【文献】
Tomoyuki Igawa,Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization,Nature Biotechnology,2010年10月17日,Vol.28, No.11,p.1203-1207
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0030】
定義
本発明は、pH依存性の抗原結合を示すヒト抗体分子をコードするヌクレオチド配列(複数可)、例えば、pH依存性の抗原結合を示す抗体をコードする、再構成されたヒト免疫グロブリン軽鎖可変領域配列を含む、免疫グロブリン軽鎖のヌクレオチド配列をそれらのゲノム内、例えば、それらの生殖細胞系列内に含む、遺伝子改変された非ヒト動物(例えば、マウス、ラット、ウサギ、ハムスターなど);これと同じ免疫グロブリン軽鎖のヌクレオチド配列を含む胚、細胞、および組織;これらを作製する方法;ならびにこれらを用いる方法を提供する。別に定義されない限り、本明細書で用いられる全ての用語および語句は、反対が明らかに示されるか、その用語または語句が用いられる文脈から明らかに明白でない限り、その用語および語句が当技術分野で獲得した意味を含む。
【0031】
本明細書で用いる用語「抗体」は、ジスルフィド結合によって相互接続する4つのポリペプチド鎖、2つの重(H)鎖および2つの軽(L)鎖を含む免疫グロブリン分子を含む。各重鎖は、重鎖可変ドメインおよび重鎖定常領域(C
H)を含む。重鎖定常領域は、3つのドメイン、C
H1、C
H2およびC
H3を含む。各軽鎖は、軽鎖可変ドメインおよび軽鎖定常領域(C
L)を含む。重鎖可変ドメインおよび軽鎖可変ドメインは、フレームワーク領域(FR)と呼ばれる保存されている領域の間に散在する、相補性決定領域(CDR)と呼ばれる超可変性の領域にさらに細分化することができる。各重鎖可変ドメインおよび軽鎖可変ドメインは、アミノ末端からカルボキシ末端まで以下の順序で配置される3つのCDRおよび4つのFRを含む:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4(重鎖CDRは、HCDR1、HCDR2およびHCDR3と略すことができ;軽鎖CDRは、LCDR1、LCDR2およびLCDR3と略すことができる)。用語「高親和性」抗体は、その標的エピトープに関して約10
−9M以下のK
D(例えば、約1×10
−9M、1×10
−10M、1×10
−11Mまたは約1×10
−12M)を有する抗体を指す。一実施形態では、K
Dは表面プラズモン共鳴、例えばBIACORE
TMによって測定され、別の実施形態では、K
DはELISAによって測定される。
【0032】
語句「二重特異性抗体」は、2つ以上のエピトープに選択的に結合することが可能な抗体を含む。二重特異性抗体は、2つの同一ではない重鎖を一般に含み、各重鎖は、2つの異なる分子上(例えば、2つの異なる免疫原上の異なるエピトープ)または同じ分子上(例えば、同じ免疫原上の異なるエピトープ)の異なるエピトープに特異的に結合する。二重特異性抗体が2つの異なるエピトープ(第一のエピトープおよび第二のエピトープ)に選択的に結合することが可能な場合、第一のエピトープに対する第一の重鎖の親和性は、第二のエピトープに対する第一の重鎖の親和性より少なくとも1桁から2桁、または3桁または4桁またはそれ超、一般に低く、逆もまた同じである。二重特異性抗体が特異的に結合するエピトープは、同じか異なる標的の上(例えば、同じか異なるタンパク質の上)にあってよい。例示的な二重特異性抗体は、腫瘍抗原に対して特異的な第一の重鎖、および細胞傷害性マーカー、例えば、Fc受容体(例えば、FcγRI、FcγRII、FcγRIIIなど)またはT細胞のマーカー(例えば、CD3、CD28など)に対して特異的な第二の重鎖を有する二重特異性抗体を含む。さらに、第二の重鎖可変ドメインは、異なる所望の特異性を有する重鎖可変ドメインで置換することができる。例えば、毒素(例えば、サポリン、ビンカアルカロイドなど)を腫瘍細胞へと送達するように、腫瘍抗原に対して特異的な第一の重鎖および毒素に対して特異的な第二の重鎖を有する二重特異性抗体を対合させることができる。他の例示的な二重特異性抗体は、活性化受容体(例えば、B細胞受容体、FcγRI、FcγRIIA、FcγRIIIA、FcαRI、T細胞受容体など)に対して特異的な第一の重鎖および抑制性受容体(例えば、FcγRIIB、CD5、CD22、CD72、CD300aなど)に対して特異的な第二の重鎖を有する二重特異性抗体を含む。細胞の活性化(例えば、アレルギーおよび喘息)と関連する治療条件のためには、このような二重特異性抗体を構築することができる。二重特異性抗体は、例えば、同じ免疫原の異なるエピトープを認識する重鎖を組み合わせることによって作ることができる。例えば、同じ免疫原の異なるエピトープを認識する重鎖可変配列をコードする核酸配列は、同じか異なる重鎖定常領域をコードする核酸配列に融合させることができ、そのような配列は免疫グロブリン軽鎖を発現する細胞で発現させることができる。一般的な二重特異性抗体は、各々3つの重鎖CDRと、続く(N末端からC末端にかけて)C
H1ドメイン、ヒンジ、C
H2ドメインおよびC
H3ドメインを有する2つの重鎖、ならびに、エピトープ結合特異性を付与しないが各重鎖と会合することができるか、または各重鎖と会合することができ、かつ重鎖エピトープ結合領域が結合するエピトープの1つもしくは複数に結合することができるか、または各重鎖と会合することができ、かつ一方もしくは両方のエピトープへの重鎖の一方もしくは両方の結合を可能にすることができる免疫グロブリン軽鎖を有する。
【0033】
用語「細胞」には、組換え核酸配列を発現させるのに適する任意の細胞が含まれる。細胞には、原核生物および真核生物(単細胞または多細胞)のもの、細菌細胞(例えば、E.coliの株、Bacillus spp.、Streptomyces spp.など)、マイコバクテリア細胞、真菌細胞、酵母細胞(例えば、S.cerevisiae、S.pombe、P.pastoris、P.methanolicaなど)、植物細胞、昆虫細胞(例えば、SF−9、SF−21、バキュロウイルス感染昆虫細胞、Trichoplusia niなど)、ヒト以外の動物細胞、ヒト細胞、または細胞融合体、例えばハイブリドーマもしくはクアドローマが含まれる。一部の実施形態では、細胞はヒト、サル、類人猿、ハムスター、ラットまたはマウスの細胞である。一部の実施形態では、細胞は真核細胞であり、以下の細胞から選択される:CHO(例えば、CHO K1、DXB−11 CHO、Veggie−CHO)、COS(例えば、COS−7)、網膜細胞、Vero、CV1、腎臓(例えば、HEK293、293 EBNA、MSR 293、MDCK、HaK、BHK)、HeLa、HepG2、WI38、MRC 5、Colo205、HB 8065、HL−60(例えば、BHK21)、Jurkat、Daudi、A431(表皮性)、CV−1、U937、3T3、L細胞、C127細胞、SP2/0、NS−0、MMT 060562、Sertoli細胞、BRL 3A細胞、HT1080細胞、骨髄腫細胞、腫瘍細胞および前記細胞に由来する細胞系。一部の実施形態では、細胞は、1つまたは複数のウイルス遺伝子を含む(例えばウイルス遺伝子を発現する網膜細胞(例えば、PER.C6
TM細胞))。
【0034】
語句「相補性決定領域」または用語「CDR」には、通常(すなわち、野生型動物で)免疫グロブリン分子(例えば、抗体またはT細胞受容体)の軽鎖または重鎖の可変領域の2つのフレームワーク領域の間に現れる、生物体の免疫グロブリン遺伝子の核酸配列によってコードされるアミノ酸配列が含まれる。CDRは、例えば、生殖細胞系列配列または再構成されたか再構成されていない配列がコードすることができ、例えば、ナイーヴであるか成熟したB細胞またはT細胞がコードすることができる。CDRは体細胞変異してもよく(例えば、動物の生殖細胞系列でコードされている配列と異なる)、ヒト化、および/またはアミノ酸の置換、付加もしくは欠失で改変されてもよい。一部の状況(例えば、CDR3に関して)では、CDRは、2つ以上の配列(例えば、生殖細胞系列配列)であって、(例えば、再構成されていない核酸配列において)不連続であるが、例えば、配列のスプライシングまたは接続の結果として(例えば、V−D−J組換えによって重鎖CDR3を形成する)B細胞核酸配列において連続している、2つ以上の配列(例えば、生殖細胞系列配列)によってコードされてもよい。
【0035】
保存的なアミノ酸置換を記載するために用いられる場合、用語「保存的」には、類似した化学的特性(例えば、電荷または疎水性)を有する側鎖R基を有する別のアミノ酸残基によるアミノ酸残基の置換が含まれる。一般に、保存的アミノ酸置換は、タンパク質の目的の機能特性、例えば標的エピトープに所望の親和性で特異的に結合する可変領域の能力を実質的に変えない。類似した化学特性を有する側鎖を有するアミノ酸の群の例には、グリシン、アラニン、バリン、ロイシンおよびイソロイシンなどの脂肪族側鎖;セリンおよびトレオニンなどの脂肪族ヒドロキシル側鎖;アスパラギンおよびグルタミンなどのアミドを含む側鎖;フェニルアラニン、チロシンおよびトリプトファンなどの芳香族の側鎖;リシン、アルギニンおよびヒスチジンなどの塩基性側鎖;アスパラギン酸およびグルタミン酸などの酸性側鎖;ならびにシステインおよびメチオニンなどの硫黄を含む側鎖が含まれる。保存的アミノ酸置換基には、例えば、バリン/ロイシン/イソロイシン、フェニルアラニン/チロシン、リシン/アルギニン、アラニン/バリン、グルタミン酸/アスパラギン酸、およびアスパラギン/グルタミンが含まれる。一部の実施形態では、例えばアラニンスキャニング変異生成で用いられるように、保存的アミノ酸置換は、アラニンによるタンパク質の任意の天然の残基の置換であってよい。一部の実施形態では、参照により本明細書に組み込まれるGonnetら(1992年)Exhaustive Matching of the Entire Protein Sequence Database、Science 256巻:1443〜45頁に開示されるPAM250対数尤度マトリックスで正の値を有する保存的置換がもたらされる。一部の実施形態では、置換は、PAM250対数尤度マトリックスで置換が負ではない値を有するような適度に保存的な置換である。
【0036】
一部の実施形態では、免疫グロブリン軽鎖または重鎖での残基位置は、1つまたは複数の保存的アミノ酸置換によって異なる。一部の実施形態では、免疫グロブリン軽鎖またはその機能的断片(例えば、B細胞などからの発現および分泌を可能にする断片)における残基位置は、アミノ酸配列が本明細書に記載されている軽鎖と同一ではなく、1つまたは複数の保存的アミノ酸置換によって異なる。
【0037】
語句「エピトープ結合タンパク質」には、少なくとも1つのCDRを有し、エピトープを選択的に認識することが可能な、例えばエピトープに約1マイクロモル以下のK
D(例えば、約1×10
−6M、1×10
−7M、1×10
−9M、1×10
−9M、1×10
−10M、1×10
−11Mまたは約1×10
−12MのK
D)で結合することが可能であるタンパク質が含まれる。治療的なエピトープ結合タンパク質(例えば、治療的な抗体)は、ナノモルまたはピコモルの範囲のK
Dをしばしば必要とする。
【0038】
語句「機能的断片」には、発現、分泌させることができ、マイクロモル、ナノモルまたはピコモルの範囲のK
Dでエピトープに特異的に結合するエピトープ結合タンパク質の断片が含まれる。特異的な認識には、少なくともマイクロモルの範囲、ナノモルの範囲またはピコモルの範囲のK
Dを有することが含まれる。
【0039】
免疫グロブリン核酸配列に関連する用語「生殖細胞系列」には、子孫に渡されることができる核酸配列が含まれる。
【0040】
語句「重鎖」または「免疫グロブリン重鎖」には、任意の生物体からの免疫グロブリン重鎖配列(免疫グロブリン重鎖定常領域配列を含む)が含まれる。特に明記しない限り、重鎖可変ドメインには3つの重鎖CDRおよび4つのFR領域が含まれる。重鎖の断片には、CDR、CDRおよびFR、ならびにその組合せが含まれる。一般的な重鎖は、可変ドメインに続いて(N末端からC末端に向かって)C
H1ドメイン、ヒンジ、C
H2ドメインおよびC
H3ドメインを有する。重鎖の機能的断片には、エピトープを特異的に認識する(例えば、マイクロモル、ナノモルまたはピコモルの範囲のK
Dでエピトープを認識する)ことが可能で、細胞から発現および分泌させることが可能で、少なくとも1つのCDRを含む断片が含まれる。重鎖可変ドメインは、生殖細胞系列内に存在するV
Hセグメント、D
Hセグメント、およびJ
Hセグメントのレパートリーに由来する、V
Hセグメント、D
Hセグメント、およびJ
Hセグメントを一般に含む可変領域遺伝子配列によりコードされる。様々な生物体のV重鎖セグメント、D重鎖セグメント、およびJ重鎖セグメントについての配列、位置、および命名法は、www.imgt.orgのIMGTデータベースに見出すことができる。
【0041】
配列に関連して用いられる場合、用語「同一性」には、ヌクレオチドおよび/またはアミノ酸配列の同一性を測定するために用いることができる当技術分野で公知であるいくつかの異なるアルゴリズムで決定される同一性が含まれる。本明細書に記載される一部の実施形態では、同一性は、10.0のオープンギャップペナルティ、0.1のエクステンドギャップペナルティを使用するClustalW v.1.83(スロー)アラインメントを用い、およびGonnetの類似度マトリックス(MACVECTOR
TM10.0.2、MacVector Inc.、2008)を用いて決定される。配列の同一性に関して比較される配列の全長は特定の配列に依存するが、軽鎖定常ドメインの場合、全長は、自己会合して正規の軽鎖定常ドメインを形成することが可能な、例えばベータストランドを含む2つのβシートを形成することが可能であり、およびヒトまたはマウスの少なくとも1つのC
H1ドメインと相互作用することが可能な軽鎖定常ドメインに折り畳まれるのに十分な長さの配列を含むべきである。C
H1ドメインの場合、配列の全長は、ベータストランドを含む2つのβシートを形成することが可能であり、およびマウスまたはヒトの少なくとも1つの軽鎖定常ドメインと相互作用することが可能なC
H1ドメインに折り畳まれるのに十分な長さの配列を含むべきである。
【0042】
語句「免疫グロブリン分子」には、2つの免疫グロブリン重鎖および2つの免疫グロブリン軽鎖が含まれる。重鎖は同一であっても異なってもよく、軽鎖は同一であっても異なってもよい。
【0043】
語句「軽鎖」には、任意の生物体からの免疫グロブリン軽鎖配列が含まれ、特に明記しない限りヒトカッパおよびラムダ軽鎖およびVpreB、ならびに代わりの軽鎖が含まれる。特に明記しない限り、軽鎖可変ドメインには3つの軽鎖CDRおよび4つのフレームワーク(FR)領域が一般に含まれる。一般に、完全長軽鎖には、アミノ末端からカルボキシル末端にかけて、FR1−CDR1−FR2−CDR2−FR3−CDR3−FR4を含む可変ドメインおよび軽鎖定常領域が含まれる。軽鎖可変ドメインは、生殖細胞系列内に存在するVセグメントおよびJセグメントのレパートリーに由来する、V
LセグメントおよびJ
Lセグメントを一般に含む軽鎖可変領域遺伝子配列によりコードされる。様々な生物体のV軽鎖セグメントおよびJ軽鎖セグメントについての配列、位置、および命名法は、www.imgt.orgのIMGTデータベースに見出すことができる。軽鎖には、例えば、軽鎖が現れるエピトープ結合タンパク質が選択的に結合する第一または第二のエピトープのいずれにも選択的に結合しないものが含まれる。軽鎖には、軽鎖が現れるエピトープ結合タンパク質が選択的に結合する1つまたは複数のエピトープに結合し認識するものか、重鎖による結合および認識を助けるものがさらに含まれる。共通軽鎖またはユニバーサル軽鎖はヒトVκ1−39Jκ5遺伝子またはヒトVκ3−20Jκ1遺伝子に由来するものを包含し、それの体細胞変異(例えば、親和性成熟)バージョンを包含する。
【0044】
語句「マイクロモルの範囲」は、1〜999マイクロモルを意味するものとする。語句「ナノモルの範囲」は、1〜999ナノモルを意味するものとする。語句「ピコモルの範囲」は、1〜999ピコモルを意味するものとする。
【0045】
語句「体細胞変異」には、クラススイッチングを経たB細胞からの核酸配列への言及が含まれ、ここで、クラススイッチングされたB細胞での免疫グロブリン可変領域の核酸配列(例えば、重鎖可変ドメインをコードするかまたは重鎖CDRもしくはFR配列を含むヌクレオチド配列)は、クラススイッチングの前のB細胞の核酸配列に同一でなく、例えば、クラススイッチングを経ていないB細胞とクラススイッチングを経たB細胞との間のCDRまたはフレームワーク核酸配列において差がある。「体細胞変異」には、親和性成熟していないB細胞での対応する免疫グロブリン可変領域配列(すなわち、生殖細胞系列細胞のゲノム中の配列)に同一ではない親和性成熟B細胞からの核酸配列への言及が含まれる。語句「体細胞変異」には、目的のエピトープへのB細胞の曝露の後のB細胞からの免疫グロブリン可変領域核酸配列への言及も含まれ、ここで、核酸配列は、目的のエピトープへのB細胞の曝露の前の対応する核酸配列と異なる。語句「体細胞変異」は、免疫原チャレンジに応じて動物で、例えばヒト免疫グロブリン可変領域核酸配列を有するマウスで生成される、そのような動物で生得的に作動する選択プロセスから生じる抗体からの配列を指す。
【0046】
核酸配列に関して用語「再構成されていない」には、動物細胞の生殖細胞系列に存在する核酸配列が含まれる。
【0047】
語句「可変ドメイン」には、N末端からC末端(特に明記しない限り)の順序での以下のアミノ酸領域を含む免疫グロブリン軽鎖または重鎖(所望により改変される)のアミノ酸配列が含まれる:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。
【0048】
用語「作動可能に連結した」は、作動可能に連結した成分が、それらの意図される様式で機能する関係を指す。1つの場合には、適正な転写調節を保持するように、タンパク質をコードする核酸配列を、調節配列(例えば、プロモーター、エンハンサー、サイレンサー配列など)に作動可能に連結することができる。1つの場合には、免疫グロブリン可変領域(またはV(D)Jセグメント)の核酸配列を免疫グロブリン定常領域の核酸配列に作動可能に連結して、免疫グロブリン重鎖配列または免疫グロブリン軽鎖配列へと配列間の適正な組換えを可能とすることができる。
【0049】
遺伝子置きかえに関連する用語「置きかえ」は、外因性遺伝物質を内因性遺伝子座に配置し、これにより、内因性遺伝子の全部または一部分を、オーソロガスな核酸配列または相同な核酸配列で置きかえることを指す。
【0050】
本明細書で用いられる、例えば、機能的なポリペプチドに関連する「機能的な」は、天然のタンパク質と通常関連する少なくとも1つの生物学的活性を保持するポリペプチドを含む。別の場合には、機能的な免疫グロブリン遺伝子セグメントは、再構成された免疫グロブリン遺伝子配列を生成するための産生性の再構成が可能な可変遺伝子セグメントを含み得る。
【0051】
「中性pH」は、約7.0〜約8.0の間のpH、例えば、約7.0〜約7.4の間のpH、例えば、約7.2〜約7.4の間のpH、例えば、生理学的pHを含む。「酸性pH」は、6.0以下のpH、例えば、約5.0〜約6.0の間のpH、約5.75〜約6.0の間のpH、例えば、エンドソームコンパートメントまたはリソソームコンパートメントのpHを含む。
【0052】
免疫グロブリン軽鎖遺伝子内の操作したヒスチジン残基
本発明者らは、pH依存的な様式で抗原への結合が可能な抗体を発現する非ヒト動物を、軽鎖の配列に沿った1つまたは複数の位置において免疫グロブリン軽鎖可変領域の改変を施すことにより作製し得ることを発見した。動物が、抗体のCDR内でヒスチジンを発現するように、非ヒト動物の生殖細胞系列内に改変を施す方法が記載される。特に、マウスの生殖細胞系列内の免疫グロブリン軽鎖可変配列内に改変を施すための方法が記載される。例えば、軽鎖の可変領域配列は典型的に、可変領域配列に沿った体細胞超変異を示す。場合によって、このような変異は、ヒスチジン残基による置換(例えば、
図1を参照されたい)を結果としてもたらし得る。このような変異は、抗原結合の一因となる可変ドメインの領域である相補性決定領域(CDR)内でもなお生じ得る。場合によって、このような変異は、pH依存性の抗原結合を示す、例えば、酸性pHにおける抗原結合の、中性pHにおける抗原結合と比較した低減を示す抗体を結果としてもたらし得る。このようなpH依存性の抗原結合が所望される。なぜなら、抗体が、細胞の外部の抗原に結合し、エンドソームへと内部移行すると、抗原を放出し、表面へと再度リサイクルされて、別の抗原に結合し、標的介在性クリアランスを回避することを可能とし得るからである。ランダムhisスキャニング変異生成を用いて、抗IL−6R抗体におけるpH依存性の結合特性を操作することにより、ヒスチジン残基を導入して、この効果を達成するための手法が報告されている(US2011/0111406A1)。しかし、抗体残基のランダム変異生成は、抗体の抗原への親和性の低下を結果としてもたらし得る。抗体配列内のヒスチジン置換を発現させるために遺伝子改変された非ヒト動物は、目的の抗原に応答する高親和性抗体であって、ヒスチジン改変(複数可)に起因して、pH依存性の抗原結合もまた提示する高親和性抗体の生成を可能とする。
【0053】
したがって、様々な実施形態では、抗原にpH依存的な様式で結合することが可能な抗体を発現する動物を結果としてもたらす改変を含む、ヒト免疫グロブリン軽鎖可変領域配列をそのゲノム内に、例えば、その生殖細胞系列内に含む、遺伝子改変された非ヒト動物(例えば、齧歯動物、例えば、マウスまたはラット)が本明細書において提供される。一実施形態では、非ヒト動物は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(場合によってまた、「ヒスチジン置換」、「ヒスチジンコドン置換」などとも称し得る)を含む、ヒト免疫グロブリン軽鎖可変領域配列(例えば、V
Lセグメント配列および/またはJ
Lセグメント配列)内の改変を含む。一実施形態では、動物は、ヒト免疫グロブリン軽鎖の相補性決定領域(CDR;例えば、CDR1、CDR2、および/またはCDR3)のヌクレオチド配列内に、少なくとも1カ所の、非ヒスチジンコドンのヒスチジンコドンによる置換を含む。一実施形態では、置換は、CDR3コドンにおいてである。一実施形態では、軽鎖は、κ軽鎖である。一実施形態では、動物は、少なくとも1つのアミノ酸のヒスチジンによる置換を含む免疫グロブリン軽鎖、例えば、軽鎖CDR、例えば、軽鎖CDR3を発現する。別の実施形態では、軽鎖は、λ軽鎖である。さらに別の実施形態では、マウスは、κ軽鎖内およびλ軽鎖内のいずれにおいても、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む。
【0054】
ヒスチジン残基は、2つの異なるコドン、CATおよびCAC(デオキシリボ核酸残基)によりコードされる。したがって、非ヒスチジンコドンは、CATまたはCACで置換することができる。置換は、その生殖細胞系列内の立体配置(すなわち、非体細胞変異状態)では、ヒスチジン残基をコードしないコドンにおいて操作する。
【0055】
一実施形態では、軽鎖は、ユニバーサル軽鎖(また、共通軽鎖とも称する)である。米国特許出願第13/022,759号、同第13/093,156号、同第13/412,936号、および同第13/488,628号(米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号;全てが参照により本明細書に組み込まれる)において記載されている通り、複数の重鎖のために共通軽鎖を選択する非ヒト動物(例えば、マウス)は、実際的な有用性を有する。様々な実施形態では、共通の軽鎖だけを含む、非ヒト動物で発現される抗体は、同一であるか実質的に同一の軽鎖と会合して発現することができる重鎖を有する。これは、二重特異性抗体の作製で特に有益である。例えば、そのような動物は第一の免疫原で免疫して、第一のエピトープに特異的に結合する抗体を発現するB細胞を生成することができる。動物(または、遺伝的に同じ動物)は、第二の免疫原で免疫して、第二のエピトープに特異的に結合する抗体を発現するB細胞を生成することができる。重鎖可変領域はB細胞からクローニングすることができ、細胞中で同じ重鎖定常領域および同じ軽鎖(例えば、共通軽鎖)と共に発現されて二重特異性抗体を作製することができ、ここで、二重特異性抗体の重鎖成分は、同じ軽鎖成分と会合して発現するように動物によって選択される。記載される様々な実施形態では、遺伝子操作マウスの可変領域は、ヒト可変領域である。
【0056】
したがって、ヒト可変領域が生殖細胞系列配列から逸脱する重鎖、例えば親和性成熟または体細胞変異可変領域を含む、重鎖のかなり多様なファミリーと好適に対合する免疫グロブリン軽鎖を生成することができるマウスが操作された。様々な実施形態では、マウスは、ヒト軽鎖可変ドメインが、体細胞変異を含むヒト重鎖可変ドメインと対合するように工夫され、このようにして、ヒト治療法として使用するのに適する高親和性結合タンパク質への経路を可能にする。
【0057】
生物体における抗体選択の長く複雑なプロセスを介して、遺伝子操作マウスは、ヒト重鎖可変ドメインの多様なコレクションを限定された数のヒト軽鎖選択肢と対合させることにおいて、生物学的に適当な選択をする。これを達成するために、多様なヒト重鎖可変ドメイン選択肢と一緒に限定された数のヒト軽鎖可変ドメイン選択肢を提示するようにマウスは操作される。免疫原チャレンジに際して、マウスは免疫原に対する抗体を発生させるためにそのレパートリーにおける解法の数を最大にし、これは、そのレパートリーでの軽鎖選択肢の数によって大きく、またはそれ単独で制限される。様々な実施形態では、これは、軽鎖可変ドメインの好適で適合性の体細胞変異をマウスに達成させることを含み、該変異は、それにもかかわらず、特に体細胞変異ヒト重鎖可変ドメインを含む、比較的多様なヒト重鎖可変ドメインに適合する。
【0058】
米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号において記載されている、操作された共通軽鎖マウスは、軽鎖選択肢の限定されたレパートリー、例えば、2つ以下のV
Lセグメントまたは単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列を含む、共通軽鎖またはユニバーサル軽鎖「ULC」をコードする核酸配列を含んだ。このような限られたレパートリーを達成するために、天然のマウス軽鎖可変ドメインを作製または再構成する能力を、非機能的または実質的に非機能的にするようにマウスを操作する。1つの態様において、これは、例えば、マウスの軽鎖可変領域遺伝子セグメントを欠失させることによって達成された。以前に記載されたとおり、内因性マウス遺伝子座は、次に、外来性のヒト可変領域遺伝子セグメントが内因性マウス軽鎖定常領域遺伝子と組み合わさることができ、再構成されたリバースキメラ軽鎖遺伝子(ヒト可変、マウス定常)を形成することができる方法で、選択された外来性の好適なヒト軽鎖可変領域遺伝子セグメント(これは、内因性のマウス軽鎖定常ドメインに作動可能に連結される)によって改変され得る。様々な実施形態では、軽鎖可変領域は、体細胞変異させることが可能である。様々な実施形態では、体細胞変異を得る軽鎖可変領域の能力を最大にするために、適切なエンハンサー(複数可)がマウスで保持される。1つの態様において、ヒトκ軽鎖遺伝子セグメントで内因性マウスκ軽鎖遺伝子セグメントを置換するためにマウスκ軽鎖遺伝子座を改変することにおいて、マウスのκイントロンエンハンサーおよびマウスκ3’エンハンサーは機能的に維持されるか、破壊されない。
【0059】
したがって、多様なリバースキメラ(ヒト可変、マウス定常)重鎖と会合する限られたレパートリーのリバースキメラ(ヒト可変、マウス定常)軽鎖を発現する遺伝子操作マウスが提供された。様々な実施形態では、内因性マウスκ軽鎖領域遺伝子セグメントが欠失し、内因性マウスCκ遺伝子に作動可能に連結された単一の(または2つの)再構成されたヒト軽鎖領域で置換される。再構成されたヒト軽鎖領域の体細胞超変異を最大にするための実施形態では、マウスκイントロンエンハンサーおよびマウスκ3’エンハンサーが維持される。様々な実施形態では、マウスは非機能的なλ軽鎖遺伝子座、またはその欠失、またはその遺伝子座がλ軽鎖を作製できないようにする欠失をさらに含む。
【0060】
ユニバーサル軽鎖マウスは、多様なV
Hセグメント、D
Hセグメント、およびJ
Hセグメントのレパートリーを含む、重鎖可変領域配列の多様なレパートリーを使用することが可能な、様々な抗原に応答する抗体を生成した。このような遺伝子操作ULCマウスにおいて生成される抗体は、二重特異性治療抗体をデザインするのに有用であるが、他の任意の抗体と同様に、各二重特異性抗体も、血漿中のその寿命の間に1つの標的だけに結合することが可能であり、その抗体は、エンドソームへと内部移行して、リソソーム分解の標的とされる。研究は、MHCクラスI様Fcγ受容体であるFcRnが、免疫グロブリンを、ソーティングエンドソームから細胞表面へとリサイクリングして戻すことにより、リソソーム分解からレスキューすることが可能であることを示している(SimisterおよびMostov (1989年)、An Fc receptor structurally related to MHC class I antigens、Nature、337巻:184〜87頁)。上記で説明した通り、抗体リサイクリングの効率を改善するには、抗体配列へのさらなる改変、例えば、酸性pH(例えば、エンドソームのpH)では、抗原結合の低下を結果としてもたらすが、中性pH(例えば、生理学的pH)では、抗体−抗原の親和性および特異性を保持する改変が有益である。ユニバーサル軽鎖配列内の非ヒスチジン残基をヒスチジン残基で置換した、本明細書に記載されている非ヒト動物は、pH依存性結合もまた提示する、例えば、酸性pHにおける抗原への結合の、中性pHにおける抗原への結合と対比した低減もまた提示する、ユニバーサル軽鎖フォーマットに基づく高親和性抗体を産生することが可能であるために有益である。
【0061】
したがって、一実施形態では、ヒト軽鎖可変領域の限定されたレパートリー、またはヒト軽鎖可変遺伝子セグメントの限定されたレパートリーからの単一のヒト軽鎖可変領域をそのゲノム内に、例えば、その生殖細胞系列内に含む非ヒト動物(例えば、齧歯動物、例えば、マウスまたはラット)であって、ヒト軽鎖可変領域(複数可)が、少なくとも1カ所の、非ヒスチジンコドンのヒスチジンコドンによる置換を含む非ヒト動物が本明細書に提供される。いくつかの実施形態では、提供される非ヒト動物を、単一の軽鎖を発現する(または2つの軽鎖の一方もしくは両方を発現する)、再構成されたヒト軽鎖可変領域遺伝子(または2つの再構成された軽鎖可変領域遺伝子)を形成するように再構成する、単一の再構成されていないヒト軽鎖可変領域遺伝子セグメント(または2つのヒト軽鎖可変領域遺伝子セグメント)を含むように遺伝子操作し、ここで、軽鎖可変領域遺伝子(複数可)は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む。これらのヒスチジン置換した軽鎖可変領域遺伝子(複数可)によりコードされる、再構成されたヒト軽鎖可変ドメインは、動物により選択される、複数の親和性成熟させたヒト重鎖であって、重鎖可変領域が異なるエピトープに特異的に結合するヒト重鎖と対合することが可能である。様々な実施形態では、少なくとも1カ所の、非ヒスチジン残基のヒスチジン残基による置換は、同種の(cognate)重鎖と共に発現すると、その抗原にpH依存的な様式で結合する、再構成されたヒト軽鎖を結果としてもたらす。
【0062】
ヒト軽鎖可変ドメインの限定されたレパートリー、またはヒト軽鎖可変領域遺伝子配列の限定されたレパートリーからの単一のヒト軽鎖可変ドメインを発現する遺伝子操作動物であって、可変領域遺伝子配列が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む遺伝子操作動物が提供される。いくつかの実施形態では、提供される動物を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含み、単一の軽鎖の可変領域を発現する(または2つの可変領域の一方もしくは両方を発現する)、単一のV/Jヒト軽鎖配列(または2つのV/J配列)を含むように遺伝子操作する。一態様では、可変配列を含む軽鎖は、動物によりクローン選択される、複数の親和性成熟させたヒト重鎖であって、重鎖可変領域が異なるエピトープに特異的に結合するヒト重鎖と対合させることが可能である。一実施形態では、抗体は、その抗原(複数可)にpH依存的な様式で結合する。一実施形態では、単一のV/Jヒト軽鎖配列は、Vκ1−39Jκ5およびVκ3−20Jκ1から選択される。一実施形態では、2つのV/J配列は、Vκ1−39Jκ5およびVκ3−20Jκ1である。一実施形態では、Vκ1−39Jκ5配列およびVκ3−20Jκ1配列は、再構成されたV/J配列である。
【0063】
一態様では、ヒトJ
L遺伝子セグメント(1つまたは複数のJ
Lセグメントから選択される)と共に再構成することが可能であり、免疫グロブリン軽鎖のヒト可変ドメインをコードすることが可能な、単一のヒト免疫グロブリン軽鎖V
L遺伝子セグメントを含む、遺伝子改変された非ヒト動物であって、単一のヒト免疫グロブリン軽鎖V
L遺伝子セグメントおよび/またはヒトJ
L遺伝子セグメントが、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、遺伝子改変された非ヒト動物が提供される。別の態様では、それらの各々が、ヒトJ
L遺伝子セグメント(1つまたは複数のJ
Lセグメントから選択される)と共に再構成することが可能であり、免疫グロブリン軽鎖のヒト可変ドメインをコードすることが可能な、2つ以下のヒトV
L遺伝子セグメントを含む遺伝子改変マウスであって、2つ以下のV
L遺伝子セグメントおよび/またはJ
L遺伝子セグメントの各々が、少なくとも1つの非ヒスチジン残基のヒスチジン残基による置換を含む遺伝子改変マウスが提供される。
【0064】
本明細書では、ヒトV
L配列およびヒトJ
L配列を含む、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列をそのゲノム内に、例えば、その生殖細胞系列内に含む、遺伝子改変された非ヒト動物であって、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、遺伝子改変された非ヒト動物もまた提供される。一態様では、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列は、ヒスチジン置換(複数可)を除けば、ヒト生殖細胞系列のV
L遺伝子配列およびJ
L遺伝子配列に由来する。一実施形態では、ヒト免疫グロブリン軽鎖は、ヒト免疫グロブリンκ鎖である。したがって、一実施形態では、ヒトV
L遺伝子配列は、Vκ1−39およびVκ3−20から選択される。一実施形態では、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列は、再構成されたVκ1−39/J配列またはVκ3−20/J配列を含む。一実施形態では、ヒトJ
L遺伝子配列は、Jκ1、Jκ2、Jκ3、Jκ4、およびJκ5から選択される。一実施形態では、ヒトJ
L配列は、Jκ1およびJκ5から選択される。一実施形態では、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列は、Vκ1−39Jκ5およびVκ3−20Jκ1から選択される(例えば、ヒスチジン置換(複数可)を除けば)。代替的な実施形態では、ヒト免疫グロブリン軽鎖は、ヒトλ鎖である。
【0065】
一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換は、軽鎖可変ドメインの相補性決定領域(CDR)をコードするヌクレオチド配列内にある。一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換は、軽鎖可変ドメインのCDR1、CDR2、またはCDR3をコードするヌクレオチド配列内にある。具体的な一実施形態では、置換は、CDR3をコードするヌクレオチド配列内にある。
【0066】
一態様では、置換は、ヒト軽鎖可変領域遺伝子配列のCDR3コドンにおける、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換である。一実施形態では、置換は、1つ、2つ、3つ、4つ、またはそれ超のCDR3コドンの置換である。単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、Vκ1−39Jκ5可変領域である実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえは、105、106、108、111位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、CDR3をコードする免疫グロブリン軽鎖遺伝子配列内の位置における置きかえを含む。一実施形態では、置きかえは、105および106位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105および108位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、108、および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、106、および108位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106および108位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、108および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106、108、および111位においてヒスチジンを発現するようにデザインする。さらに別の実施形態では、置きかえは、106、108、および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、106、および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、106、108、および111位においてヒスチジンを発現するようにデザインする。ヒスチジン置換したCDR3領域の核酸配列およびアミノ酸配列を、
図2の配列アラインメントに示し、配列番号4〜33にも示す。野生型CDR3の核酸配列およびアミノ酸配列(
図2に示される)を、それぞれ、配列番号2および3に示す。
【0067】
単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、Vκ3−20Jκ1可変領域である実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえは、105、106、107、109位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、CDR3領域をコードする免疫グロブリン軽鎖遺伝子配列内の位置における置きかえを含む。一実施形態では、置きかえは、105および106位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105および107位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105および109位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106および107位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106および109位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、107および109位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、106、および107位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、107、および109位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、106、108、および111位においてヒスチジンを発現するようにデザインする。一実施形態では、置きかえは、105、106、および109位においてヒスチジンを発現するようにデザインする。別の実施形態では、置きかえは、105、106、107、および109位においてヒスチジンを発現するようにデザインする。例示的な、ヒスチジン置換したCDR3領域の核酸配列およびアミノ酸配列を、
図12の配列アラインメントに示し、配列番号76〜79に示す。野生型CDR3の核酸配列およびアミノ酸配列(
図12に示される)を、それぞれ、配列番号74および75に示す。
【0068】
アミノ酸位置(105、106位など)は、Lefrancら(2003年)、Dev. Comp. Immunol.、27巻:55〜77頁において記載されている固有の番号付けに基づいており、また、www.imgt.org上でも調べることができる。
【0069】
一実施形態では、ヒトV
L遺伝子セグメントを、ヒトリーダー配列または非ヒトリーダー配列に作動可能に連結する。一実施形態では、リーダー配列は、非ヒトリーダー配列である。具体的な実施形態では、非ヒトリーダー配列は、マウスVκ3−7リーダー配列である。具体的な実施形態では、リーダー配列を、再構成されていないヒトV
L遺伝子セグメントに作動可能に連結する。具体的な実施形態では、リーダー配列を、再構成されたヒトV
L/J
L配列に作動可能に連結する。したがって、具体的な一実施形態では、少なくとも1つのヒスチジン置換を含む、単一の、再構成されたVκ1−39/Jκ5可変領域遺伝子配列またはVκ3−20/Jκ1可変領域遺伝子配列を、マウスVκ3−7リーダー配列に作動可能に連結する。
【0070】
一実施形態では、V
L遺伝子セグメントを、免疫グロブリンプロモーター配列に作動可能に連結する。一実施形態では、プロモーター配列は、ヒトプロモーター配列である。具体的な実施形態では、ヒト免疫グロブリンプロモーターは、ヒトVκ3−15プロモーターである。具体的な実施形態では、プロモーターを、再構成されていないヒトV
L遺伝子セグメントに作動可能に連結する。具体的な実施形態では、プロモーターを、再構成されたヒトV
L/J
L配列に作動可能に連結する。したがって、具体的な一実施形態では、少なくとも1つのヒスチジン置換を含む、単一の、再構成されたVκ1−39/Jκ5可変領域遺伝子配列またはVκ3−20/Jκ1可変領域遺伝子配列を、ヒトVκ3−15プロモーターに作動可能に連結する。
【0071】
一実施形態では、軽鎖遺伝子座は、5’側(V
L遺伝子セグメントの転写方向に対して)でヒト免疫グロブリンプロモーターと隣接し、3’側でヒトJ
Lセグメントと共に再構成するヒトV
L遺伝子セグメントと隣接した、リーダー配列を含み、内因性非ヒト軽鎖定常領域(C
L)を含むリバースキメラ軽鎖の可変ドメインをコードする。具体的な実施形態では、V
L遺伝子セグメントおよびJ
L遺伝子セグメントは、非ヒトVκ遺伝子座にあり、非ヒトC
Lは、非ヒトCκ(例えば、マウスCκ)である。具体的な一実施形態では、可変領域配列を、非ヒト定常領域配列、例えば、非ヒトCκ遺伝子配列に作動可能に連結する。
【0072】
一実施形態では、軽鎖遺伝子座は、5’側(V
L遺伝子セグメントの転写方向に対して)でヒト免疫グロブリンプロモーターと隣接し、3’側で再構成されたヒト可変領域配列(V
L/J
L配列)と隣接した、リーダー配列を含み、内因性非ヒト軽鎖定常領域(C
L)を含むリバースキメラ軽鎖の可変ドメインをコードする。具体的な実施形態では、再構成されたヒトV
L/J
L配列は、非ヒトカッパ(κ)遺伝子座にあり、非ヒトC
Lは、非ヒトCκである。具体的な一実施形態では、再構成されたヒト可変領域配列を、非ヒト免疫グロブリン軽鎖定常領域配列、例えば、非ヒトCκ遺伝子配列に作動可能に連結する。一実施形態では、非ヒト免疫グロブリン軽鎖定常領域配列は、内因性非ヒト配列である。一実施形態では、非ヒト動物は、マウスであり、Cκ遺伝子配列は、マウスCκ遺伝子配列である。一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列は、内因性非ヒト(例えば、マウス)免疫グロブリン軽鎖遺伝子座(κ遺伝子座)にある。遺伝子座の例示的な実施形態を、
図8C、8E、14C、および14Dに提示する。
【0073】
一実施形態では、遺伝子改変された非ヒト動物は、マウスであり、マウスの可変領域遺伝子座は、κ軽鎖遺伝子座であり、κ軽鎖遺伝子座は、マウスκイントロンエンハンサー、マウスκ3’側エンハンサー、またはイントロンエンハンサーおよび3’側エンハンサーの両方を含む。
【0074】
一実施形態では、非ヒト動物(例えば、齧歯動物、例えば、ラットまたはマウス)は、非機能的な免疫グロブリンラムダ(λ)軽鎖遺伝子座を含む。具体的な実施形態では、λ軽鎖遺伝子座は、遺伝子座の1つまたは複数の配列の欠失であって、λ軽鎖遺伝子座を再構成して、軽鎖遺伝子を形成することを不可能とする1つまたは複数の欠失を含む。別の実施形態では、λ軽鎖遺伝子座のV
L遺伝子セグメントの全てまたは実質的に全てを欠失させる。一実施形態では、非ヒト動物(例えば、齧歯動物、例えば、マウスまたはラット)は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列を含み、機能的な、再構成されていない免疫グロブリン軽鎖可変領域、例えば、内因性の、再構成されていない軽鎖可変領域を欠く。一実施形態では、再構成された、ヒスチジン置換したヒト免疫グロブリン軽鎖可変領域遺伝子配列により、内因性の、再構成されていない免疫グロブリン軽鎖可変領域遺伝子配列を置きかえる。
【0075】
一実施形態では、動物により、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むヒト可変領域配列に由来する体細胞変異可変ドメインを含む軽鎖を作製する。一実施形態では、軽鎖は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、ヒト可変領域配列に由来する体細胞変異可変ドメイン、および非ヒトCκ領域を含む。一実施形態では、非ヒト動物は、λ軽鎖を発現しない。
【0076】
当業者ならば、少なくとも1つの非ヒスチジン残基のヒスチジン残基による置換(複数可)を、ヒト免疫グロブリン軽鎖可変領域へと遺伝子操作しても、体細胞超変異に起因して、遺伝子改変された非ヒト動物において生成される全ての抗体が、このヒスチジン残基(複数可)を、操作された位置(複数可)において保有するわけではないことを十分に理解する。しかし、非ヒト動物における広範な抗体レパートリーの生成は、in vivoにおいて生成される抗原特異的抗体であって、目的の抗原に対する高親和性を提示する一方で、生殖細胞系列へと導入され、好ましくは、pH依存性の抗原結合を示すヒスチジン改変を保持する抗原特異的抗体について選択することを可能とする。
【0077】
したがって、一実施形態では、動物は、その可変領域遺伝子内の、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換により導入される、少なくとも1つのヒスチジンアミノ酸を保持する。一実施形態では、動物は、その可変領域遺伝子へと導入された、その体細胞変異軽鎖可変ドメイン内の全てまたは実質的に全てのヒスチジン置換を保持する。
【0078】
一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物はまた、V
H遺伝子セグメント配列、D
H遺伝子セグメント配列、およびJ
H遺伝子セグメント配列を含む、再構成されていない免疫グロブリン重鎖可変領域もそのゲノム内に、例えば、その生殖細胞系列内に含む。一実施形態では、V
H遺伝子セグメント配列、D
H遺伝子セグメント配列、およびJ
H遺伝子セグメント配列は、ヒトV
H遺伝子セグメント配列、ヒトD
H遺伝子セグメント配列、およびヒトJ
H遺伝子セグメント配列であり、再構成されていない免疫グロブリン重鎖可変領域は、ヒト重鎖可変領域である。一実施形態では、ヒトV
H遺伝子セグメント配列、ヒトD
H遺伝子セグメント配列、およびヒトJ
H遺伝子セグメント配列は、非ヒト重鎖定常領域配列に作動可能に連結されている。一実施形態では、非ヒト重鎖定常領域配列は、内因性非ヒト重鎖定常領域配列である。一実施形態では、ヒト重鎖遺伝子セグメント配列は、内因性非ヒト免疫グロブリン重鎖遺伝子座にある。一実施形態では、非ヒト動物に含まれるヒト免疫グロブリン重鎖可変領域配列はまた、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換も含む。
【0079】
一実施形態では、本明細書に記載されている非ヒト動物は、非ヒト軽鎖定常領域配列を含む免疫グロブリン軽鎖を発現する。一実施形態では、非ヒト動物は、ヒト軽鎖定常領域配列を含む免疫グロブリン軽鎖を発現する。
【0080】
一実施形態では、本明細書に記載されている非ヒト動物は、C
H1配列、ヒンジ配列、C
H2配列、C
H3配列、およびこれらの組合せから選択される非ヒト配列を含む免疫グロブリン重鎖を発現する。
【0081】
一実施形態では、非ヒト動物は、C
H1配列、ヒンジ配列、C
H2配列、C
H3配列、およびこれらの組合せから選択されるヒト配列を含む免疫グロブリン重鎖を発現する。
【0082】
動物が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、単一の、再構成された免疫グロブリン軽鎖可変領域を含む実施形態では、動物の生殖細胞系列内の、再構成された免疫グロブリン軽鎖配列は、内因性非ヒト免疫グロブリン軽鎖遺伝子座にある。具体的な実施形態では、動物の生殖細胞系列内の、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、再構成された免疫グロブリン軽鎖配列は、内因性非ヒト免疫グロブリン軽鎖遺伝子座における、全てまたは実質的に全ての内因性非ヒト軽鎖Vセグメント配列および内因性非ヒト軽鎖Jセグメント配列を置きかえる。
【0083】
一実施形態では、非ヒト動物は、内因性V
H遺伝子セグメントの1つまたは複数のヒトV
H遺伝子セグメントによる置きかえを含み、ここで、非ヒト動物がヒトV
H遺伝子セグメントを再構成し、ヒトV
Hドメインおよび非ヒトC
Hを含むリバースキメラ免疫グロブリン重鎖を発現するように、ヒトV
H遺伝子セグメントは、非ヒトC
H領域遺伝子に作動可能に連結されている。一実施形態では、再構成されていない非ヒトV
H遺伝子セグメントのうちの90〜100%を、少なくとも1つの、再構成されていないヒトV
H遺伝子セグメントで置きかえる。具体的な実施形態では、内因性非ヒトV
H遺伝子セグメントの全てまたは実質的に全て(例えば、90〜100%)を、少なくとも1つの、再構成されていないヒトV
H遺伝子セグメントで置きかえる。一実施形態では、置きかえは、少なくとも19、少なくとも39、または少なくとも80もしくは81の再構成されていないヒトV
H遺伝子セグメントによる置きかえである。一実施形態では、置きかえは、少なくとも12の機能的な、再構成されていないヒトV
H遺伝子セグメント、少なくとも25の機能的な、再構成されていないヒトV
H遺伝子セグメント、または少なくとも43の機能的な、再構成されていないヒトV
H遺伝子セグメントによる置きかえである。一実施形態では、非ヒト動物は、全ての非ヒトD
Hセグメントおよび非ヒトJ
Hセグメントの、少なくとも1つの、再構成されていないヒトD
Hセグメント、および少なくとも1つの、再構成されていないヒトJ
Hセグメントによる置きかえを含む。一実施形態では、非ヒト動物は、全ての非ヒトD
Hセグメントおよび非ヒトJ
Hセグメントの、全ての、再構成されていないヒトD
Hセグメント、および全ての、再構成されていないヒトJ
Hセグメントによる置きかえを含む。
【0084】
ヒト免疫グロブリン軽鎖可変領域の限定されたレパートリー、例えば、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域(例えば、Vκ1−39/Jκ5またはVκ3−20/Jκ1)、ならびに再構成されていないヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントの多様なレパートリーをそのゲノム内に、例えば、その生殖細胞系列内に含む非ヒト動物、例えば、マウスは、再構成されていないヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントの様々な順列に由来する、重鎖可変領域配列によりコードされる、抗原結合タンパク質を生成することが可能であり、ここで、重鎖可変配列内に存在するV
Hセグメント、D
Hセグメント、およびJ
Hセグメントは、動物のゲノム内に存在する、全てまたは実質的に全ての機能的なヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントに由来する。本明細書に記載されている遺伝子改変動物の細胞、例えば、B細胞内で発現させた重鎖可変ドメイン配列(すなわち、様々な、機能的なヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの組合せに由来する)の様々な利用可能性は、全てが参照により本明細書に組み込まれる、米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号において記載されている。様々な実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列、および再構成されていないヒト免疫グロブリン重鎖可変領域配列は、非ヒト動物の生殖細胞系列内に含まれる。
【0085】
一実施形態では、非ヒト動物は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列、および再構成されていないヒト免疫グロブリン重鎖可変領域配列の一方または両方の1つのコピーを含む。別の実施形態では、非ヒト動物は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列、および再構成されていないヒト免疫グロブリン重鎖可変領域配列の一方または両方の2つのコピーを含む。したがって、非ヒト動物は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列、および再構成されていないヒト免疫グロブリン重鎖可変領域配列の一方または両方について、ホモ接合性であってもよく、ヘテロ接合性であってもよい。
【0086】
少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(例えば、軽鎖のCDR3内の)を含む、免疫グロブリン軽鎖可変領域遺伝子配列(例えば、単一の、再構成された免疫グロブリン軽鎖可変領域遺伝子配列)をそれらのゲノム内に含む、遺伝子改変された非ヒト動物に加えて、本明細書では、発現した可変ドメインが、体細胞超変異にかけられない場合は、ヒスチジンである、さらなるアミノ酸(複数可)を含むように、ヒスチジンコドン(複数可)の1つまたは複数の付加/挿入を有する、免疫グロブリン軽鎖可変領域遺伝子配列を含む、遺伝子改変された非ヒト動物もまた提供される。
【0087】
本明細書に記載されている、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、ヒト免疫グロブリン軽鎖可変領域遺伝子配列を含む遺伝子改変された非ヒト動物は、マウス、ラット、ウサギ、ブタ、ウシ(例えば、雌牛、雄牛、野牛)、シカ、ヒツジ、ヤギ、ニワトリ、ネコ、イヌ、フェレット、霊長動物(例えば、マーモセット、アカゲザル)からなる群から選択することができる。好適な遺伝子改変可能なES細胞が容易に利用可能でない非ヒト動物には、本明細書に記載されている方法とは異なる方法を用いて、遺伝子改変を含む非ヒト動物を作製する。このような方法は、例えば、非ES細胞ゲノム(例えば、線維芽細胞または人工多能性細胞)を改変するステップと、核移植を用いて、改変されたゲノムを、好適な細胞、例えば、卵母細胞へと導入するステップと、改変された細胞(例えば、改変卵母細胞)を、胚を形成するのに好適な条件下で、非ヒト動物に懐胎させるステップとを含む。
【0088】
一態様では、非ヒト動物は、哺乳動物である。一態様では、非ヒト動物は、小型の哺乳動物、例えば、Dipodoidea上科またはMuroidea上科の小型の哺乳動物である。一実施形態では、遺伝子改変された動物は、齧歯動物である。一実施形態では、齧歯動物は、マウス、ラット、およびハムスターから選択される。一実施形態では、齧歯動物は、Muroidea上科から選択される。一実施形態では、遺伝子改変された動物は、Calomyscidae科(例えば、マウス様ハムスター)、Cricetidae科(例えば、ハムスター、新世界ラット、およびマウス、ハタネズミ)、Muridae科(真性(true)マウスおよびラット、アレチネズミ、トゲネズミ、タテガミネズミ)、Nesomyidae科(キノボリネズミ、イワネズミ、オジロキヌゲネズミ(with−tailed rat)、マダカスカルラットおよびマダカスカルマウス)、Platacanthomyidae科(例えば、トゲヤマネ)、およびSpalacidae科(例えば、デバネズミ(mole rates)、タケネズミ、およびモグラネズミ)から選択される科由来の動物である。具体的な実施形態では、遺伝子改変された齧歯動物は、真性マウスまたはラット(Muridae科)、アレチネズミ、トゲネズミ、およびタテガミネズミから選択される。一実施形態では、遺伝子改変されたマウスは、Muridae科由来のメンバーのマウスである。一実施形態では、動物は、齧歯動物である。具体的な実施形態では、齧歯動物は、マウスおよびラットから選択される。一実施形態では、非ヒト動物は、マウスである。
【0089】
具体的な実施形態では、非ヒト動物は、C57BL/A、C57BL/An、C57BL/GrFa、C57BL/KaLwN、C57BL/6、C57BL/6J、C57BL/6ByJ、C57BL/6NJ、C57BL/10、C57BL/10ScSn、C57BL/10Cr、およびC57BL/Olaから選択されるC57BL系統のマウスである齧歯動物である。別の実施形態では、マウスは、129P1、129P2、129P3、129X1、129S1(例えば、129S1/SV、129S1/SvIm)、129S2、129S4、129S5、129S9/SvEvH、129S6(129/SvEvTac)、129S7、129S8、129T1、129T2である系統からなる群から選択される、129系統である(例えば、Festingら(1999年)、Revised nomenclature for strain 129 mice、Mammalian Genome、10巻:836頁を参照されたい; Auerbachら(2000年)、Establishment and Chimera Analysis of 129/SvEv- and C57BL/6-Derived Mouse Embryonic Stem Cell Linesもまた参照されたい)。具体的な実施形態では、遺伝子改変されたマウスは、前述の129系統と前述のC57BL/6系統とのミックスである。別の具体的な実施形態では、マウスは、前述の129系統のミックスまたは前述のBL/6系統のミックスである。具体的な実施形態では、ミックスの129系統は、129S6(129/SvEvTac)系統である。別の実施形態では、マウスは、BALB系統、例えば、BALB/c系統である。さらに別の実施形態では、マウスは、BALB系統と別の前述の系統とのミックスである。
【0090】
一実施形態では、非ヒト動物は、ラットである。一実施形態では、ラットは、Wistarラット、LEA系統、Sprague Dawley系統、Fischer系統、F344、F6、およびDark Agoutiから選択される。一実施形態では、ラット系統は、Wistar、LEA、Sprague Dawley、Fischer、F344、F6、およびDark Agoutiからなる群から選択される2つ以上の系統のミックスである。
【0091】
したがって、一実施形態では、遺伝子改変された非ヒト動物は、齧歯動物である。一実施形態では、遺伝子改変された非ヒト動物は、ラットまたはマウスである。一実施形態では、動物は、マウスである。したがって、本発明の一実施形態では、ヒトV
L遺伝子配列およびヒトJ
L遺伝子配列を含む、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域をそのゲノム内に、例えば、その生殖細胞系列内に含む遺伝子改変マウスであって、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、少なくとも非ヒスチジンコドンのヒスチジンコドンによる置換を含む遺伝子改変マウスが本明細書において提供される。一実施形態では、マウスは、機能的な、再構成されていない免疫グロブリン軽鎖可変領域を欠く(例えば、機能的な、再構成されていないV遺伝子セグメント配列およびJ遺伝子セグメント配列を欠く)。一実施形態では、ヒスチジンコドンの置換(複数可)を有する、再構成されたヒト免疫グロブリン軽鎖可変領域は、Vκ1−39/Jκ可変領域またはVκ3−20/Jκ可変領域である。一実施形態では、Jセグメント配列は、Jκ1、Jκ2、Jκ3、Jκ4、およびJκ5から選択される。一実施形態では、Jセグメント配列は、Jκ1またはJκ5である。一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換は、CDR3領域をコードするヌクレオチド配列内にある。再構成された可変領域配列が、Vκ1−39/Jκ5配列である一実施形態では、ヒスチジン置換(複数可)を、105、106、108、111位、およびこれらの組合せから選択される位置において発現するようにデザインする。再構成された可変領域配列が、Vκ3−20/Jκ1配列である別の実施形態では、ヒスチジン置換(複数可)を、105、106、107、109位、およびこれらの組合せから選択される位置において発現するようにデザインする。一実施形態では、置換されたヒスチジンコドン(複数可)を有する、再構成された免疫グロブリン軽鎖可変領域を、内因性のマウス免疫グロブリン定常領域遺伝子配列(例えば、Cκ遺伝子配列)に作動可能に連結する。一実施形態では、マウスは、そのゲノム内に、例えば、その生殖細胞系列内に、ヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントを含む、再構成されていない免疫グロブリン重鎖可変領域をさらに含む。一実施形態では、ヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントは、内因性のマウス免疫グロブリン重鎖定常領域遺伝子配列に作動可能に連結されている。様々な実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、再構成されたヒト免疫グロブリン軽鎖可変領域配列、および再構成されていないヒト免疫グロブリン重鎖可変領域配列は、マウスの生殖細胞系列内に含まれる。
【0092】
本明細書では、本明細書に記載されている、遺伝子改変された非ヒト動物、例えば、マウスを生成するためのターゲッティングベクターもまた提供される。一態様では、ベクターの5’側マウス相同性アームおよび3’側マウス相同性アームの配列に関する転写方向の5’側から3’側にかけて、5’側マウス相同性アーム、ヒト免疫グロブリンプロモーターまたはマウス免疫グロブリンプロモーター、ヒトリーダー配列またはマウスリーダー配列、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む再構成されたヒトVκ1−39Jκ5または再構成されたヒトVκ3−20Jκ1から選択されるヒト可変領域、および3’側マウス相同性アームを含む、ターゲッティングベクターが提供される。一実施形態では、5’側相同性アームおよび3’側相同性アームは、ベクターを、5’側に存在し、マウスCκ遺伝子に対して近位である、エンハンサー配列に対して5’側の配列へとターゲッティングする。別の実施形態では、ターゲッティングベクターは、5’側マウス相同性アームに続いて、組換え部位により挟まれた選択カセット、ヒト免疫グロブリンプロモーターまたはマウス免疫グロブリンプロモーター、ヒトリーダー配列またはマウスリーダー配列、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む再構成されたヒトVκ1−39Jκ5または再構成されたヒトVκ3−20Jκ1から選択されるヒト可変領域に続いて、マウスエンハンサーおよび定常領域(Cκ)配列を含む、3’側マウス相同性アームを含む。
【0093】
選択カセットとは、目的の構築物を組み込んだ細胞(例えば、ES細胞)の選択を容易にするために、ターゲッティング構築物へと挿入されるヌクレオチド配列である。当技術分野では、いくつかの好適な選択カセットが公知である。一般に、選択カセットは、特定の抗生剤(例えば、Neo、Hyg、Pur、CM、Specなど)の存在下で、陽性選択を可能とする。加えて、選択カセットは、レコンビナーゼ酵素で処理したときに、選択カセットの欠失を可能とする、組換え部位で挟むことができる。一般に用いられる組換え部位は、Cre酵素およびFlp酵素のそれぞれにより認識されるloxPおよびFrtであるが、当技術分野では、他の組換え部位も公知である。
【0094】
一実施形態では、プロモーターは、ヒト免疫グロブリン可変領域遺伝子セグメントプロモーターである。具体的な実施形態では、プロモーターは、ヒトVκ3−15プロモーターである。一実施形態では、リーダー配列は、マウスリーダー配列である。具体的な実施形態では、マウスリーダー配列は、マウスVκ3−7リーダー配列である。ターゲッティングベクターの例示的な実施形態を、
図8Bおよび14Bに提示する。
【0095】
一態様では、ターゲッティングベクターを、上記で記載した通りに提供するが、5’側マウス相同性アームの代わりに、ヒトプロモーターまたはマウスプロモーターに、5’側で、部位特異的レコンビナーゼ認識部位(SRRS)を隣接させ、3’側マウス相同性アームの代わりに、ヒトV
L領域に、3’側で、SRRSを隣接させる。
【0096】
本明細書では、本明細書に記載されている、遺伝子改変された非ヒト動物(例えば、齧歯動物、例えば、マウスまたはラット)を作製する方法もまた提供される。一態様では、本明細書に記載されている、遺伝子改変された非ヒト動物を作製するための方法は、実施例において記載されている通り、VELOCIGENE(登録商標)技術を用いて作製されるターゲッティングベクターを使用し、構築物をES細胞へと導入し(introducing)、VELOCIMOUSE(登録商標)技術を用いて、ターゲッティングされたES細胞クローンをマウス胚へと導入する。ヒスチジン改変は、様々な分子生物学技法、例えば、部位指向変異生成またはデノボのDNA合成を用いて、ターゲッティングベクターへと導入することができる。遺伝子ターゲッティングが完了したら、遺伝子改変された非ヒト動物のES細胞をスクリーニングして、目的の外因性ヌクレオチド配列の組込みまたは外因性ポリペプチドの発現の成功を確認する。当業者には、数多くの技法が公知であり、サザンブロット法、長鎖PCR、定量的PCT(例えば、TAQMAN(登録商標)を用いるリアルタイムPCR)、蛍光in situハイブリダイゼーション、ノーザンブロット法、フローサイトメトリー、ウェスタン分析、免疫細胞化学検査、免疫組織化学検査などが挙げられる(が、これらに限定されない)。一例では、目的の遺伝子改変を保有する非ヒト動物(例えば、マウス)は、Valenzuelaら(2003年)、High-throughput engineering of the mouse genome coupled with high-resolution expression analysis、Nature Biotech.、21巻(6号):652〜659頁において記載されている、対立遺伝子アッセイの改変型を用いて、マウス対立遺伝子の喪失および/またはヒト対立遺伝子の獲得についてスクリーニングすることにより同定することができる。当業者には、遺伝子改変動物における具体的なヌクレオチド配列またはアミノ酸配列を同定する他のアッセイも公知である。
【0097】
したがって、一実施形態では、遺伝子改変された非ヒト動物を生成する方法は、動物における免疫グロブリン軽鎖可変領域遺伝子配列を、ヒト免疫グロブリン軽鎖可変領域遺伝子配列(ヒトV
L遺伝子セグメントおよびヒトJ
L遺伝子セグメントを含む)で置きかえるステップを含み、ここで、ヒト免疫グロブリン可変領域遺伝子配列は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む。一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換は、CDR領域、例えば、CDR3領域をコードするヌクレオチド配列内にある。
【0098】
一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物を生成する方法は、動物における免疫グロブリン軽鎖可変領域遺伝子配列を、ヒトV
L遺伝子セグメント配列およびヒトJ
L遺伝子セグメント配列を含む、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列で置きかえるステップを含み、ここで、単一の、再構成されたヒト免疫グロブリン可変領域遺伝子配列は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む。一実施形態では、置換は、CDRコドンにおいてである。一実施形態では、置換は、1つ、2つ、3つ、4つ、またはそれ超のCDR3コドンの置換である。一実施形態では、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列は、Vκ1−39Jκ5およびVκ3−20Jκ1から選択される、ヒト生殖細胞系列の、再構成された軽鎖可変領域配列に基づく。したがって、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列が、Vκ1−39Jκ5に由来する一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを、105、106、108、111位、およびこれらの組合せから選択される位置において、ヒスチジンを発現するようにデザインする。単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列が、Vκ3−20κ1に由来する一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを、105、106、107、109位、およびこれらの組合せから選択される位置において、ヒスチジンを発現するようにデザインする。
【0099】
別の実施形態では、本明細書に記載されている非ヒト動物(すなわち、本明細書に記載されている、遺伝子改変された免疫グロブリン軽鎖遺伝子座を含む)を生成する方法は、非ヒト動物のゲノムを改変して、免疫グロブリン軽鎖遺伝子座内の、内因性免疫グロブリンの軽鎖Vセグメントおよび軽鎖Jセグメントを欠失させるか、または非機能的にするステップと、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、単一の、再構成されたヒト軽鎖可変領域遺伝子配列をゲノムに配置するステップとを含む。一実施形態では、方法は、目的の抗原へのpH依存性結合を示す抗体が富化されたB細胞集団を含む、遺伝子改変された非ヒト動物を結果としてもたらす。
【0100】
いくつかの実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物を生成する方法は、内因性非ヒト免疫グロブリン重鎖可変領域遺伝子配列の、上記で記載したヒトV
H配列、ヒトD
H配列、およびヒトJ
H配列の各々またはレパートリーのうちの少なくとも1つを含むヒト免疫グロブリン重鎖可変領域遺伝子配列による置きかえもまた含む動物において、免疫グロブリン軽鎖可変領域遺伝子配列を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(複数可)を含む、ヒト免疫グロブリン軽鎖可変遺伝子領域配列で置きかえるステップを含む。一実施形態では、内因性免疫グロブリン軽鎖可変領域遺伝子配列の、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、ヒト軽鎖可変領域遺伝子配列による置きかえと、内因性非ヒト免疫グロブリン重鎖可変領域遺伝子配列の、ヒト免疫グロブリン重鎖可変領域遺伝子配列による置きかえとを含む、非ヒト動物を生成するために、軽鎖可変領域遺伝子配列の置きかえを有する動物を、重鎖可変領域遺伝子配列の置きかえを有する動物と交配させる。
【0101】
発明者らは、本明細書において、1つまたは複数のヒスチジン改変を含むユニバーサル軽鎖、例えば、ヒトユニバーサル軽鎖(例えば、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域に由来する軽鎖)を含む抗原結合タンパク質、例えば、抗体を発現する、遺伝子操作非ヒト動物(例えば、齧歯動物、例えば、ラットまたはマウス)であって、抗原結合タンパク質が、標的抗原のpH依存性の抗原結合を示す、遺伝子操作非ヒト動物を提供する。動物は、1つまたは複数のヒスチジン改変を含む軽鎖CDR3を含むように遺伝子操作する。様々な実施形態では、軽鎖CDR3は、クラスター内に、2つ、3つ、または4つ以上のヒスチジン残基を含む。
【0102】
一実施形態では、野生型動物と比較して、免疫グロブリン軽鎖内、例えば、免疫グロブリン可変ドメイン内、例えば、免疫グロブリンCDR内のヒスチジンの存在の増強を特徴とするB細胞集団を含む、遺伝子操作非ヒト動物(例えば、マウスまたはラット)が本明細書において提供される。一実施形態では、ヒスチジンの存在の増強は、約2〜4倍である。一実施形態では、ヒスチジンの増強は、約2〜10倍である。
【0103】
一実施形態では、軽鎖可変領域遺伝子配列内のコドン改変の結果として、ヒスチジン残基(複数可)を発現して、標的抗原のpH依存性結合を提示する、抗原特異的抗体の集団を含む、遺伝子操作非ヒト動物が本明細書において提供される。一実施形態では、これらの動物は、本明細書に記載されている免疫グロブリン軽鎖可変領域内に、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含まない動物において生成される抗原特異的抗体の集団と比較して、pH依存性の結合特性(例えば、酸性pHにおける解離半減期(t
1/2)の、中性pHにおけるt
1/2と対比した短縮)を提示する抗体、例えば、抗原特異的抗体が富化されたB細胞集団を含む。一実施形態では、本明細書に記載されている遺伝子操作動物において生成されるpH依存性の抗原結合特性を提示する抗原特異的抗体の富化は、軽鎖可変領域内にヒスチジン置換を含む同様の動物と比較して、約2倍を超える、例えば、約5倍を超え、例えば、約10倍を超える。したがって、本発明の遺伝子改変動物は、標的介在性クリアランスを低減し、ならびに、このような、in vivoにおいて生成される抗体フォーマットに基づいて開発される治療用抗原結合タンパク質の用量および/または投与頻度を低減するのに所望される、抗体リサイクリング特性の改善を有する抗体が富化されている。
【0104】
したがって、本明細書では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される抗原結合タンパク質であって、pH依存性の抗原結合を提示する抗原結合タンパク質が提供される。一実施形態では、抗原結合タンパク質は、抗体、例えば、抗原特異的抗体である。一実施形態では、抗体は、ヒト免疫グロブリン軽鎖可変遺伝子セグメントの再構成に由来する、ヒト軽鎖可変ドメインを含む軽鎖を含み、この場合、生殖細胞系列遺伝子配列内の、少なくとも1つの非ヒスチジンコドンは、ヒスチジンコドンで置換され、抗体は、その発現したヒト軽鎖可変ドメイン内に、少なくとも1つのヒスチジン置換を保持する。一実施形態では、抗体は、単一の、再構成されたヒト軽鎖可変領域遺伝子配列に由来する、ヒト軽鎖可変ドメインを含む軽鎖を含み、単一の、再構成された軽鎖可変領域遺伝子配列は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含み、抗体は、その発現した軽鎖可変ドメイン内に、少なくとも1つのヒスチジン置換を保持する。一実施形態では、抗体は、ヒトVκ1−39Jκ5の再構成またはヒトVκ3−20Jκ1の再構成に由来する軽鎖を含み、ヒトVκ1−39Jκ5遺伝子配列またはヒトVκ3−20Jκ1遺伝子配列は、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含み、抗体は、その発現した軽鎖可変ドメイン内に、少なくとも1つのヒスチジン置換を保持する。いくつかの実施形態では、抗体は、その発現した軽鎖可変ドメイン内に、全てまたは実質的に全てのヒスチジン置換を保持する。一実施形態では、置換は、軽鎖可変領域遺伝子配列のCDR3をコードするヌクレオチド配列内の、3つの非ヒスチジンコドンの3つのヒスチジンコドンによる置換であり、抗体は、その発現した軽鎖可変ドメイン内に、3つのヒスチジン置換全てを保持する。一実施形態では、置換は、軽鎖可変領域遺伝子配列のCDR3をコードするヌクレオチド配列内の、4つの非ヒスチジンコドンの4つのヒスチジンコドンによる置換であり、抗体は、その発現した軽鎖可変ドメイン内に、3または4つのヒスチジン置換を保持する。
【0105】
一実施形態では、抗体の軽鎖は、非ヒト軽鎖定常領域のアミノ酸配列、例えば、内因性軽鎖定常領域のアミノ酸配列をさらに含む。加えて、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される抗体、例えば、抗原特異的抗体はまた、ヒト重鎖Vセグメント、ヒト重鎖Dセグメント、およびヒト重鎖Jセグメントの再構成に由来する、ヒト重鎖可変ドメインを含む重鎖も含む。ヒト重鎖Vセグメント、ヒト重鎖Dセグメント、およびヒト重鎖Jセグメントは、内因性非ヒト重鎖遺伝子座、例えば、少なくとも1つの機能的なVセグメント、少なくとも1つの機能的なDセグメント、および少なくとも1つの機能的なJセグメントに存在するヒト重鎖セグメントのレパートリー、例えば、最大で、機能的なヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの完全なレパートリーから選択することができる。ヒト重鎖可変セグメントの例示的な、可能な再構成は、IMGTデータベース内の機能的なヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの列挙、ならびに参照により本明細書に組み込まれる、米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192309号、および同第2013/0045492号から収集することができる。さらに、一実施形態では、抗体の重鎖は、非ヒト重鎖定常領域のアミノ酸配列、例えば、内因性非ヒト重鎖定常領域のアミノ酸配列を含む。一実施形態では、非ヒト重鎖定常領域は、C
H1ドメイン、ヒンジドメイン、C
H2ドメイン、およびC
H3ドメインを含む。一実施形態では、抗体は、IgGアイソタイプ、IgEアイソタイプ、IgDアイソタイプ、IgMアイソタイプ、またはIgAアイソタイプである。
【0106】
したがって、一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される結合タンパク質であって、(a)少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、ヒトVκ1−39Jκ5の再構成に由来する軽鎖可変ドメインであり、軽鎖が、その発現した軽鎖可変ドメイン内に、少なくとも1つのヒスチジン置換を保持する軽鎖可変ドメインと、(b)非ヒト軽鎖定常領域のアミノ酸配列、例えば、マウス軽鎖定常領域のアミノ酸配列とを含む、リバースキメラ軽鎖を含み、ここで、軽鎖が、(a)ヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの再構成に由来する重鎖可変ドメインであり、Vセグメント、Dセグメント、およびJセグメントが、動物において存在するヒトVセグメント、ヒトDセグメント、およびヒトJセグメントのレパートリーから選択される重鎖可変ドメインと、(b)非ヒト重鎖定常領域のアミノ酸配列、例えば、マウス重鎖定常領域のアミノ酸配列とを含む、リバースキメラ重鎖と関連する、結合タンパク質が本明細書において提供される。一実施形態では、ヒトVセグメント、ヒトDセグメント、およびヒトJセグメントのレパートリーは、少なくとも1つの機能的なVセグメント、少なくとも1つの機能的なDセグメント、および少なくとも1つの機能的なJセグメント、例えば、最大で、機能的なヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの完全なレパートリーを含む。一実施形態では、重鎖定常ドメインおよび軽鎖定常ドメインは、内因性の重鎖定常領域および軽鎖定常領域である。一実施形態では、重鎖可変ドメインおよび軽鎖可変ドメインは、体細胞変異ドメインである。一実施形態では、体細胞変異軽鎖ドメインは、生殖細胞系列配列へと導入された少なくとも1つのヒスチジン置換を保持する。いくつかの実施形態では、体細胞変異軽鎖ドメインは、生殖細胞系列配列へと導入された、全てまたは実質的に全てのヒスチジン置換を保持する。一実施形態では、抗原結合タンパク質は、pH依存性の抗原結合特性を提示する。
【0107】
別の実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される結合タンパク質であって、(a)少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、ヒトVκ3−20Jκ1の再構成に由来する軽鎖可変ドメインであり、軽鎖が、その発現した軽鎖可変ドメイン内に、少なくとも1つのヒスチジン置換を保持する軽鎖可変ドメインと、(b)非ヒト軽鎖定常領域のアミノ酸配列、例えば、マウス軽鎖定常領域のアミノ酸配列とを含む、リバースキメラ軽鎖を含み、ここで、軽鎖が、(a)ヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの再構成に由来する重鎖可変ドメインであり、Vセグメント、Dセグメント、およびJセグメントが、動物において存在するヒトVセグメント、ヒトDセグメント、およびヒトJセグメントのレパートリーから選択される重鎖可変ドメインと、(b)非ヒト重鎖定常領域のアミノ酸配列、例えば、マウス重鎖定常領域のアミノ酸配列とを含む、リバースキメラ重鎖と関連する、結合タンパク質が本明細書において提供される。一実施形態では、ヒトVセグメント、ヒトDセグメント、およびヒトJセグメントのレパートリーは、少なくとも1つの機能的なVセグメント、少なくとも1つの機能的なDセグメント、および少なくとも1つの機能的なJセグメント、例えば、最大で、機能的なヒトVセグメント、ヒトDセグメント、およびヒトJセグメントの完全なレパートリーを含む。一実施形態では、重鎖定常領域および軽鎖定常領域は、内因性の重鎖定常領域および軽鎖定常領域である。一実施形態では、重鎖可変ドメインおよび軽鎖可変ドメインは、体細胞変異ドメインである。一実施形態では、体細胞変異軽鎖ドメインは、生殖細胞系列配列へと導入された少なくとも1つのヒスチジン置換を保持する。いくつかの実施形態では、体細胞変異軽鎖ドメインは、生殖細胞系列配列へと導入された、全てまたは実質的に全てのヒスチジン置換を保持する。一実施形態では、抗原結合タンパク質は、pH依存性の抗原結合特性を提示する。
【0108】
一実施形態では、本明細書に記載されている遺伝子改変動物のB細胞であって、ヒスチジン改変ヒト軽鎖可変領域配列、例えば、本明細書に記載されている、ヒスチジン改変、単一の、再構成されたヒト軽鎖可変領域配列をその生殖細胞系列内に含み、本明細書に記載されている抗原結合タンパク質を発現するB細胞もまた本明細書において提供される。一実施形態では、B細胞内で発現させた抗原結合タンパク質、例えば、抗体は、生殖細胞系列へと導入された、少なくとも1つのヒスチジン残基を保持し、pH依存性の抗原結合特性を提示する。いくつかの実施形態では、B細胞内で発現させた抗原結合タンパク質、例えば、抗体は、生殖細胞系列へと導入された、全てまたは実質的に全てのヒスチジン残基を保持し、pH依存性の抗原結合特性を提示する。
【0109】
様々な実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物は、ヒト軽鎖可変領域遺伝子配列、例えば、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換(またはヒスチジンコドンの生殖細胞系列配列への付加)を含む、単一の、再構成されたヒト軽鎖可変領域遺伝子配列(例えば、Vκ1−39Jκ5またはVκ3−20Jκ1配列)を含む。これらの付加または置換は、それらの抗原に対するpH依存性の結合特性を有する、抗原結合タンパク質が富化されたB細胞集団を含む、非ヒト動物を結果としてもたらす。一実施形態では、本明細書に記載されている非ヒト動物において、抗原刺激に応答して生成される抗原結合タンパク質、例えば、抗体は、中性pH、例えば、約7.0〜約8.0の間のpH、例えば、約7.0〜約7.4の間のpH、例えば、約7.2〜約7.4の間、例えば、生理学的pHでは、抗原に対する高親和性を示して、pH依存性の抗原結合を提示する。一実施形態では、中性pHにおける解離定数(K
D)として表される、抗原結合タンパク質のその抗原に対する親和性は、10
−6M未満、例えば、10
−8M未満、例えば、10
−9M未満、例えば、10
−10M未満、例えば、10
−11M未満、例えば、10
−12M未満である。
【0110】
一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される、抗原結合タンパク質、例えば、抗体は、中性pHと比較して、酸性pH(例えば、6.0以下のpH、例えば、約5.0〜約6.0の間のpH、約5.75〜約6.0の間のpH、例えば、エンドソームコンパートメントまたはリソソームコンパートメントのpH)で、その抗原に対する結合の低減を示す。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される、抗原結合タンパク質、例えば、抗体は、中性pHでは、抗原への結合を保持するが、酸性pHでは、抗原への結合を示さない。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物により生成される抗原結合タンパク質は、中性pHにおける抗原結合タンパク質の解離半減期(t
1/2)と比較して、酸性pHで、解離半減期(t
1/2)の少なくとも約2倍、少なくとも約3倍、少なくとも約4倍、少なくとも約5倍、少なくとも約10倍、少なくとも約15倍、少なくとも約20倍、少なくとも約25倍、または少なくとも約30倍への短縮を有する。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物が発現する抗原結合タンパク質のt
1/2は、酸性pHおよび37℃で、約2分間以下である。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物が発現する抗原結合タンパク質のt
1/2は、酸性pHおよび37℃で、約1分間未満である。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物が発現する抗原結合タンパク質のt
1/2は、酸性pHおよび25℃で、約2分間以下である。一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物が発現する抗原結合タンパク質のt
1/2は、酸性pHおよび25℃で、約1分間未満である。
【0111】
平衡解離定数(K
D)および解離半減期(t
1/2)などの動力学的パラメータは、K
D(M)=k
d/k
a;およびt
1/2(分)=ln2/(60×k
d)として、動力学的速度定数から計算することができる。
【0112】
一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において生成される、抗原結合タンパク質、例えば、抗体は、FcRn分子への結合の増大を示す。上記で記載したFcRnとは、エンドソームコンパートメントの内部に存在する受容体であって、酸性pHにおいて、免疫グロブリンに結合し、それらを表面へとリサイクリングして戻すことが可能な受容体である。本明細書に記載されている、遺伝子改変された非ヒト動物における抗体分子をスクリーニングすることにより、3つの有益なパラメータ:抗原に対する高親和性、pH依存性の抗原結合(酸性pHでは抗原結合が弱い)、およびFcRnへの結合の増大を有する抗体について選択する固有の機会が提供される。
【0113】
一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物は、抗原結合タンパク質、例えば、抗体を産生し、これらが富化された、抗原に応答するB細胞集団であって、治療剤へと再フォーマットされる場合に、治療用量を被験体へと投与されると、それらのヒト軽鎖可変領域遺伝子配列内にヒスチジン改変(複数可)を含まない非ヒト動物において同じ抗原に応答して産生される、同等なB細胞集団を凌駕する、血清半減期の延長を示すB細胞集団を含む。したがって、一実施形態では、本明細書に記載されている、遺伝子改変された非ヒト動物において、目的の抗原に応答して産生される抗原結合タンパク質、例えば、抗体は、治療剤へと再フォーマットされる場合に、治療用量を被験体へと投与されると(治療剤へと再フォーマットされ、同じ治療用量で投与されるる場合)、そのヒト軽鎖可変領域遺伝子配列内にヒスチジン改変(複数可)を含まない非ヒト動物において同じ抗原に応答して産生された抗原結合タンパク質の血清半減期を凌駕する、血清半減期の延長を示す。いくつかの実施形態では、血清半減期の延長は、約2倍、例えば、約5倍、例えば、約10倍、例えば、約15倍、例えば、約20倍、またはそれ超である。
【0114】
一態様では、本明細書に記載されている非ヒトに由来する多能性細胞、人工多能性細胞、または全能性細胞が提供される。具体的な実施形態では、細胞は、胚性幹(ES)細胞である。
【0115】
一態様では、本明細書に記載されている非ヒト動物に由来する組織が提供される。一実施形態では、組織は、本明細書に記載されている、非ヒト動物の脾臓、リンパ節、または骨髄に由来する。
【0116】
一態様では、本明細書に記載されている非ヒト動物に由来する核が提供される。一実施形態では、核は、B細胞ではない二倍体細胞からの核である。
【0117】
一態様では、本明細書に記載されている非ヒト動物(例えば、齧歯動物、例えば、マウスまたはラット)から単離された非ヒト細胞が提供される。一実施形態では、細胞は、ES細胞である。一実施形態では、細胞は、リンパ球である。一実施形態では、リンパ球は、B細胞である。一実施形態では、B細胞は、ヒト遺伝子セグメントに由来する可変ドメインを含むキメラ重鎖と;少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、再構成されたヒトVκ1−39/J配列、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、再構成されたヒトVκ3−20/J配列、またはこれらの組合せに由来し、生殖細胞系列内でコードされる少なくとも1つのアミノ酸のヒスチジンによる置換をさらに含む軽鎖とを発現し、重鎖可変ドメインは非ヒト重鎖定常領域またはヒト重鎖定常領域に融合し、軽鎖可変ドメインは非ヒト軽鎖定常領域またはヒト軽鎖定常領域に融合している。
【0118】
一態様では、本明細書に記載されている、非ヒト動物のB細胞により作製されるハイブリドーマが提供される。具体的な実施形態では、B細胞は、目的のエピトープを含む免疫原で免疫された、本明細書に記載されているマウスからのB細胞であり、B細胞は、目的のエピトープに結合する結合タンパク質を発現し、結合タンパク質は、体細胞変異ヒト可変重鎖ドメインおよびマウスC
Hを有し、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、再構成されたヒトVκ1−39Jκ5、または少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、再構成されたヒトVκ3−20Jκ1に由来するヒト可変軽鎖ドメイン、およびマウスC
Lを有し、ヒト軽鎖ドメインは、生殖細胞系列内でコードされる少なくとも1つのアミノ酸のヒスチジンによる置換を含む。
【0119】
本明細書に記載されている非ヒト動物において生成される抗原結合タンパク質を発現する細胞もまた提供される。一実施形態では、細胞は、CHO細胞、COS細胞、293細胞、HeLa細胞、およびウイルス核酸配列を発現する網膜細胞(例えば、PERC.6
TM細胞)から選択される。
【0120】
一態様では、本明細書に記載されている非ヒト動物に由来するドナーES細胞を含む非ヒト胚が提供される。
【0121】
本明細書に記載されている非ヒト動物は、ヒスチジンをCDR3内に有する抗体を発現するB細胞を生成するのに有用である。ヒスチジンをCDR3に配置する動物は、抗体を作製するのに一般に有用であり、中性pHまたはその近くでは、標的に十分な親和性で結合するが、酸性pHでは、同じ標的に結合しないかまたは弱く結合する抗体を開発するのに特に有用である。
【0122】
非ヒト動物は、例えば、ヒスチジンをCDR3内に含むヒト免疫グロブリン可変ドメインによりそれらの標的に結合する、ヒト治療用結合タンパク質を作製するのに用いられ得る、抗体の可変領域を生成するのに有用である。治療剤は、細胞表面で標的に結合し、エンドソームへと内部移行し、治療剤がリサイクルされて、さらに別の標的の分子(例えば、別の細胞上または同じ細胞上の)に結合し得るように、エンドソーム内で標的からより容易にまたはより迅速に解離するため、より低いpHにおける結合が変化すれば、状況によっては、より迅速な代謝回転が可能となる。状況によっては、これにより、結果として、治療剤を低用量で投与するか、または治療剤を低頻度で投与することができる。これは、安全性または毒性の理由で、頻繁に投与することやある特定の投与量を上回って投与することが望ましくない場合に特に有用である。結果として、被験体へと投与される場合の抗体治療剤の血清半減期が延長される。
【0123】
非ヒト動物、例えば、齧歯動物、例えば、マウスまたはラットは、1つまたは複数のヒスチジンをその中に有するCDR3を有する抗体可変領域を示す動物におけるB細胞の数を増大させるための方法において有用である。非ヒト動物は、pH依存性の抗原結合を示す抗体配列を生成するのに有用である。非ヒト動物は、単回の免疫から、抗体がpH依存性の抗原結合を示す、より多数の抗体配列を生成するのに有用である。
【0124】
抗原結合タンパク質およびこれを生成する方法
一態様では、当技術分野で用いられる標準的な方法により、本明細書に記載されている、遺伝子改変された非ヒト動物から、pH依存性の抗原結合を示すヒト抗原結合タンパク質、例えば、抗体を生成するための方法もまた本明細書において提供される。
【0125】
抗体を生成するための複数の技法が記載されている。例えば、様々な実施形態では、本明細書に記載されているマウスにおいてキメラ抗体が産生される。抗体は、免疫したマウスのB細胞から直接単離することができ(例えば、U.S.2007/0280945A1を参照されたい)、かつ/または免疫したマウスのB細胞を用いて、ハイブリドーマを作製することができる(KohlerおよびMilstein、1975年、Nature、256巻:495〜497頁)。本明細書に記載されている非ヒト動物からの抗体(ヒト重鎖および/またはヒト軽鎖)をコードするDNAは、従来の技法を用いて、容易に単離および配列決定される。本明細書に記載されている非ヒト動物に由来するハイブリドーマおよび/またはB細胞は、このようなDNAの好ましい供給源として役立つ。単離されると、DNAは、発現ベクターに入れることができ、次いで、これを、他の形では免疫グロブリンタンパク質を産生しない宿主細胞へとトランスフェクトして、組換え宿主細胞内でモノクローナル抗体の合成を得る。DNAはまた、例えば、ヒト重鎖定常ドメインおよび軽鎖定常ドメインのコード配列を、非ヒト配列の代わりに置換することにより改変することもできる。したがって、所望の特徴、例えば、親和性、エピトープ、pH依存性の抗原結合などを有する抗体の核酸配列が決定されたら、非ヒト定常領域遺伝子配列を、所望のヒト定常領域配列で置きかえて、非IgMアイソタイプ、例えば、IgG1、IgG2、IgG3、またはIgG4を含有する完全ヒト抗体を生成する。
【0126】
したがって、一実施形態では、pH依存性の抗原結合特性を示す抗体を生成する方法であって、本明細書に記載されている非ヒト動物(例えば、マウス)を生成するステップと、マウスを目的の抗原で免疫するステップと、非ヒト動物に抗原への免疫応答を開始させるステップと、非ヒト動物において、pH依存性の抗原結合特性を示す、例えば、酸性pHでは、中性pHにおける場合より抗原への結合が弱い抗原特異的抗体を選択するステップとを含む方法が本明細書において提供される。
【0127】
本明細書では、多重特異性抗原結合タンパク質、例えば、二重特異性抗原結合タンパク質を作製する方法もまた提供される。これらは、複数のエピトープに高親和性で結合することが可能な分子である。本発明の利点には、その各々が単一の軽鎖と会合する好適に高い結合性の(例えば、親和性成熟した)重鎖免疫グロブリン鎖を選択できることが挙げられる。加えて、本発明の利点には、pH依存性の抗原結合を示す、多重特異性、例えば、二重特異性の抗原結合タンパク質を生成できることが挙げられる。
【0128】
二重特異性抗体の二重の性質(すなわち、1つのポリペプチドの異なるエピトープに特異的な場合もあり、複数の標的ポリペプチドに特異的な抗原結合ドメインを含有する場合もある;例えば、Tuttら、1991年、J. Immunol.、147巻:60〜69頁; Kuferら、2004年、Trends Biotechnol.、22巻:238〜244頁を参照されたい)のため、それらは、治療適用に有用な多くの利点をもたらす。例えば、二重特異性抗体は、方向転換された細胞傷害作用(例えば、腫瘍細胞を死滅させる)のために用いることもでき、ワクチンアジュバントとして用いることもでき、血栓溶解剤をクロットへと送達するために用いることもでき、標的部位(例えば、腫瘍)において酵素活性化型プロドラッグを転換するために用いることもでき、感染性疾患を処置するために用いることもでき、免疫複合体を細胞表面受容体へとターゲッティングするために用いることもでき、免疫毒素を腫瘍細胞へと送達するために用いることもできる。
【0129】
本明細書に記載されている二重特異性抗体はまた、酵素イムノアッセイ、二部位イムノアッセイ、様々な疾患(例えば、がん)に対するin vitroまたはin vivoにおける免疫診断法、競合結合アッセイ、直接サンドイッチアッセイおよび間接サンドイッチアッセイ、ならびに免疫沈降アッセイなど、複数の治療的アッセイ法ならびに非治療的アッセイ法および/または診断的アッセイ法においても用いることができる。当業者には、二重特異性抗体の他の使用が明らかである。
【0130】
二重特異性抗体断片を、組換え細胞培養物から作製するための複数の技法が報告されている。しかし、二重特異性結合タンパク質の合成および発現は、2つの異なる重鎖と会合して発現し得る好適な軽鎖の同定と関連する問題に部分的に起因し、単離の問題にも部分的に起因して、問題含みであった。様々な実施形態では、本明細書に記載されている組成物および方法は、成分の安定性/相互作用を増大させることにより、従来の免疫グロブリン構造を維持するのに特殊な改変(複数可)を必要としない完全長の二重特異性抗体の利点を提供する。様々な実施形態では、このような改変(複数可)は、煩瑣であることがわかっており、二重特異性抗体技術の開発およびヒト疾患のための処置におけるそれらの潜在的な使用に対する障害として作用した。したがって、様々な実施形態では、複数の特異性という特性を付加した、天然の免疫グロブリン構造(すなわち、完全長)を提供することを介して、完全長の二重特異性抗体は、かつての二重特異性断片が欠いた、それらの極めて重要なエフェクター機能を維持し、半減期の延長という重要な薬物動態パラメータを明らかに示す治療剤をさらに提供する。
【0131】
本明細書に記載される方法および組成物は、遺伝子改変マウスが、他の点では天然であるプロセスを介して、体細胞変異された(例えば、親和性成熟した)重鎖を含む複数の重鎖と会合して発現することができる好適な軽鎖を選択することを可能にし、ここで、この軽鎖は、抗原結合タンパク質にそのpH依存性抗原結合特性をさらに付与する。リバースキメラ重鎖(すなわち、ヒト可変およびマウス定常)を有する親和性成熟抗体を発現する、本明細書に記載される免疫マウスの適するB細胞からのヒト重鎖および軽鎖の可変領域配列を同定して、適するヒト定常領域遺伝子配列(例えば、ヒトIgG1)を有する発現ベクターにインフレームでクローニングすることができる。2つのそのような構築物を調製することができ、ここで、各構築物は異なるエピトープに結合するヒト重鎖可変ドメインをコードする。少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むヒト軽鎖可変領域の1つ(例えば、ヒトVκ1−39Jκ5またはヒトVκ3−20Jκ1)は、適するヒト軽鎖定常領域遺伝子(例えば、ヒトκ定常遺伝子)にインフレームで融合させることができる。これら3つの完全なヒトの重鎖および軽鎖構築物は、発現のために適する細胞に入れることができる。細胞は、2つの主要な種を発現する:同一の軽鎖を有するホモダイマー重鎖、および同一の軽鎖を有するヘテロダイマー重鎖。これらの主要な種の容易な分離を可能にするために、重鎖の1つはプロテインA結合決定基が削除されるように改変され、これにより、ヘテロダイマー結合タンパク質とは異なるホモダイマー結合タンパク質の親和性がもたらされる。この問題に対処する組成物および方法は、参照により本明細書に組み込まれる、US2010/0331527A1として公開された、2010年6月25日に出願された「Readily Isolated Bispecific Antibodies with Native Immunoglobulin Format」という名称のUSSN12/832,838に記載される。同一な軽鎖を有するヘテロ二量体重鎖を含む上記種が選択されたら、この二重特異性抗原結合タンパク質をスクリーニングして、そのpH依存性の抗原結合特性の保持を確認することができる。
【0132】
一態様では、本明細書に記載されるエピトープ結合タンパク質が提供され、ここで、ヒト軽鎖および重鎖の可変領域配列は、目的のエピトープを含む抗原で免疫されている本明細書に記載される動物に由来する。
【0133】
一実施形態では、第一および第二のポリペプチドを含むエピトープ結合タンパク質が提供され、第一のポリペプチドは、N末端からC末端にかけて、第一のエピトープに選択的に結合する第一のエピトープ結合領域、続いてIgG1、IgG2、IgG4およびその組合せから選択されるヒトIgGの第一のC
H3領域を含む定常領域を含み;第二のポリペプチドは、N末端からC末端にかけて、第二のエピトープに選択的に結合する第二のエピトープ結合領域、続いてIgG1、IgG2、IgG4およびその組合せから選択されるヒトIgGの第二のC
H3領域を含む定常領域を含み、第二のC
H3領域は、プロテインAへの第二のC
H3ドメインの結合を低減または除去する改変を含む。様々なこのような改変は、例えば、参照により本明細書に組み込まれる、米国出願公開第2010/0331527号、および同第2011/0195454号において記載されている。
【0134】
複数のエピトープに結合し、pH依存性のエピトープ結合特性を示すエピトープ結合タンパク質を作製するための1つの方法は、本発明に従い第一のマウスを、第一の目的のエピトープを含む抗原で免疫することであり、ここで、マウスは、(1)軽鎖を再構成して形成することが可能な内因性マウス軽鎖可変領域遺伝子配列を含有しない、内因性免疫グロブリン軽鎖可変領域遺伝子座であって、内因性マウス免疫グロブリン軽鎖可変領域遺伝子座には、マウス内因性軽鎖定常領域遺伝子に作動可能に連結された、単一の、再構成されたヒト軽鎖可変領域があり、再構成されたヒト軽鎖可変領域が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、ヒトVκ1−39Jκ5およびヒトVκ3−20Jκ1から選択される、内因性免疫グロブリン軽鎖可変領域遺伝子座と、(2)マウスにより作製される免疫グロブリン重鎖が、単独でまたは実質的にヒト可変ドメインおよびマウス定常ドメインを含む重鎖であるように、ヒトV
H遺伝子セグメントで全体的または部分的に置きかえられた内因性マウスV
H遺伝子セグメントとを含む。免疫すると、このようなマウスにより、2つのヒト軽鎖可変ドメインのうちの1つ(例えば、例えば、少なくとも1つのアミノ酸のヒスチジンによる置換を含む、ヒトVκ1−39Jκ5またはヒトVκ3−20Jκ1のうちの1つ)だけを含むリバースキメラ抗体が作製される。一般に、生殖細胞系列配列へと導入された、置換されたヒスチジン残基の少なくとも一部は、リバースキメラ抗体内で保持される。目的のエピトープに結合する重鎖可変ドメインをコードするB細胞を同定し、pH依存性の抗原結合特性を示す抗体を発現させたら、重鎖可変領域(そして、必要に応じて、軽鎖可変領域)のヌクレオチド配列を取り出し(例えば、PCRにより)、好適なヒト免疫グロブリン重鎖定常領域配列に対してインフレームで、発現構築物へとクローニングすることができる。このプロセスを繰り返して、第二のエピトープに結合する第二の重鎖可変ドメインを同定し、第二の重鎖可変領域遺伝子配列を取り出し、第二の好適なヒト免疫グロブリン重鎖定常領域配列とインフレームで、発現ベクターへとクローニングすることができる。定常領域遺伝子配列によりコードされる第一の免疫グロブリン定常ドメインと、第二の免疫グロブリン定常ドメインとは、同じアイソタイプであってもよく、異なるアイソタイプであってもよく、免疫グロブリン定常ドメインのうちの一方を、本明細書またはUS2010/0331527A1に記載されている通りに改変することができ(しかし、他方は改変しない)、エピトープ結合タンパク質を、好適な細胞内で発現させ、そのプロテインAに対する、例えば、US2010/0331527A1において記載されているホモ二量体のエピトープ結合タンパク質と比較した、示差的な親和性に基づき単離することができる。
【0135】
したがって、様々な実施形態では、DNAの単離、ならびに所望の特異性/親和性を有する第一のヒト重鎖可変ドメインおよび第二のヒト重鎖可変ドメインをコードする第一の核酸配列および第二の核酸配列、ならびにヒト軽鎖ドメインをコードし、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む第三の核酸配列(本明細書に記載されている非ヒト動物から単離された、生殖細胞系列の再構成された配列または軽鎖配列)の選択に続き、当技術分野で広範に利用可能な組換え技法を用いて、分子をコードする3つの核酸配列を発現させて、二重特異性抗体を形成する。しばしば、二重特異性抗体が、適切にグリコシル化される(例えば、グリコシル化された抗体ドメインを含む二重特異性抗体の場合)ように、選り抜きの発現系は、哺乳動物細胞の発現ベクターおよび宿主を包含する。しかし、分子はまた、原核生物発現系において産生させることもできる。通常、宿主細胞は、第一のヒト重鎖可変ドメイン、第二のヒト重鎖可変ドメイン、ヒト軽鎖ドメインの全てを、単一のベクター上または独立のベクター上でコードするDNAにより形質転換される。しかし、第一のヒト重鎖可変ドメイン、第二のヒト重鎖可変ドメイン、およびヒト軽鎖ドメイン(二重特異性抗体の成分)を、独立の発現系において発現させ、発現させたポリペプチドをin vitroにおいてカップリングさせることも可能である。様々な実施形態では、ヒト軽鎖ドメインは、例えば、CDRコドンにおける、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を除けば、生殖細胞系列配列に由来する。様々な実施形態では、ヒト軽鎖ドメインは、軽鎖ドメインの軽鎖可変配列内に、1カ所以下、2カ所以下、3カ所以下、4カ所以下、または5カ所以下の体細胞超変異を含む。いくつかの実施形態では、体細胞超変異は、軽鎖可変領域の生殖細胞系列配列へと導入された、少なくとも1つのヒスチジン残基の存在を変化させない。
【0136】
様々な実施形態では、少なくとも1つの非ヒスチジンのヒスチジンによる置換を有する2つの重鎖および単一のヒト軽鎖をコードする核酸(複数可)(例えば、cDNAまたはゲノムDNA)を、さらなるクローニング(DNAの増幅)および/または発現のために、複製可能なベクターへと挿入する。多くのベクターが利用可能であり、以下:シグナル配列、複製起点、1つまたは複数のマーカー遺伝子、エンハンサーエレメント、プロモーター、および転写終結配列のうちの1つまたは複数を一般に含むが、これらに限定されない。各成分は、個別に選択することもでき、宿主細胞の選択に基づき選択することもでき、実験により決定される他の基準に基づき選択することもできる。当技術分野では、各成分の複数の例が公知である。
【0137】
発現ベクターおよびクローニングベクターは通常、宿主生物体により認識されるプロモーターを含有し、二重特異性抗体の各成分または全ての成分をコードする核酸配列に作動可能に連結される。様々な潜在的な宿主細胞により認識される多数のプロモーターが周知である。これらのプロモーターは、制限酵素消化により供給源のDNAからプロモーターを除去し、単離されたプロモーター配列をベクターへと挿入することにより、二重特異性抗体をコードするDNAに作動可能に連結する。
【0138】
真核生物の宿主細胞(酵母、真菌、昆虫、植物、動物、ヒト、または他の多細胞生物体からの有核細胞)において用いられる発現ベクターはまた、転写の終結およびmRNAの安定化に必要な配列も含有し得る。このような配列は、真核生物またはウイルスのDNAまたはcDNAの5’側非翻訳領域から一般に入手可能であり、必要に応じて、真核生物またはウイルスのDNAまたはcDNAの3’側非翻訳領域からも入手可能である。これらの領域は、二重特異性抗体成分をコードするmRNAの非翻訳部分内のポリアデニル化断片として転写されるヌクレオチドセグメントを含有する。様々な実施形態に好適な発現ベクターは、二重特異性抗体をコードするDNAの、哺乳動物細胞における一過性発現をもたらす発現ベクターを含む。宿主細胞が、発現ベクターの多くのコピーを蓄積し、発現ベクターによりコードされる高レベルの、所望のポリペプチドを合成するように、一般に、一過性発現は、宿主細胞内で効率的に複製することが可能な発現ベクターの使用を包含する。好適な発現ベクターおよび宿主細胞を含む一過性発現系は、第一のヒト重鎖可変ドメインまたは第二のヒト重鎖可変ドメインのホモ二量体を有する親抗体と比べて、クローニングされるDNAによりコードされるポリペプチドの簡便な陽性同定、ならびに所望の結合特異性/親和性または所望のゲル移動特徴を有する二重特異性抗体の迅速なスクリーニングを可能とする。
【0139】
様々な実施形態では、二重特異性抗体の成分をコードするDNAが、上記で記載した所望のベクター(複数可)へとアセンブルされたら、それらを、発現および回収に好適な宿主細胞へと導入する。宿主細胞をトランスフェクトすることにより、選択された宿主細胞に適切な、当技術分野で公知の標準的な技法(例えば、エレクトロポレーション、核内マイクロインジェクション、インタクトの細胞との細菌プロトプラスト融合、またはポリカチオン、例えば、ポリブレン、ポリオルニチンなど)を用いて達成することができる。
【0140】
様々な実施形態では、成分を含有し、二重特異性抗体種の最も効率的で好適な産生を可能とする発現ベクターに最適な宿主細胞を選択する。発現のための例示的な宿主細胞には、原核生物および真核生物(単細胞または多細胞)のもの、細菌細胞(例えば、E.coliの株、Bacillus spp.、Streptomyces spp.など)、マイコバクテリア細胞、真菌細胞、酵母細胞(例えば、S.cerevisiae、S.pombe、P.pastoris、P.methanolicaなど)、植物細胞、昆虫細胞(例えば、SF−9、SF−21、バキュロウイルス感染昆虫細胞、Trichoplusia niなど)、ヒト以外の動物細胞、ヒト細胞、または例えばハイブリドーマもしくはクアドローマなどの細胞融合体が挙げられる。種々の実施形態では、細胞はヒト、サル、類人猿、ハムスター、ラットまたはマウスの細胞である。種々の実施形態では、細胞は、以下から選択される真核細胞である:CHO(例えば、CHO K1、DXB−11 CHO、Veggie−CHO)、COS(例えば、COS−7)、網膜細胞、Vero、CV1、腎臓(例えば、HEK293、293 EBNA、MSR 293、MDCK、HaK、BHK)、HeLa、HepG2、WI38、MRC 5、Colo205、HB 8065、HL−60(例えば、BHK21)、Jurkat、Daudi、A431(表皮性)、CV−1、U937、3T3、L細胞、C127細胞、SP2/0、NS−0、MMT 060562、Sertoli細胞、BRL 3A細胞、HT1080細胞、骨髄腫細胞、腫瘍細胞および前記細胞に由来する細胞系。種々の実施形態では、細胞は、1つまたは複数のウイルス遺伝子を含む(例えばウイルス遺伝子を発現する網膜細胞(例えば、PER.C6
TM細胞))。
【0141】
二重特異性抗体を産生するのに用いられる哺乳動物の宿主細胞は、様々な培地中で培養することができる。ハムF10(Sigma)、最小必須培地((MEM);Sigma)、RPMI−1640(Sigma)、およびダルベッコ改変イーグル培地((DMEM);Sigma)などの市販される培地は、宿主細胞を培養するのに好適である。培地には、必要に応じて、ホルモンおよび/もしくは他の成長因子(インスリン、トランスフェリン、または上皮成長因子など)、塩(塩化ナトリウム、カルシウム、マグネシウム、およびリン酸塩など)、バッファ(HEPESなど)、ヌクレオシド(アデノシンおよびチミジンなど)、抗生剤(GENTAMYCIN
TMなど)、微量元素(通常マイクロモル濃度範囲の最終濃度で存在する無機化合物として定義される)、ならびにブドウ糖、または同等なエネルギー供給源を補充することができる。他の任意の補充物質もまた、当業者に公知の適切な濃度で含めることができる。様々な実施形態では、温度、pHなどの培養条件は、発現について選択された宿主細胞で既に用いられた培養条件であり、当業者には明らかである。
【0142】
二重特異性抗体は、分泌されるポリペプチドとして、培養培地から回収することができるが、分泌シグナルを伴わずに直接産生される場合は、宿主細胞溶解物からも回収することができる。二重特異性抗体が、膜結合型である場合は、好適な洗浄剤溶液(例えば、Triton−X 100)を用いて、膜から放出させることができる。
【0143】
単離に続き、2つのヒト重鎖と、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、Vκ1−39Jκ5配列およびVκ3−20/κ1配列から選択される、再構成されたヒト軽鎖可変領域遺伝子配列に由来する、単一のヒト軽鎖とを含む二重特異性抗体を、その抗原の一方、好ましくは両方に対する、pH依存性結合を示すその能力についてスクリーニングする。その抗原に対し、中性pHと酸性pHとで結合が異なる二重特異性抗体の能力(例えば、酸性pHにおいて、中性pHにおける場合と比較してt
1/2の短縮を明らかに示すそれらの能力)は、当技術分野で利用可能な様々な技法により決定することができ、下記の実施例、例えば、BIACORE
TMアッセイにおいて記載されている。
【0144】
pH依存性の抗原結合を有する抗原結合タンパク質を生成するためのさらなる方法
本明細書に記載されている、遺伝子改変された非ヒト動物において、pH依存性の抗原結合特性を有する抗原結合タンパク質を生成する様々な方法が提供される。pH依存性の抗原結合特性を有する抗原結合タンパク質をin vitroにおいて生成する方法もまた提供される。このような方法は、抗原結合タンパク質の様々な成分を、遺伝子改変された非ヒト動物において、in vivoで生成するステップと、次いで、それらを改変するステップと、生物体の外部において、in vitroで、哺乳動物細胞培養物中で発現させるタンパク質複合体としてそれらを再アセンブルするステップとを包含し得る。
【0145】
一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質を生成する方法は、全てが参照により本明細書に組み込まれる、米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号において記載されているマウスなどの「ユニバーサル軽鎖」マウスまたは「共通軽鎖」マウス(「ULC」マウス)である、軽鎖可変領域のVセグメントおよびJセグメント、例えば、ヒト軽鎖可変領域のVセグメントおよびJセグメントの限定されたレパートリーを含むマウスにおいて生成される抗原結合タンパク質配列、例えば、抗体配列を使用する。一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質を生成する方法は、単一の、再構成されたヒト軽鎖可変領域遺伝子配列を含むマウスにおいて生成される抗原結合タンパク質配列を使用する。一実施形態では、方法は、ヒトVκ1−39Jκ5およびヒトVκ3−20Jκ1から選択される、単一の、再構成されたヒト軽鎖可変領域遺伝子配列を含むマウスにおいて生成される抗原結合タンパク質を使用する。
【0146】
一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質、例えば、抗体を生成するための方法は、目的の抗原に結合する(例えば、目的の抗原に所望の親和性で結合する)第一の抗体を選択するステップと、第一の抗体の免疫グロブリン軽鎖ヌクレオチド配列を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むように改変するステップと、第一の抗体の免疫グロブリン重鎖および改変された免疫グロブリン軽鎖を細胞内で発現させるステップと、細胞内で発現させた第二の抗体であって、中性pHでは、目的の抗原への結合を保持し(例えば、目的の抗原に対する所望の親和性を保持し)、酸性pHでは、目的の抗原への結合の低減を提示する第二の抗体を選択するステップとを含む。
【0147】
一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質、例えば、抗体を生成するための方法は、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列を有する免疫グロブリン軽鎖を含む抗体(例えば、非ヒト動物、例えば、マウス、例えば、ULCマウスから得られる)からの免疫グロブリン重鎖であって、抗体が目的の抗原に結合する(例えば、目的の抗原に所望の親和性で結合する)免疫グロブリン重鎖を選択するステップと;免疫グロブリン軽鎖の核酸配列を、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むように改変するステップと;選択された免疫グロブリン重鎖および少なくとも1つのアミノ酸のヒスチジンによる置換をその可変ドメイン内に含む免疫グロブリン軽鎖を発現させるステップと;中性pHでは、目的の抗原への結合を保持する(例えば、目的の抗原への所望の親和性を保持する)が、酸性pHでは、目的の抗原への結合の低減を提示する抗体を選択するステップとを含む。様々な実施形態では、免疫グロブリン重鎖は、ヒト重鎖可変遺伝子セグメント(ヒトVセグメント、ヒトDセグメントおよびヒトJセグメント)の再構成に由来する。
【0148】
一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質、例えば、抗体を生成するための方法は、(1)単一の、再構成されたヒト軽鎖可変領域遺伝子配列および再構成されていないヒト重鎖可変遺伝子セグメント(Vセグメント、Dセグメント、およびJセグメント)のレパートリーを含む非ヒト動物、例えば、マウスを、目的の抗原で免疫し、マウスに前記抗原に対する免疫応答を開始させるステップと、(2)非ヒト動物において、例えば、マウスにおいて、目的の抗原に所望の親和性で結合する抗体を選択するステップと、(3)非ヒト動物から、例えば、マウスから、目的の抗原に所望の親和性で結合する抗体の免疫グロブリン重鎖のヌクレオチド配列を単離するステップと、(4)前記重鎖のヌクレオチド配列を決定するステップと、(5)単一の、再構成されたヒト免疫グロブリン軽鎖可変領域を含有する免疫グロブリン軽鎖のヌクレオチド配列を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むように改変するステップと、(6)目的の抗原に所望の親和性で結合する抗体の免疫グロブリン重鎖およびヒスチジン改変を含む免疫グロブリン軽鎖を細胞内で発現させるステップと、(7)細胞内で発現した抗体が、中性pHでは、抗原への結合を保持するが、酸性pHでは、結合の低減を提示するのかどうかを決定するステップとを含む。一実施形態では、細胞内で発現した抗体は、中性pHにおいて、抗原への所望の親和性を示す。様々な実施形態では、免疫グロブリン重鎖は、ヒト重鎖可変遺伝子セグメント(ヒトVセグメント、ヒトDセグメント、およびヒトJセグメント)の再構成に由来する。
【0149】
一実施形態では、単一の、再構成されたヒト軽鎖可変領域遺伝子配列を含むマウスは、例えば、米国出願公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号において記載されている、ユニバーサル軽鎖マウスまたは共通軽鎖マウスまたは「ULC」マウスである。一実施形態では、単一の、再構成されたヒト軽鎖可変領域遺伝子配列は、ヒトVκ1−39Jκ5およびヒトVκ3−20Jκ1配列から選択される。
【0150】
一実施形態では、目的の抗原は、可溶性抗原、細胞表面抗原(例えば、腫瘍抗原)、および細胞表面受容体から選択される。具体的な実施形態では、細胞表面受容体は、免疫グロブリン受容体である。具体的な実施形態では、免疫グロブリン受容体は、Fc受容体である。
【0151】
一実施形態では、中性pHにおける解離定数(K
D)として表される、抗原に対する抗体の所望の親和性は、10
−6M未満、例えば、10
−8M未満、例えば、10
−9M未満、例えば、10
−10M未満、例えば、10
−11M未満、例えば、10
−12M未満である。
【0152】
上記で説明した通り、一実施形態では、ULCマウスは、単一の、再構成されたヒト免疫グロブリン軽鎖可変遺伝子配列を含み、抗原に応答して抗体を発現するが、この場合、抗体の抗原への親和性は、主にそれらの抗体の重鎖によって媒介される。これらのマウスは、単一の、再構成されたヒト軽鎖可変配列に由来する軽鎖もまた含む抗体のヒト重鎖可変ドメインをコードするように再構成する、ヒト重鎖可変(V、D、およびJ)セグメントのレパートリーを含む。一実施形態では、抗原曝露により、これらのマウスは、多様なヒト重鎖可変(V、D、およびJ)セグメントのレパートリーを使用して、抗原に対する親和性および特異性を有する抗体を生成する。したがって、抗原へと曝露したら、ULCマウスにおいて生成される抗体の免疫グロブリン重鎖のヌクレオチド配列を単離し、これを使用して、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列(例えば、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を有する、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列)に由来する免疫グロブリン軽鎖もまた含む、所望の結合タンパク質を生成することができる。
【0153】
ULCマウスの一実施形態では、再構成されていない非ヒトV
H遺伝子セグメントのうちの90〜100%を、少なくとも1つの、再構成されていないヒトV
H遺伝子セグメントで置きかえる。具体的な実施形態では、内因性非ヒトV
H遺伝子セグメントの全てまたは実質的に全て(例えば、90〜100%)を、少なくとも1つの、再構成されていないヒトV
H遺伝子セグメントで置きかえる。一実施形態では、置きかえは、少なくとも19、少なくとも39、または少なくとも80もしくは81の再構成されていないヒトV
H遺伝子セグメントによる置きかえである。一実施形態では、置きかえは、少なくとも12の機能的な、再構成されていないヒトV
H遺伝子セグメント、少なくとも25の機能的な、再構成されていないヒトV
H遺伝子セグメント、または少なくとも43の機能的な、再構成されていないヒトV
H遺伝子セグメントによる置きかえである。一実施形態では、非ヒト動物は、全ての非ヒトD
Hセグメントおよび非ヒトJ
Hセグメントの、少なくとも1つの、再構成されていないヒトD
Hセグメント、および少なくとも1つの、再構成されていないヒトJ
Hセグメントによる置きかえを含む。一実施形態では、非ヒト動物は、全ての非ヒトD
Hセグメントおよび非ヒトJ
Hセグメントの、全ての、再構成されていないヒトD
Hセグメント、および全ての、再構成されていないヒトJ
Hセグメントによる置きかえを含む。したがって、ULCマウスは、ヒト可変領域遺伝子セグメント(Vセグメント、Dセグメント、およびJセグメント)の多様なレパートリーを使用して、目的の抗原に応答する抗体を生成する。
【0154】
目的の抗原に所望の親和性で結合する抗体の重鎖を決定したら、重鎖のヌクレオチド配列を単離および配列決定する。配列は、好適な宿主細胞、例えば、真核生物細胞、例えば、CHO細胞における発現のためのベクターへとクローニングする。一実施形態では、ヒト重鎖定常領域の配列を、マウスから(例えば、ULCマウスから)単離されたヒト重鎖可変領域配列の下流にクローニングする。
【0155】
一実施形態では、pH依存性の抗原結合特性を有する抗原結合タンパク質を生成する方法は、免疫グロブリン軽鎖のヌクレオチド配列、特に、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域の配列を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むように改変するステップを含む。当技術分野では、ヌクレオチド配列を改変するための様々な技法、例えば、部位指向変異生成が公知である。加えて、所望のヒスチジン置換を含むヌクレオチド配列は、デノボ合成することもできる。
【0156】
一実施形態では、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換は、1つ、2つ、3つ、4つ、またはそれ超のヒスチジン残基の発現を結果としてもたらす置換を含む。一実施形態では、置換(複数可)は、3つまたは4つのヒスチジン残基の発現を結果としてもたらす。一実施形態では、置換(複数可)は、免疫グロブリン軽鎖可変領域においてである。一実施形態では、置換(複数可)は、CDRコドン、例えば、CDR1コドン、CDR3コドン、および/またはCDR3コドンにおいてである。一実施形態では、置換(複数可)は、CDR3コドンにおいてである。
【0157】
免疫グロブリン軽鎖核酸配列がVκ1−39Jκ5遺伝子配列を含み、置換(複数可)がCDR3コドンにおいてである一実施形態では、置換は、105、106、108、111位、およびこれらの組合せから選択される位置におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、108、および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および106位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および108位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106および108位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、108および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、および108位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、108、および111位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106、108、および111位におけるヒスチジンの発現を結果としてもたらす。様々なヒスチジン置換を含むVκ1−39Jκ5のCDR3領域のアミノ酸配列および核酸配列を、
図2に示し、配列表にも含める。
【0158】
免疫グロブリン軽鎖核酸配列がVκ3−20Jκ1遺伝子配列を含み、置換(複数可)がCDR3コドンにおいてである一実施形態では、置換は、105、106、107、109位、およびこれらの組合せから選択される位置におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、107、および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および106位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および107位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106および107位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、107および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、および107位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、106、および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、105、107、および109位におけるヒスチジンの発現を結果としてもたらす。一実施形態では、置換は、106、107、および109位におけるヒスチジンの発現を結果としてもたらす。様々なヒスチジン置換を含むVκ3−20Jκ1のCDR3領域の選択されたアミノ酸配列および核酸配列を、
図12に示し、配列表にも含める。
【0159】
免疫グロブリン軽鎖、例えば、ヒト免疫グロブリン軽鎖可変ドメインの配列を、ヒスチジン残基を所望の位置に含むように改変したら、軽鎖のヌクレオチド配列を、好適な宿主細胞、例えば、真核生物細胞、例えば、CHO細胞における発現のためのベクターへとクローニングする。一実施形態では、ヒト軽鎖定常領域の配列を、ヒト可変領域の改変されたヌクレオチド配列の下流にクローニングする。
【0160】
一実施形態では、改変されたヒト免疫グロブリン軽鎖および選択されたヒト免疫グロブリン重鎖をコードするヌクレオチド配列を含むベクターを、好適な宿主細胞、例えば、真核生物の宿主細胞、例えば、CHO細胞内で共発現させて、抗原結合タンパク質を生成する。当技術分野では、発現のために用い得る様々な宿主細胞が公知であり、本明細書を通して言及される。
【0161】
宿主細胞において生成される抗原結合タンパク質、例えば、抗体は、細胞上清へと分泌させることができ、これを、中性pHにおける適正な発現および元の抗原に対する親和性についてスクリーニングする。抗原結合タンパク質はまた、細胞溶解物からも回収することができ、膜結合型である場合は、好適な洗浄剤(例えば、Triton−X)を用いて、膜から放出させることもできる。所望の特徴を有する抗原結合タンパク質は、精製することができる。
【0162】
一実施形態では、ヒスチジン改変(複数可)を含む抗原結合タンパク質は、ヒスチジン改変(複数可)を含まない同じ(元の)抗原結合タンパク質の抗原に対する親和性と同等な、抗原に対する親和性を保持する。一実施形態では、中性pHにおける解離定数(K
D)として表される、ヒスチジン改変抗原結合タンパク質の目的の抗原に対する親和性は、10
−6M未満、例えば、10
−8M未満、例えば、10
−9M未満、例えば、10
−10M未満、例えば、10
−11M未満、例えば、10
−12M未満である。
【0163】
一実施形態では、本明細書に記載されているヒスチジン改変を含む抗原結合タンパク質、例えば、抗体は、pH依存性の抗原結合特性を示す。一実施形態では、ヒスチジン改変を含む抗原結合タンパク質は、ヒスチジン改変を有さない同等な抗原結合タンパク質(ヒスチジン改変を除けば、同じアミノ酸配列の抗原結合タンパク質)を凌駕する、増強したpH依存特性を保有する。一実施形態では、本明細書に記載されている抗原結合タンパク質は、中性pHでは、抗原への結合を保持する(例えば、中性pHでは、抗原に対する所望の親和性を保持する)が、酸性pHでは、結合の低減を提示する。一実施形態では、本明細書に記載されている、抗原結合タンパク質、例えば、抗体は、中性pHでは、抗原への結合を保持するが、酸性pHでは、抗原への結合を示さない。一実施形態では、本明細書に記載されている抗原結合タンパク質は、中性pHにおける抗原結合タンパク質の解離半減期(t
1/2)と比較して、酸性pHで、解離半減期(t
1/2)の少なくとも約2倍、少なくとも約3倍、少なくとも約4倍、少なくとも約5倍、少なくとも約10倍、少なくとも約15倍、少なくとも約20倍、少なくとも約25倍、または少なくとも約30倍の短縮を有する。一実施形態では、本明細書に記載されている抗原結合タンパク質のt
1/2は、酸性pHおよび37℃で、約2分間以下である。一実施形態では、本明細書に記載されている抗原結合タンパク質のt
1/2は、酸性pHおよび37℃で、約1分間未満である。一実施形態では、本明細書に記載されている抗原結合タンパク質のt
1/2は、酸性pHおよび25℃で、約2分間以下である。一実施形態では、本明細書に記載されている抗原結合タンパク質のt
1/2は、酸性pHおよび25℃で、約1分間未満である。
【0164】
一実施形態では、本明細書に記載されているヒスチジン改変を含む抗原結合タンパク質、例えば、抗体は、治療用量を被験体へと投与すると、同等な治療用量の、ヒスチジン改変を含まない抗原結合タンパク質(例えば、ヒスチジン改変を含まない、元の抗原結合タンパク質)を投与したときの血清半減期と比較して、血清半減期の延長を示す。いくつかの実施形態では、ある用量の、本明細書に記載されているヒスチジン改変を含む抗原結合タンパク質を投与したときの血清半減期の、同じ用量の、ヒスチジン改変を含まない抗原結合タンパク質を投与したときの血清半減期に対する延長は、約2倍、例えば、約5倍、例えば、約10倍、例えば、約15倍、例えば、約20倍、またはそれ超である。一実施形態では、血清半減期は、少なくとも約1日間、例えば、少なくとも約2日間、例えば、少なくとも約7日間、例えば、少なくとも約14日間、例えば、少なくとも約30日間、例えば、少なくとも約60日間である。
【0165】
上記で記載した、pH依存性の抗原結合特性を有する抗原結合タンパク質をin vitroで生成するための方法に加えて、本明細書では、前記方法により生成される抗原結合タンパク質、例えば、抗体もまた提供される。加えて、前記方法は、マウスにおける共通(ユニバーサル)軽鎖に結合する、2つの異なるヒト免疫グロブリン重鎖を選択し、重鎖のヌクレオチド配列を決定し、ユニバーサル軽鎖を、上記で記載したヒスチジン置換を含むように改変し、単一の、ヒスチジン改変ユニバーサル軽鎖を有する2つのヒト重鎖を宿主細胞内で共発現させることにより、多重特異性、例えば、二重特異性の抗原結合タンパク質を生成するのにも使用することができる。上記で記載した抗原結合タンパク質を生成するための様々なステップは、二重特異性抗原結合タンパク質を生成する方法へも適用することができる。抗原(複数可)に対する所望の親和性およびpH依存性の抗原結合特性を保有することが確認された二重特異性抗原結合タンパク質は、精製することができる。したがって、2つのヒト重鎖および、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むヒト可変領域遺伝子、例えば、Vκ1−39Jκ5可変領域遺伝子またはVκ3−20Jκ1可変領域遺伝子によりコードされるヒト軽鎖可変ドメイン配列を含む単一のヒト軽鎖を含む二重特異性抗体が提供される。
【0166】
ヒト免疫グロブリン重鎖と、ヒスチジン置換を含むヒト免疫グロブリン軽鎖とを含む抗原結合タンパク質の作製において使用される構築物もまた提供される。本明細書に記載されている抗原結合タンパク質、例えば、抗体を発現する宿主細胞もまた提供される。
【実施例】
【0167】
以下の実施例は、本発明の方法および組成物を作製、使用する方法を当業者に説明するために提供され、発明者が彼らの発明とみなすものの範囲を限定するものではない。用いる数(例えば、量、温度など)に関して正確性を保証するように努めたが、多少の実験誤差および逸脱があることが考慮されるべきである。実施例は、当業者に周知である、従来の方法(分子クローニング技法など)の詳細な記載を含まない。特に明記しない限り、部は重量部であり、分子量は平均分子量であり、温度は摂氏で示され、気圧は大気圧またはその近くである。
(実施例1)
抗原特異的ヒト軽鎖内のヒスチジン残基の同定
【0168】
共通軽鎖マウス(例えば、Vκ1−39共通軽鎖マウスまたはVκ3−20共通軽鎖マウス)の生成、およびこれらのマウスにおける抗原特異的抗体の生成は、参照によりそれらの全体において本明細書に組み込まれる、米国特許出願第13/022,759号、同第13/093,156号、および同第13/412,936号(それぞれ、特許公開第2011/0195454号、同第2012/0021409号、および同第2012/0192300号)において記載されている。手短には、マウスゲノム細菌人工染色体(BAC)クローンを改変するために、VELOCIGENE(登録商標)技術(例えば、米国特許第6,586,251号およびValenzuelaら(2003年)High−throughput engineering of the mouse genome coupled with high−resolution expression analysis、Nature Biotech.21巻(6号):652〜659頁を参照)を用いて、再構成されたヒト生殖細胞系列軽鎖ターゲッティングベクターが作製され、そして、ゲノム構築物を単一の再構成されたヒト生殖細胞系列軽鎖領域を含むように操作し、内因性κ可変および連結遺伝子セグメントを欠失させるために事前に改変しておいた内因性κ軽鎖遺伝子座に挿入した。再構成されたヒト生殖細胞系列Vκ1−39Jκ5またはVκ3−20Jκ1領域を発現するキメラマウスを生成するための改変ES細胞を形成するために、マウスES細胞をエレクトロポレーションするために、次にターゲッティングBAC DNAを用いた。標的ES細胞をドナーES細胞として用い、VELOCIMOUSE(登録商標)法によって8細胞期マウス胚に導入した(例えば、米国特許第7,294,754号およびPoueymirouら(2007年)F0 generation mice that are essentially fully derived from the donor gene−targeted ES cells allowing immediate phenotypic analyses Nature Biotech.25巻(1号):91〜99頁を参照)。特有な再構成されたヒト生殖細胞系列軽鎖領域の存在を検出する対立遺伝子アッセイ(Valenzuelaら、上記)の改変型を用いる遺伝子タイピングによって、操作されたヒト生殖細胞系列Vκ1−39Jκ5またはVκ3−20Jκ1軽鎖領域を独立して有するVELOCIMICE(登録商標)を同定した。
【0169】
操作されたヒト生殖細胞系列の軽鎖遺伝子座を保有するマウス(ULCマウス)を、内因性マウス重鎖可変遺伝子座のヒト重鎖可変遺伝子座による置きかえを含有するマウス(US6,596,541を参照されたい;VELOCIMMUNE(登録商標)マウス、Regeneron Pharmaceuticals,Inc.)と交配させた。
【0170】
単一の、再構成されたヒト生殖細胞系列の軽鎖領域を含有するVELOCIMMUNE(登録商標)マウスを、目的の抗原でチャレンジし、ユニバーサル軽鎖(例えば、Vκ1−39Jκ5)を含む抗体を単離および配列決定する。共通Vκ1−39Jκ5軽鎖マウスにおいて生成される抗原特異的ヒト抗体から選択された軽鎖(A〜K)のアミノ酸配列をアラインメントした。選択された数の抗原特異的ヒト抗体について、ヒトVκ1−39に由来する軽鎖のCDR内のヒスチジン変異を同定した(
図1)。生殖細胞系列のVκ1−39Jκ5可変ドメインの部分的なアミノ酸配列をアラインメントの上方に示し、配列番号1にも示し、完全な可変ドメインのアミノ酸配列を配列番号80に示す。
【0171】
(実施例2)
ヒスチジン置換したヒトユニバーサル軽鎖抗体の操作および特徴付け
(実施例2.1)
ヒスチジン残基の生殖細胞系列ヒト再構成軽鎖への操作
操作したヒスチジン残基を、ヒトVκ1−39Jκ5軽鎖のQ105、Q106、Y108、およびP111位に導入するように特別にデザインされた部位指向変異生成プライマーを用いて、ヒスチジン残基を、再構成されたヒトVκ1−39Jκ5軽鎖へと操作した。当技術分野で公知の分子技法(例えば、QuikChange II XL Site Directed Mutagenesis Kit、Agilent Technologies)を用いて、部位指向変異生成を実施した。CDR3内の操作された残基の位置を
図2に示し、
図2に示された、ヒスチジン置換したCDR3の核酸配列を、配列番号4、6、8、10、12、14、16、18、20、22、24、26、28、30、および32に示す(対応するアミノ酸配列を、配列番号5、7、9、11、13、15、17、19、21、23、25、27、29、31、および33に示す)。生殖細胞系列の、再構成されたVκ1−39Jκ5 CDR3の核酸配列およびアミノ酸配列を、それぞれ、配列番号2および3に示す。
【0172】
(実施例2.2)
ヒスチジン操作した軽鎖の構築および発現
実施例2に従い作製された、生殖細胞系列の、操作したヒスチジン残基を含有するヒトVκ1−39に由来する軽鎖を構築し、ヒト細胞表面受容体に特異的である、様々なヒト重鎖(1〜5と表示される)と対合させて、CHO細胞における発現を解析した。ヒスチジン置換したVκ1−39に由来する軽鎖と対合させた、ヒト細胞表面受容体に特異的な5つのヒト重鎖は、単一の、再構成されたヒト軽鎖(ヒトVκ1−39/Jκ5の再構成された軽鎖;US2011/0195454A1を参照されたい)を有するマウスから得た。
【0173】
酵素結合免疫吸着アッセイ(ELISA):CHO細胞からの抗体の分泌は、Fc ELISAを用いて、5つの異なる重鎖を有する、表示されるヒスチジン改変を有する軽鎖について検出した。軽鎖配列および重鎖配列(改変を除く)は、単一の、再構成されたヒト軽鎖(例えば、ヒトVκ1−39/Jκ5の再構成された軽鎖;US2011/0195454A1を参照されたい)を有するマウスにおいて生成された。捕捉抗体は、ヤギ抗ヒトIgGであり、検出抗体は、ヤギ抗ヒト(Fcガンマ特異的)−HRPであった。結果を
図3に示す。ULC+重鎖:特異的重鎖および改変されていないヒトVκ1−39に由来する軽鎖。
図3に示される通り、発現は、ほぼ全ての変異体において検出された。
【0174】
タンパク質イムノブロット:CHO細胞の上清中の、ヒスチジン操作した軽鎖と対合させた抗原特異的重鎖の発現を、ウェスタンブロットによりさらに解析した。試料を、4〜12%のトリス−グリシンゲル上で泳動させた。選択された重鎖(重鎖3)を用いた結果を、
図4に示す。ULCとは、再構成されたヒトVκ1−39に由来する軽鎖(上記で記載した)を指す。
【0175】
(実施例2.3)
ヒスチジン操作した軽鎖の結合親和性の決定
選択された抗体上清についての平衡解離定数(K
D)、解離半減期(t
1/2)、および他の動力学的パラメータは、BIACORE
TMT200装置(GE Healthcare)を用いるSPR(表面プラズモン共鳴)により決定した。キネティクスは、pH7.4およびpH5.75で測定した。結果を
図5A〜5Eに示す。
【0176】
中性pH(pH7.4)および酸性pH(pH5.75)における、抗体の免疫原への結合についての動力学的結合特性(kinetic binding property)(例えば、k
a、k
d、K
D、t
1/2など)の数値は、リアルタイム表面プラズモン共鳴バイオセンサー(Biacore T200)を用いて得た。Biacore CM5センサーチップを、マウス抗ヒトFc抗体で誘導体化して、上清からの抗体を捕捉した。次いで、単一濃度(50nM)の免疫原を、抗体捕捉表面上に、30μl/分の流量で注入した。抗体−抗原間の会合を、2.5分間にわたりモニタリングし、次いで、抗原の、捕捉抗体からの解離を、8分間にわたりモニタリングした。会合動力学速度定数(ka)および解離動力学速度定数(kd)は、Biacore T200 Evaluationソフトウェアversion 1.0を用い、データを処理して物質移動モデルによる1:1の結合へとフィッティングすることにより、決定した。平衡解離定数(K
D)および解離半減期(t
1/2)は、K
D(M)=k
d/k
a;およびt
1/2(分)=(ln2/(60×k
d)として、動力学速度定数から計算した。
【0177】
図5に示される通り、抗体の細胞表面受容体への結合アッセイでは、抗原特異的ヒト重鎖と対合させた、ヒスチジン改変共通軽鎖(Vκ1−39/Jκ5軽鎖のヒスチジン改変CDR3)を有する5つの抗体のうちの2つが、pH7.4およびpH5.75において、異なる親和性で、抗原へ(例えば、細胞表面受容体への)の結合を示した。pH7.4では、結合を保持するが、pH5.75では、低度の結合を示すか、または検出可能な結合を示さない、ヒスチジン改変を有する抗体が望ましい。pH5.75におけるt
1/2のpH7.4におけるt
1/2と比較した短縮を示す、ヒスチジン改変を有する抗体が望ましい。
【0178】
ヒスチジン改変共通軽鎖および3つの抗原特異的重鎖を含む3つの抗体(2、3、および6と表示される)についての、異なるpHにおける抗原結合データを、
図6にさらにまとめる。例えば、pH5.75におけるt
1/2の短縮または結合が検出されないことにより裏付けられる通り、これらの抗体は、pH5.75において、pH7.4における抗原結合と比較した、抗原結合の有意な低下を示した。
【0179】
(実施例3)
ヒスチジン置換したVκ1−39Jκ5ユニバーサル軽鎖を含む遺伝子改変マウスの操作および特徴付け
(実施例3.1)
再構成されたヒト軽鎖可変領域内のヒスチジン残基を操作するためのターゲッティングベクターの構築
当技術分野で公知の標準的な分子クローニング技法により作製されるターゲッティングベクターを用いて、ヒト軽鎖のCDR領域へと操作したヒスチジン残基を有する、再構成されたヒト軽鎖遺伝子を含有する遺伝子改変マウスを作製する。
【0180】
手短には、マウスゲノムの細菌人工染色体(BAC)DNAを、単一の、再構成されたヒト生殖細胞系列の軽鎖領域を含有するように改変するために、VELOCIGENE(登録商標)技術(例えば、米国特許第6,586,251号およびValenzuelaら(2003年)、High-throughput engineering of the mouse genome coupled with high-resolution expression analysis、Nature Biotech.、21巻(6号):652〜659頁を参照されたい)を用いて、様々な、再構成されたヒト生殖細胞系列の軽鎖ターゲッティングベクターを作製し、内因性κ可変遺伝子セグメントおよび内因性κ接合遺伝子セグメントを欠失させるように既に改変された内因性κ軽鎖遺伝子座へと挿入する。再構成されたヒト生殖細胞系列の軽鎖領域を、軽鎖の配列内の1つまたは複数のヌクレオチド位置において、生殖細胞系列配列のそれぞれの位置には通常存在しないヒスチジン残基をコードするように改変する。ターゲッティングベクターを、マウス胚性幹(ES)細胞へとエレクトロポレーションし、定量的PCRアッセイ(例えば、TAQMAN
TM)を用いて確認する。
【0181】
具体的には、これらのターゲッティングベクターを構築するための戦略を、
図8A〜8Fに示す。共通(ユニバーサル)軽鎖マウス(例えば、US2011/0195454A1において記載されている「ULCマウス」)のターゲッティングベクターを生成するために用いられるプラスミドであって、pBS+FRT−Ub−Hyg−FRT+マウスVκ3−7リーダー+ヒトVκ1−39Jκ5を含有するプラスミドを、部位指向変異生成(QuickChange II XL Kit)により、
図7に示される部位指向変異生成プライマーを用いて、CDR3領域内のQ105、Q106、Y108、およびP111、またはQ106、Y108、およびP111を、ヒスチジン残基で置きかえるように改変した(この操作ステップについては、
図8Aを参照されたい)。結果として得られるベクター(H105/106/108/111およびH106/108/111)をさらに改変し、マウスIgκ定常領域、マウスエンハンサー、マウス3’側相同性アーム、およびSPECカセットを含むベクターへとライゲーションした(
図8B)。さらなる改変は、5’側マウスアームを保有し、Frt−Ub−NEO−Frtカセットを含むベクターへのライゲーションを包含した(
図8B)。結果として得られるターゲッティングベクターを、マウスIgκ可変遺伝子座(κ可変遺伝子セグメントおよびκ接合遺伝子セグメントを含む)の欠失を含むES細胞へとエレクトロポレーションした(
図8C〜8F)。
【0182】
陽性のES細胞クローンは、内因性κ軽鎖遺伝子座へと挿入される、操作されたVκ1−39Jκ5軽鎖領域に対して特異的なプローブを用いる、対立遺伝子アッセイ(Valenzuelaら)の改変型を用いることにより確認した。アッセイにおいて用いられるプライマーおよびプローブを、下記の表1に示し、配列表にも示し、プローブの位置を、
図8C〜8Fに示す。
【表1】
【0183】
ターゲッティング構築物により導入されるNEO選択カセットは、ES細胞に、FLPを発現するプラスミドをトランスフェクトすることにより欠失させた(
図8Cおよび8E)。必要に応じて、ネオマイシンカセットは、FLPレコンビナーゼを発現するマウス(例えば、US6,774,279)と交配させることにより除去することもできる。必要に応じて、ネオマイシンカセットを、マウスに保持させる。
【0184】
上記で記載した標的ES細胞をドナーES細胞として用い、VELOCIMOUSE(登録商標)法により、8細胞期マウス胚へと導入した(例えば、米国特許第7,294,754号;およびPoueymirouら(2007年)、F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses、Nature Biotech.、25巻(1号):91〜99頁を参照されたい)。配列に沿った1つまたは複数の位置において変異させたヒスチジン残基を含有する、操作されたヒト軽鎖遺伝子を独立に保有するVELOCIMICE(登録商標)を、上記で記載した標的ES細胞から作製した。
【0185】
仔マウスを遺伝子型決定し、操作された、ヒスチジン改変ヒト軽鎖についてヘテロ接合性の仔マウスを、軽鎖の発現および発現させた抗体の結合能を特徴づけるために選択した。3カ所の(H106/108/111;「1930」)ヒスチジン改変または4カ所の(H105/105/108/111;「1927」)ヒスチジン改変を有するユニバーサル軽鎖遺伝子を特異的に含むマウスを遺伝子型決定するためのプライマーおよびプローブを、下記の表2に列挙し、配列表にも示す。本明細書では、ヒスチジン改変をそれらのユニバーサル軽鎖内に含有するマウスを、「HULC」マウス(ヒスチジンユニバーサル軽鎖マウス)と称する。
【表2】
【0186】
(実施例3.2)
ヒスチジン置換したユニバーサル軽鎖を有するマウスにおける抗原への免疫応答の解析
細胞表面受容体(「抗原A」)を、CDR3内に4カ所のヒスチジン置換を有するVκ1−39およびJκ5を使用して既定の(pre−arranged)ヒトカッパ軽鎖の発現についてヘテロ接合性であるマウス(以下では、「HULC 1927」とする)、もしくはCDR3内に3カ所のヒスチジン置換を有するVκ1−39およびJκ5を使用して既定のヒトカッパ軽鎖の発現についてヘテロ接合性であるマウス(以下では、「HULC1930」とする)のいずれか、またはホモ接合性のWTマウスを免疫する免疫原として用いた。免疫を開始する前に、免疫前血清を、マウスから収集した。免疫原は、足蹠(f.p.)を介して、容量25μl中に、アジュバントとしてのCpGオリゴヌクレオチド(Invivogen)10μgと混合した、初回抗原刺激による免疫のためのタンパク質2.35μgを投与した。その後、3、6、11、13、17、20日目において、合計6回の追加免疫のために、マウスに、同じ経路を介して、2.35μgの抗原Aを、アジュバントとしての10μgのCpGおよび25μgのAdju−Phos(Brenntag)と共に追加免疫した。それぞれ、4および6回目の追加免疫の後の15および22日目において、マウスから採血した。それらの抗血清を、抗原Aに対する抗体力価についてアッセイした。
【0187】
免疫原に対する抗体血清力価は、標準的なELISAにより決定した。ELISAを実施するために、96ウェルマイクロ滴定プレート(Thermo Scientific)を、リン酸緩衝食塩液(PBS;Irvine Scientific)中の2μg/mlの抗原Aにより、4℃で一晩にわたりコーティングした。翌日、プレートを、プレート洗浄機(Molecular Devices)を用いて、0.05%のTween 20を含有するリン酸緩衝食塩液(PBS−T;Sigma−Aldrich)で、4回にわたり洗浄した。次いで、プレートを、PBS中の0.5%のウシ血清アルブミン(BSA;Sigma−Aldrich)250μlでブロッキングし、室温で1時間にわたりインキュベートした。次いで、プレートを、PBS−Tで4回にわたり洗浄した。免疫したマウスからの血清および免疫前血清を、0.5%のBSA−PBS中に、1:300または1:1000で始めて3倍の系列希釈を行い、ブロッキングしたプレートへと二連で添加し、次いで、室温で1時間にわたりインキュベートした。最後の2つのウェルは、ブランクのまま放置して、二次抗体対照(バックグラウンド対照)として用いた。プレート洗浄機により、プレートを、PBS−Tで、4回にわたり再度洗浄した。次いで、ヤギ抗マウスIgG−Fc−西洋ワサビペルオキシダーゼ(HRP)コンジュゲート二次抗体(Jackson Immunoresearch)を、1:5000/1:10,000の希釈率でプレートへと添加し、室温で1時間にわたりインキュベートした。次いで、プレートを、PBS−Tで8回にわたり洗浄し、TMB/H
2O
2を基質として用いて発色させた。基質を20分間にわたりインキュベートし、2Nの硫酸(H
2SO
4;VWR、カタログ番号BDH3500−1)または1Nのリン酸(JT Baker、カタログ番号7664−38−2)で反応を停止させた。プレートは、分光光度計(Victor;Perkin Elmer)において450nmで読み取った。抗体力価は、Graphpad PRISMソフトウェアを用いて計算した。
【0188】
マウスにおいて、注入された免疫原に対して誘導された免疫応答は、抗原結合の吸光度がバックグラウンドの2倍となる最大の血清希釈率の逆数として定義される、抗体力価として表される。したがって、抗体力価数が大きいほど、免疫原に対する体液性免疫応答が大きくなる。免疫原に対して誘導された抗体力価は、HULCマウスの両方の系統でも、WTマウスでも、極めて大きく、系統の間で有意差は観察されなかった(
図9)。
【0189】
(実施例3.3)
pH感受性モノクローナル抗体の生成
HULCマウス両方の系統でも、WTマウスでも、免疫原に対する所望の免疫応答が達成されたら、各マウス系統からの脾細胞を採取し、マウス骨髄腫細胞と融合させて、ハイブリドーマ細胞を生成し、96ウェルプレート内で成長させた。10日間成長後、各ハイブリドーマ細胞含有ウェルからの上清を、免疫原特異的ELISAを介してスクリーニングして、陽性の抗原結合試料を同定した。ELISAのために、96ウェルマイクロ滴定プレートを、1ug/mLの抗mycポリクローナル抗体(Novus Biologicals、番号NB600−34)により、4℃で一晩にわたりコーティングして、mycタグ付けされた抗原を固定し、これに続いて、PBS中の0.5%(w/v)のBSA溶液でブロッキングした。プレートを洗浄し、抗原溶液を、1μg/mLの濃度でプレートへと添加し、室温で1時間にわたり、コーティングしたプレートに結合させた。その後、ハイブリドーマ細胞からの上清を、1:50の希釈率でウェルへと添加し、室温で1時間にわたり結合させた。プレートに結合した抗体は、HRPとコンジュゲートさせた抗マウスIgGポリクローナル抗体(Jackson Immunoresearch、番号115−035−164)を用いて検出した。TMB基質を、プレート(BD Biosciences、番号51−2606KC/51−2607KC)へと添加し、製造元により推奨されるプロトコールに従い、比色シグナルを生じさせた。吸光度は、Victor Wallacプレートリーダーにおいて450nmで記録した。ODが0.5以上(ベースラインのODは約0.1)を有するとして定義される抗原陽性試料は、リアルタイム表面プラズモン共鳴バイオセンサー(Biacore 4000)を用いて、親和性スクリーニングにかけた。
【0190】
中性pH(pH7.4)および酸性pH(pH6.0)における、抗体の免疫原への結合についての動力学的結合パラメータ(例えば、k
a、k
d、K
D、t
1/2など)を記録した。Biacore CM4センサーチップを、ポリクローナルヤギ抗マウスFc抗体で誘導体化して、上清からの抗体を捕捉した。次いで、単一濃度(100nM)の免疫原を、抗体捕捉表面上に、30μl/分の流量で注入した。抗体−抗原間の会合を、1.5分間にわたりモニタリングし、次いで、抗原の、捕捉抗体からの解離を、2.5分間にわたりモニタリングした。会合動力学速度定数(k
a)および解離動力学速度定数(k
d)は、Biacore 4000 Evaluationソフトウェアversion 1.0を用い、データを処理して物質移動モデルによる1:1の結合へとフィッティングすることにより、決定した。平衡解離定数(K
D)および解離半減期(t
1/2)は、K
D(M)=k
d/k
a;およびt
1/2(分)=ln2/(60×k
d)として、動力学速度定数から計算した。pH6.0において、pH7.4における結合と比較して結合の低下を提示する試料のセット(pH感受性)、ならびにpH7.4とpH6.0との間で有意な速度の変化を提示しない対照試料のセット(pH非感受性の対照)を、クローン作製するために選択した。
図10は、全抗原陽性クローンの数と、HULCマウスおよびWTマウスからのpH感受性抗原結合を提示する抗原陽性クローンの数との比較を示す。
【0191】
抗原陽性クローンのうち、2匹のヘテロ接合性HULC1927マウスおよび2匹のHULC1930のそれぞれから単離された18のクローンおよび7つのクローン、ならびにWTマウスからの1つのクローンは、モノクローナルとなった。モノクローナルハイブリドーマの上清を、中性pHおよび低pHにおける抗原解離速度(オフ速度)解析にかけ、細胞ペレットを軽鎖可変ドメインDNAの配列決定に用いた。
【0192】
(実施例3.4)
Vκ1−39Jκ5に基づくヒスチジンユニバーサル軽鎖マウスのCDR3領域における配列決定および体細胞超変異
HULCマウスおよびWTマウスによるモノクローナルハイブリドーマからの細胞ペレットを、軽鎖可変ドメインDNAの配列決定に用いた。26のクローンがモノクローナルとなり(上記の実施例3.3を参照されたい)、これらを配列決定にかけ、15のクローンを、HULCマウス軽鎖またはWTマウス軽鎖(MMおよびNN;表4を参照されたい)を用いて確認した。14のクローンは、HULCヘテロ接合性マウス(1927マウスまたは1930マウス)に由来し、1つのクローンは、WTマウスに由来した(OO;表4を参照されたい)。
【0193】
HULCヘテロ接合性マウスに由来する14の抗原陽性試料のうち、12のモノクローナル抗体が、それらの対応するHULC軽鎖を使用したのに対し、2つのモノクローナル抗体は、WTマウスの軽鎖を使用した。表3に示される通り、HULCを使用する抗体のうちの1つ(斜字体の抗体)を除く全ては、導入されたヒスチジン変異の全てを保持した。クローンAAを配列決定したところ、2つの異なるHULC配列がもたらされたが、表3では、これらを2つの項目で表す。
【表3】
【0194】
(実施例3.5)
Vκ1−39Jκ5に基づくヒスチジンユニバーサル軽鎖マウスにおいて生成されるモノクローナル抗体のpH依存性結合
HULCマウスおよびWTマウスから単離されたモノクローナル抗体のpH依存性結合特徴をさらに評価するために、中性pHにおいて抗体/抗原間の会合相を観察し、中性または酸性pHにおいて抗体/抗原間の解離相を観察する、結合実験を実行した。
【0195】
Biacore CM4センサーチップを、ポリクローナルウサギ抗マウスFc抗体で誘導体化した。モノクローナル抗体上清を抗マウスFcセンサー表面上に捕捉した。次いで、50nM(二連で)および16.7nMという2つの濃度の免疫原を、モノクローナル抗体捕捉表面上に、30μl/分の流量で注入した。抗体−抗原間の会合を、pH7.4で4分間にわたりモニタリングし、次いで、捕捉モノクローナル抗体からの抗原の解離を、pH7.4またはpH6.0で15分間にわたりモニタリングした。解離速度定数(k
d)は、Scrubber version 2.0曲線フィッティングソフトウェアを用い、データを処理してフィッティングすることにより決定し、これを、表4に示す。解離半減期(t
1/2)は、t
1/2(分)=(ln2/k
d)/60として、解離速度定数から計算し、これを、表4に示す。表4に列挙される複数の抗体の、様々なpH条件下における会合/解離特徴を示すセンサーグラムを、
図11にグラフで示す。各グラフ内の個々の線は、それぞれの抗体の異なる濃度における結合応答を表す。全ての実験は、25℃で実行した。解離半減期の値(t
1/2)を、それぞれのセンサーグラムの上方に注記する。応答は、RU単位で測定する。
【表4】
【0196】
(実施例4)
ヒスチジン置換したVκ3−20Jκ1ユニバーサル軽鎖を含む遺伝子改変マウスの操作
例えば、米国特許出願第13/022,759号、同第13/093,156号、同第13/412,936号、および同第13/488,628号(それぞれ、特許公開第2011/0195454号、同第2012/0021409号、同第2012/0192300号、および同第2013/0045492号)、ならびに上記の実施例1において記載されている通りに、共通Vκ3−20Jκ1軽鎖を含むマウスを生成した。生殖細胞系列のユニバーサルVκ3−20Jκ1軽鎖可変ドメインのアミノ酸配列を、配列番号59に示す。
【0197】
Vκ1−39Jκ5ヒスチジン改変ユニバーサル軽鎖マウス(HULC 1927およびHULC 1930)について、上記の実施例3で記載した戦略と同様の戦略を用いて、ヒスチジン置換を、Vκ3−20Jκ1ユニバーサル軽鎖のターゲッティングベクターへと導入し、このベクターからマウスを生成した。
【0198】
手短には、ヒスチジン改変Vκ3−20Jκ1ユニバーサル軽鎖ターゲッティングベクターを生成するための戦略を、
図14A〜14Dにまとめる。共通(ユニバーサル)軽鎖マウス(例えば、US2011/0195454A1において記載されている「ULCマウス」)のためのターゲッティングベクターを生成するために用いられるプラスミドであって、pBS+FRT−Ub−Hyg−FRT+マウスVκ3−7リーダー+ヒトVκ3−20Jκ1を含有するプラスミドを、部位指向変異生成(QuickChange Lightning Kit)により、
図13に示される部位指向変異生成プライマーを用いて、CDR3領域内のQ105、Q106、Y107、およびS109、またはQ105、Q106、およびS109(
図12のアラインメントを参照されたい)を、ヒスチジン残基で置きかえるように改変した(この操作ステップについては、
図14Aを参照されたい)。結果として得られるベクター(H105/106/107/109およびH105/106/109)をさらに改変し、マウスIgκ定常領域、マウスエンハンサー、マウス3’側相同性アーム、およびSPECカセットを含むベクターへとライゲーションした(
図14B)。さらなる改変は、5’側マウスアームを保有し、Frt−UB−NEO−Frtカセットを含むベクターへのライゲーションを包含した(
図14B)。結果として得られるターゲッティングベクターを、マウスIgκ可変遺伝子座(κ可変遺伝子セグメントおよびκ接合遺伝子セグメントを含む)の欠失を含むES細胞へとエレクトロポレーションした(
図14C〜14D)。
【0199】
陽性のES細胞クローンは、内因性κ軽鎖遺伝子座へと挿入される、操作されたVκ3−20κJ1軽鎖領域に対して特異的なプローブを用いる、対立遺伝子アッセイ(Valenzuelaら)の改変型を用いることにより確認した。アッセイにおいて用いられるプライマーおよびプローブを、下記の表5に示し、配列表にも示し、プローブの位置を、
図14C〜14Dに示す。
【表5】
【0200】
ターゲッティング構築物により導入されるNEO選択カセットは、ES細胞を、FLPを発現するプラスミドでトランスフェクトすることにより欠失させる(
図14Cおよび14D)。必要に応じて、ネオマイシンカセットは、FLPレコンビナーゼを発現するマウス(例えば、US6,774,279)と交配させることにより除去することもできる。必要に応じて、ネオマイシンカセットを、マウスに保持させる。
【0201】
上記で記載した標的ES細胞をドナーES細胞として用い、VELOCIMOUSE(登録商標)法により、8細胞期マウス胚へと導入する(例えば、米国特許第7,294,754号;およびPoueymirouら(2007年)、F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses、Nature Biotech.、25巻(1号):91〜99頁を参照されたい)。配列に沿った1つまたは複数の位置において変異させたヒスチジン残基を含有する、操作されたヒト軽鎖遺伝子を独立に保有するVELOCIMICE(登録商標)を、上記で記載した標的ES細胞から作製する。
【0202】
仔マウスを遺伝子型決定し、操作された、ヒスチジン改変ヒト軽鎖についてヘテロ接合性の仔マウスを、軽鎖の発現および発現させた抗体の結合能を特徴づけるために選択する。3カ所の(H105/106/109;「6183」)ヒスチジン改変または4カ所の(H105/105/108/111;「6181」)ヒスチジン改変を有するユニバーサル軽鎖遺伝子を特異的に含むマウスを遺伝子型決定するためのプライマーおよびプローブを、下記の表6に列挙し、配列表にも示す。本明細書では、ヒスチジン改変をそれらのユニバーサル軽鎖内に含有するマウスを、「HULC」マウス(ヒスチジンユニバーサル軽鎖マウス)と称する。
【表6】
【0203】
マウスを目的の抗原で免疫し、pH依存性結合を有する抗体を生成する能力について調べる。
【0204】
(実施例5)
ヒスチジン置換した単一の、再構成されたヒトユニバーサル軽鎖マウス(HULC)を含むマウスの交配
本実施例は、本明細書に記載されているHULCマウスのうちのいずれか1つと交配させて、多重の遺伝子改変免疫グロブリン遺伝子座を保有する、多重の遺伝子改変マウス系統を作製し得る、複数の他の遺伝子改変マウス系統について記載する。
【0205】
内因性Igλノックアウト(KO)
操作された軽鎖遺伝子座の使用頻度を最適化するために、上記のHULC動物(例えば、Vκ1−39Jκ5またはVκ3−20Jκ1ヒスチジン置換したユニバーサル軽鎖を含む)のうちの任意の1つを、内因性λ軽鎖遺伝子座に欠失を含む別のマウスと交配させ得る。この様式において、得られる子孫は、それらの唯一の軽鎖として、上記の実施例3および4に記載されるとおりの再構成されたヒスチジン置換したヒト生殖細胞系列軽鎖領域を発現する。交配は、当技術分野で認められる標準技術によって、あるいは商業的な繁殖家(例えば、Jackson Laboratory)によって実施される。操作されたヒスチジン置換した軽鎖遺伝子座、および内因性λ軽鎖遺伝子座の欠失を有するマウス系統は、特有な軽鎖領域の存在および内因性マウスλ軽鎖の非存在についてスクリーニングされる。
【0206】
ヒト化内因性重鎖遺伝子座
操作されたヒト生殖細胞系列軽鎖遺伝子座を有するマウス(HULCマウス)は、ヒト重鎖可変遺伝子の遺伝子座による内因性マウス重鎖可変遺伝子の遺伝子座の置換を含むマウスと交配させられる(US6,596,541を参照;VELOCIMMUNE(登録商標)マウス、Regeneron Pharmaceuticals,Inc.)。VELOCIMMUNE(登録商標)マウスは、マウスが抗原刺激に応じてヒト重鎖可変ドメインおよびマウス重鎖定常領域を含む抗体を生成するように、内因性マウス定常領域遺伝子座に作動可能に連結されたヒト重鎖可変領域を含むゲノムを含む。
【0207】
内因性マウス重鎖可変領域遺伝子座のヒト重鎖可変領域遺伝子座による置きかえ、および内因性κ軽鎖遺伝子座内に、ヒスチジン置換した、単一の、再構成されたヒト軽鎖可変領域を保有するマウスを得る。目的の抗原で免疫すると、ヒスチジン置換した単一のヒト軽鎖(HULC;ヒト軽鎖可変ドメインおよびマウスC
L)を有する体細胞変異重鎖(ヒト重鎖可変ドメインおよびマウスC
H)を含有するリバースキメラ抗体が得られる。このようなマウスにおいて生成されるpH依存性ヒト抗体は、当技術分野で公知であるかまたは上記で記載した抗体の単離およびスクリーニング法を用いて同定する。抗体、例えば、pH感受性抗体を発現するB細胞の可変軽鎖領域および可変重鎖領域のヌクレオチド配列を同定し、好適な発現系で、可変重鎖領域および可変軽鎖領域のヌクレオチド配列を、ヒトC
Hヌクレオチド配列およびヒトC
Lヌクレオチド配列のそれぞれへと融合させることにより、完全ヒト抗体を作製する。
【0208】
均等物
当業者は、日常的な程度の実験を用いて、本明細書に記載されている本発明の具体的な実施形態の多くの均等物を認識するか、または確認することが可能である。このような均等物は、以下の特許請求の範囲に包含されることを意図する。
【0209】
本出願を通して引用される全ての非特許文献、特許出願、および特許の全内容は、参照によりそれらの全体において本明細書に組み込まれる。
【0210】
(項目1)
ヒトV
Lセグメント配列およびヒトJ
Lセグメント配列を含む、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列を含む、免疫グロブリン軽鎖遺伝子座をその生殖細胞系列内に含む、遺伝子改変された非ヒト動物であって、
該単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、
遺伝子改変された非ヒト動物。
(項目2)
前記単一の、再構成されたヒト免疫グロブリン可変領域配列が、免疫グロブリン軽鎖定常領域遺伝子配列に作動可能に連結された、項目1に記載の動物。
(項目3)
前記免疫グロブリン軽鎖定常領域遺伝子配列が、非ヒト免疫グロブリン軽鎖定常領域遺伝子配列である、項目2に記載の動物。
(項目4)
前記非ヒト免疫グロブリン軽鎖定常領域遺伝子配列が、内因性非ヒト免疫グロブリン軽鎖定常領域遺伝子配列である、項目3に記載の動物。
(項目5)
免疫グロブリン重鎖定常領域遺伝子配列に作動可能に連結された、ヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントを含む、再構成されていない免疫グロブリン重鎖可変領域遺伝子配列を含む、免疫グロブリン重鎖遺伝子座をその生殖細胞系列内にさらに含む、項目1に記載の動物。
(項目6)
前記免疫グロブリン重鎖定常領域遺伝子配列が、非ヒト免疫グロブリン重鎖定常領域遺伝子配列である、項目5に記載の動物。
(項目7)
前記非ヒト重鎖定常領域遺伝子配列が、内因性非ヒト免疫グロブリン定常領域遺伝子配列である、項目6に記載の動物。
(項目8)
機能的な、再構成されていない免疫グロブリン軽鎖可変領域を欠く、項目1に記載の動物。
(項目9)
前記免疫グロブリン軽鎖遺伝子座が、内因性非ヒト免疫グロブリン軽鎖遺伝子座にある、項目1に記載の動物。
(項目10)
前記免疫グロブリン重鎖遺伝子座が、内因性非ヒト免疫グロブリン重鎖遺伝子座にある、項目5に記載の動物。
(項目11)
少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる前記置換が、相補性決定領域(CDR)3をコードするヌクレオチド配列内にある、項目1に記載の動物。
(項目12)
前記置換が、1つ、2つ、3つ、または4つのCDR3コドンの置換である、項目11に記載の動物。
(項目13)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、ヒトVκ1−39遺伝子セグメントまたはヒトVκ3−20遺伝子セグメントに由来する、項目1に記載の動物。
(項目14)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ1−39/Jκ5遺伝子配列またはVκ3−20/Jκ1遺伝子配列に由来する、項目13に記載の動物。
(項目15)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ1−39/Jκ5遺伝子配列に由来し、該Vκ1−39/Jκ5遺伝子配列が、105、106、108、111位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを含む、項目14に記載の動物。
(項目16)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ3−20/Jκ1遺伝子配列に由来し、該Vκ3−20/Jκ1遺伝子配列が、105、106、107、109位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを含む、項目14に記載の動物。
(項目17)
目的の抗原に応答するB細胞集団であって、中性pHと比較して、酸性pHにおける解離半減期(t
1/2)が少なくとも約2倍、少なくとも約3倍、少なくとも約倍、少なくとも約5倍、少なくとも約10倍、少なくとも約15倍、少なくとも約20倍、少なくとも約25倍、または少なくとも約30倍の短縮を示す抗体が富化されたB細胞集団を含む、項目1に記載の動物。
(項目18)
中性pHと比較して、酸性pHにおける解離半減期(t
1/2)の前記短縮が、約30倍以上の短縮である、項目17に記載の動物。
(項目19)
齧歯動物である、項目1に記載の動物。
(項目20)
ラットまたはマウスである、項目19に記載の齧歯動物。
(項目21)
マウスである、項目20に記載の齧歯動物。
(項目22)
前記免疫グロブリン軽鎖可変領域遺伝子配列内で置換された前記少なくとも1つのコドンによりコードされるアミノ酸位置において、少なくとも1つの非ヒスチジン残基のヒスチジンによる置換を有する、ヒト免疫グロブリン軽鎖可変ドメインを含む抗体を発現する、項目1に記載の動物。
(項目23)
ヒトV
Lセグメント配列およびヒトJ
Lセグメント配列を含む、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域遺伝子配列を含む、免疫グロブリン軽鎖遺伝子座をその生殖細胞系列内に含む遺伝子改変マウスであって、
該単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含み、
該マウスが、機能的な、再構成されていない免疫グロブリン軽鎖可変領域を欠く、
遺伝子改変マウス。
(項目24)
前記単一の、再構成された免疫グロブリン軽鎖可変領域遺伝子配列が、免疫グロブリン軽鎖定常領域遺伝子配列に作動可能に連結された、項目23に記載のマウス。
(項目25)
前記免疫グロブリン軽鎖定常領域遺伝子配列が、ラットまたはマウスの免疫グロブリン軽鎖定常領域遺伝子配列から選択される、項目24に記載のマウス。
(項目26)
免疫グロブリン重鎖定常領域遺伝子配列に作動可能に連結された、ヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントを含む、再構成されていない免疫グロブリン重鎖可変領域配列を含む、免疫グロブリン重鎖遺伝子座をその生殖細胞系列内にさらに含む、項目23に記載のマウス。
(項目27)
前記免疫グロブリン重鎖定常領域遺伝子配列が、ラットまたはマウスの重鎖定常領域遺伝子配列である、項目26に記載のマウス。
(項目28)
前記免疫グロブリン軽鎖遺伝子座が、内因性マウス免疫グロブリン軽鎖遺伝子座にある、項目23に記載のマウス。
(項目29)
前記免疫グロブリン重鎖遺伝子座が、内因性マウス免疫グロブリン重鎖遺伝子座にある、項目26に記載のマウス。
(項目30)
少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる前記置換が、相補性決定領域(CDR)3をコードするヌクレオチド配列内にある、項目23に記載のマウス。
(項目31)
前記置換が、1つ、2つ、3つ、または4つのCDR3コドンの置換である、項目30に記載のマウス。
(項目32)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、ヒトVκ1−39遺伝子セグメントまたはヒトVκ3−20遺伝子セグメントに由来する、項目23に記載のマウス。
(項目33)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ1−39/Jκ5遺伝子配列またはVκ3−20/Jκ1遺伝子配列に由来する、項目32に記載のマウス。
(項目34)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ1−39/Jκ5遺伝子配列に由来し、該Vκ1−39/Jκ5遺伝子配列が、105、106、108、111位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを含む、項目33に記載のマウス。
(項目35)
前記Vκ1−39/Jκ5遺伝子配列が、105、106、108、および111位においてヒスチジンを発現するようにデザインされた、非ヒスチジンコドンの置きかえを含む、項目34に記載のマウス。
(項目36)
前記Vκ1−39/Jκ5遺伝子配列が、106、108、および111位においてヒスチジンを発現するようにデザインされた、非ヒスチジンコドンの置きかえを含む、項目34に記載のマウス。
(項目37)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域が、再構成されたVκ3−20/Jκ1遺伝子配列に由来し、該Vκ3−20/Jκ1遺伝子配列が、105、106、107、109位、およびこれらの組合せから選択される位置においてヒスチジンを発現するようにデザインされた、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置きかえを含む、項目33に記載のマウス。
(項目38)
前記Vκ3−20/Jκ1遺伝子配列が、105、106、107、および109位においてヒスチジンを発現するようにデザインされた、非ヒスチジンコドンの置きかえを含む、項目37に記載のマウス。
(項目39)
前記Vκ3−20/Jκ1遺伝子配列が、105、106、および109位においてヒスチジンを発現するようにデザインされた、非ヒスチジンコドンの置きかえを含む、項目37に記載のマウス。
(項目40)
目的の抗原に応答する抗原特異的抗体の集団を発現し、全ての抗体が、
少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、同じ、単一の、再構成されたヒト軽鎖可変領域遺伝子配列に由来する免疫グロブリン軽鎖可変ドメインと、
ヒト重鎖Vセグメント、ヒト重鎖Dセグメント、およびヒト重鎖Jセグメントのレパートリーに由来するヒト重鎖可変ドメインを含む免疫グロブリン重鎖と
を含む、項目23に記載のマウス。
(項目41)
目的の抗原へのpH依存性結合を示す抗体を生成する方法であって、
項目23に記載のマウスを生成するステップと、
該マウスを目的の抗原で免疫するステップと、
中性pHでは、該目的の抗原に所望の親和性で結合するが、酸性pHでは、該目的の抗原への結合の低減を提示する抗体を選択するステップと
を含む方法。
(項目42)
前記抗体が、酸性pHおよび37℃で、約2分間以下の解離半減期(t
1/2)を示す、項目41に記載の方法。
(項目43)
目的の抗原へのpH依存性結合を示す抗体を生成する方法であって、
目的の抗原に所望の親和性で結合する第一の抗体を選択するステップと、
該第一の抗体の免疫グロブリン軽鎖ヌクレオチド配列を、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含むように改変するステップと、
該第一の抗体の免疫グロブリン重鎖および該改変された免疫グロブリン軽鎖を細胞内で発現させるステップと、
該細胞内で発現した第二の抗体であって、中性pHでは、該目的の抗原に対する所望の親和性を保持し、酸性pHでは、該目的の抗原への結合の低減を提示する第二の抗体を選択するステップと
を含む方法。
(項目44)
前記第一の抗体を、単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列に由来する免疫グロブリン軽鎖配列を含む非ヒト動物において生成し、該免疫グロブリン軽鎖の前記改変を、該単一の、再構成されたヒト免疫グロブリン可変領域配列内に施す、項目43に記載の方法。
(項目45)
第一の抗体を、ヒトV
Hセグメント、ヒトD
Hセグメント、およびヒトJ
Hセグメントのレパートリーに由来する免疫グロブリン重鎖配列をさらに含む非ヒト動物において生成する、項目44に記載の方法。
(項目46)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、Vκ1−39/Jκ5遺伝子配列およびVκ3−20/Jκ1遺伝子配列から選択される、項目43に記載の方法。
(項目47)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、Vκ1−39/Jκ5であり、前記第一の抗体の前記免疫グロブリン軽鎖ヌクレオチド配列内の前記改変を、105、106、108、111位、およびこれらの組合せから選択される位置でCDR3コドンにおいて施す、項目46に記載の方法。
(項目48)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、Vκ3−20/Jκ1であり、前記第一の抗体の前記免疫グロブリン軽鎖ヌクレオチド配列内の前記改変を、105、106、107、109位、およびこれらの組合せから選択される位置でCDR3コドンにおいて施す、項目46に記載の方法。
(項目49)
前記抗体が、中性pHと比較して、酸性pHにおける解離半減期(t
1/2)が少なくとも約2倍、少なくとも約3倍、少なくとも約4倍、少なくとも約5倍、少なくとも約10倍、少なくとも約15倍、少なくとも約20倍、少なくとも約25倍、または少なくとも約30倍の短縮を提示する、項目43に記載の方法。
(項目50)
前記抗体が、酸性pHおよび37℃で、約2分間以下の解離半減期(t
1/2)を示す、項目43に記載の方法。
(項目51)
前記非ヒト動物が、マウスである、項目44に記載の方法。
(項目52)
前記非ヒト動物が、マウスである、項目45に記載の方法。
(項目53)
遺伝子改変された免疫グロブリン軽鎖遺伝子座をその生殖細胞系列内に含む非ヒト動物を作製する方法であって、
非ヒト動物のゲノムを改変して、免疫グロブリン軽鎖遺伝子座内の、内因性免疫グロブリン軽鎖Vセグメントおよび軽鎖Jセグメントを欠失させるか、または非機能的にするステップと、
少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる置換を含む、単一の、再構成されたヒト軽鎖可変領域遺伝子配列を該ゲノムに配置するステップと
を含む方法。
(項目54)
目的の抗原へのpH依存性結合を示す抗体が富化されたB細胞集団を含む、遺伝子改変された非ヒト動物を結果としてもたらす、項目53に記載の方法。
(項目55)
前記動物が、齧歯動物である、項目53に記載の方法。
(項目56)
前記動物が、マウスまたはラットである、項目55に記載の方法。
(項目57)
前記単一の、再構成されたヒト免疫グロブリン軽鎖可変領域配列が、Vκ1−39/Jκ5遺伝子配列またはVκ3−20/Jκ1遺伝子配列に由来し、少なくとも1つの非ヒスチジンコドンのヒスチジンコドンによる前記置換が、CDR3コドンにおいてである、項目53に記載の方法。