本発明にいう第1の標識)であることを示しており、EV走行モードにおいてSOCが目盛413hに相当する値まで減少した場合には、EV走行モードからHV走行モードへの変更が自動的に行われる。
【0042】
また、コンビネーションメータ410は、指針式SOCメータ411と隣接して、現在の走行モードがEV走行モードであるかHV走行モードであるかを、例えばアイコンの点灯・消灯などによって表示する図示しないインジケータを備えている。
さらに、コンビネーションメータ410は、EV走行モードによる予測航続距離、及び、EV走行モードとHV走行モードを併用した場合の予測航続距離を常時表示する予測航続距離表示手段を備えている。
【0043】
MFD420は、車室内におけるドライバが目視可能な位置に配置された例えばLCD等の画像表示装置である。
MFD420は、例えば、格子状に配置され輝度及び表示色を変更可能な多数の画素群を有して構成され、その解像度の範囲内において任意の文字列、図形等を表示可能となっている。
MFD420は、例えば、インストルメントパネルの車幅方向中央部かつ上端部近傍に配置される。
MFD420は、その表示領域の一部に、EV走行モード、HV走行モードそれぞれにおけるSOCを例えばバーグラフ状に表示するSOC表示機能を備えている。
【0044】
MFD420におけるSOC表示は、EV走行モード、HV走行モードのいずれが選択されているかによって、以下説明するように表示態様が異なっている。
図3は、実施例のSOC表示装置におけるMFDのSOC表示を示す図であって、EV走行モード状態を示す図である。
MFD420におけるSOC表示は、バッテリを示すイラストレーション421に重畳して、SOCの増減に応じて長さが変化するバーグラフを表示したものである。
EV走行モードにおいては、
図3に示すようにフルセグメント表示のバーグラフ422が表示される。
【0045】
図3に示すフルセグメント表示のバーグラフ422は、例えば矩形に表示され、その上端部は、MFD420が有する画素群の1画素単位で、実質的に連続して上下するように構成されている。
SOCの減少に応じて、バーグラフ422の上端部は下降し、バーグラフ422の長さLが小さくなるようになっている。
図3においては、バーグラフ422の上端部が予め設定された表示範囲の上端部まで達した状態を示している。
このとき、バッテリ300のSOCは、EV走行モードにおけるSOC使用範囲の実用上の上限値(例えば85%)となっている。
一方、SOCが減少してEV走行モード→HV走行モード切替ライン(後述する
図5を参照)に達した場合には、バーグラフ422の長さは実質的にゼロとなり、MFD420上に表示されなくなる(イラストレーション421のみが表示された状態となる。)。
【0046】
図4は、実施例のSOC表示装置におけるMFDのSOC表示を示す図であって、HV走行モード状態を示す図である。
HV走行モードにおいては、バッテリを示すイラストレーション421に重畳して、複数(例えば8つ)のセグメント423a〜423hを上方から下方に順次配列して表示することが可能となっている。
HV走行モードにおいては、表示されるセグメントの個数によってSOCを示す。
HV走行モードにおけるSOC上限値(EV走行モード自動復帰ライン)の近傍においては、全てのセグメント423a〜423hが表示され、SOCの減少に応じて、上方のセグメント423aから順次非表示とされる。
SOCがHV走行モードにおける下限値近傍となった場合には、全てのセグメント423a〜423hが非表示となる(イラストレーション421のみが表示された状態となる。)。
【0047】
ここで、フルセグメント表示におけるバーグラフ422と、8セグメント表示におけるセグメント423a〜423hは、色や輝度等の表示態様を異ならせて表示させる。
例えば、バーグラフ422を緑色で表示し、セグメント423a〜423hを青色で表示する構成とすることができる。
【0048】
ハイブリッド統合制御ユニット240は、指針式SOCメータ411、及び、MFD420におけるフルセグメント表示において用いるフルセグメント表示用SOC値の算出処理を随時行う。
また、ハイブリッド統合制御ユニット240は、MFD420における8セグメント表示において用いる8セグメント表示用SOC値算出処理を行う。
指針式SOCメータ411及びMFD420がそれぞれ有するECUは、これらの各SOC値の算出値を受信して表示処理を行う。
また、MFD420のECUは、ハイブリッド統合制御ユニット240が出力するEV走行モード、HV走行モードの作動判別フラグを受信し、フルセグメント表示(EV走行モード時)と8セグメント表示(HV走行モード時)の切替えを行う。
【0049】
以下、実施例のハイブリッド車両におけるバッテリ300のSOC推移、及び、SOC変化に応じた走行モード切替動作について説明する。
図5は、実施例のハイブリッド車両におけるSOC推移と走行モード切替動作の一例を示す図である。
図5において、縦軸はバッテリ300のSOCを示し、横軸は時間を示している。
【0050】
図5におけるA点においては、SOCは例えば約85%であり、実用上におけるバッテリ300の満充電状態となっている。
A点の状態からEV走行モードで走行を開始すると、回生発電等による一時的なSOCの回復はあり得るものの、走行や電装品の使用等による電力消費が通常は制動時の回生発電量等を上回るため、走行時間の経過に応じてSOCは徐々に減少する。
HV→EV自動復帰ラインであるB点、HV時常用域上限であるC点を順次通過し、EV→HV自動切替ラインであるD点のレベルまでSOCが減少すると、ハイブリッド統合制御ユニット240は、HV走行モードからEV走行モードへの切替えを自動的に行う。
EV→HV自動切替ラインは、例えば、SOCがHV走行モードにおけるSOC制御中心と実質的に一致する領域に設定される。
また、HV→EV自動復帰ラインは、例えば、EV走行モード復帰後におけるEV走行モードでの予測航続距離が所定値以上となる領域に設定される。
【0051】
HV走行モードにおいては、バッテリ300のSOCが、HV時常用域上限であるC点に相当するレベルと、HV時常用域下限であるE点に相当するレベルとの間となるように、ハイブリッド統合制御ユニット240は充放電制御を行なう。
また、例えば回生発電の機会が十分に得られないなどの何等かの理由によって、SOCがHV時常用域下限値を下回り、モータ走行負荷レベルであるF点に相当するレベルに達した場合には、モータ走行が不可能となり、さらにバッテリ使用領域下限であるG点に相当するレベルに達した場合には、エンジン10の出力でモータジェネレータ100を駆動して発電を行い、SOCがさらに減少しないよう充電する制御を行なう。
【0052】
図6は、実施例のSOC表示装置における指針式SOCメータ及びMFDのSOC表示の推移の一例を示す図である。
図6においてA乃至Gは、上述した
図5におけるA点乃至G点にそれぞれ対応する。
【0053】
指針式SOCメータ411は、A乃至Gの全領域において、共通の表示態様を維持しつつ、指針412の位置変化(揺動)のみによってSOCを表示する。
Aの状態においては、指針412は、満充電を示す目盛413aを指示している。
ここからSOCの減少に応じて指針412は反時計回りに回動し、Bの状態においては、HV走行モードからEV走行モードへの自動復帰ラインを示す目盛413fを指示する。
Cの状態になると、指針412は、HV時常用域上限を示す目盛413gを指示する。
Dの状態になると、指針412は、EV走行モードからHV走行モードへの自動切替ラインを示す目盛413hを指示する。
このとき、ドライバ413hは、指針412の目盛413hへの接近度合に基づいて、EV走行モードからHV走行モードへの切替を予測可能となっている。
ここからさらにSOCが減少してE,Fの状態となると、指針412は目盛413i側へ推移し、Gの状態となった際に目盛413iを指示する。
また、SOCが増加した場合は、指針412は時計回りに回動して、現在のSOCに対応する箇所を指示する。
【0054】
MFD420におけるSOC表示は、Aの状態(EV走行モード)においては、
図3に示すフルセグメント表示であって、バーグラフ422の長さ(高さ)が最大の状態となっている。
ここからSOCの減少に応じてバーグラフ422の長さは連続的に減少し、EV走行モードからHV走行モードへの自動切替ラインであるDの状態においては、バーグラフ422が表示されない状態となる。
EV走行モードからHV走行モードへ自動切替が行われる場合には、切替に先立ち、バーグラフ422が所定期間にわたって非表示状態となるように設定されている。
【0055】
EV走行モードからHV走行モードへの切替が行われると、MFD420におけるSOC表示は、
図4に示す8セグメント表示へ変更される。
HV走行モードへの切替直後であるDの状態においては、セグメント423e〜423hが表示された状態となる。このとき、セグメント423a〜423dは非表示となっている。
【0056】
ここからSOCが減少すると、セグメント423e,セグメント423fが順次非表示となり、Eの状態ではセグメント423g,423hが表示された状態となる。
さらにSOCが減少し、Fの状態になると、セグメント423gが非表示となり、セグメント423hが表示された状態となる。
さらにSOCが減少し、Gの状態になると、セグメント423a〜423hは全て非表示となる。
【0057】
一方、Dの状態から回生発電等によってSOCが増加すると、セグメント423d,423c,423b,423aが順次表示される。
Cの状態においては、セグメント423c〜423hが表示された状態となる。
HV走行モードからEV走行モードへの自動復帰ラインであるBの状態においては、セグメント423a〜423hが全て表示された状態となる。
HV走行モードからEV走行モードへの自動復帰(切替)が行われる場合には、切替に先立ち、セグメント423a〜423hの全てが所定期間にわたって表示状態となるように設定されている。
HV走行モードからEV走行モードへの切替が行われると、MFD420におけるSOC表示は、フルセグメント表示へ復帰し、バーグラフ422の下方部分の約3分の1の長さが表示される。
【0058】
以上説明したように、本実施例によれば、MFD420におけるSOC表示において、EV走行モード、HV走行モードのそれぞれにおいて利用されるSOC範囲を、バーグラフの表示範囲の全域に拡大して表示することによって、各走行モードにおけるSOCの推移を容易に把握することができる。
また、EV走行モードにおいてバーグラフ422が非表示となる最小値を示した場合には、直後(所定時間後)にHV走行モードへの変更が行われることを意味し、HV走行モードにおいてセグメント423a〜423hが全て表示されて最大値を示した場合には、直後(所定時間後)にEV走行モードへの変更が行われることを意味することから、現状のインジケータ表示から走行モードの切替が行われ得る時期などを容易に把握することができる。
また、指針式SOCメータ411を設けたことによって、MFD420の表示状態に関わらず、バッテリの全容量に対する現在のSOCの位置付けを容易に把握することができる。
さらに、指針式SOCメータ411に走行モード切替(復帰)ラインに相当する目盛を設けることによって、指針式SOCメータ411によっても走行モードの切替を容易に把握することが可能となる。
【0059】
(変形例)
本発明は、以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。
(1)ハイブリッド車両及びSOC表示装置の構成は上述した実施例に限定されず、適宜変更することが可能である。
例えば、実施例において車両はプラグイン充電機能を有するプラグインハイブリッド車両であったが、プラグイン充電機能を持たないハイブリッド車両であっても、エンジンを始動せずにモータのみによって走行する機能(EV走行モード)を有する車両の場合には本発明を適用することが可能である。
また、エンジンも実施例のようなガソリンエンジンに限らず、ディーゼルエンジンやその他の内燃機関を用いることができる。
(2)実施例の指針式SOCメータは、機械的に構成された指針及び目盛盤を有する構成としているが、これに代えて、このような指針式SOCメータに相当する画像をLCD等の画像表示装置に表示する構成としてもよい。
また、実施例においては、各領域を三色の目盛によって表示しているが、中間領域をグラデーションや複数色の塗り分けパターンによって表示してもよい。この場合、グラデーション領域の両端部、塗り分けパターン領域の両端部がそれぞれEV→HV自動切替ライン、HV→EV自動復帰ラインに対応するよう構成するとよい。
(3)実施例におけるMFDのSOC表示は、EV走行モードにおいてフルセグメント表示を行いHV走行モードにおいて8セグメント表示する構成となっているが、複数セグメント表示とフルセグメント表示との使い分けはこのような構成に限らず、適宜変更することができる。
例えば、EV走行モード、HV走行モードでともにフルセグメント表示としたり、ともに複数セグメント表示としてもよい。
また、複数セグメント表示におけるセグメント数も、実施例のような8セグメント表示に限らず、適宜増減することができる。