特許第6186653号(P6186653)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アティエヴァ、インコーポレイテッドの特許一覧

特許6186653電気自動車において一定の走行距離を提供する方法
<>
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000002
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000003
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000004
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000005
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000006
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000007
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000008
  • 特許6186653-電気自動車において一定の走行距離を提供する方法 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6186653
(24)【登録日】2017年8月10日
(45)【発行日】2017年8月30日
(54)【発明の名称】電気自動車において一定の走行距離を提供する方法
(51)【国際特許分類】
   B60L 3/00 20060101AFI20170821BHJP
   B60L 11/18 20060101ALI20170821BHJP
   H02J 7/00 20060101ALI20170821BHJP
   H01M 10/44 20060101ALI20170821BHJP
   H01M 10/48 20060101ALI20170821BHJP
【FI】
   B60L3/00 S
   B60L11/18 C
   H02J7/00 P
   H02J7/00 X
   H01M10/44 A
   H01M10/44 101
   H01M10/48 P
   H01M10/48 301
【請求項の数】12
【外国語出願】
【全頁数】15
(21)【出願番号】特願2016-38366(P2016-38366)
(22)【出願日】2016年2月29日
(65)【公開番号】特開2016-208812(P2016-208812A)
(43)【公開日】2016年12月8日
【審査請求日】2016年4月1日
(31)【優先権主張番号】14/691,694
(32)【優先日】2015年4月21日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】515301041
【氏名又は名称】アティエヴァ、インコーポレイテッド
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】アルバート、リウ
【審査官】 橋本 敏行
(56)【参考文献】
【文献】 特開2011−138767(JP,A)
【文献】 特開2010−058640(JP,A)
【文献】 特開2015−042049(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 1/00− 3/12
7/00−13/00
15/00−15/42
H01M10/42−10/48
H02J 7/00− 7/12
7/34− 7/36
(57)【特許請求の範囲】
【請求項1】
電気自動車に複数年にわたって一定の走行距離を提供する方法であって、
前記電気自動車は、電気動力伝達装置に結合されるバッテリパックを備え、
前記バッテリパックは、前記複数年の開始時において初期バッテリパック容量を有し、前記複数年の終了時において最終バッテリパック容量を有し、前記最終バッテリパック容量は、前記初期バッテリパック容量未満であり、
前記方法は、
前記複数年の前記開始時に、事前設定された走行距離を設定する段階であって、前記事前設定された走行距離は前記初期バッテリパック容量に基づいて実現可能な走行距離のパーセンテージに対応し、前記パーセンテージは前記初期バッテリパック容量の100%未満であり、前記事前設定された走行距離は事前設定された複数の走行条件のセットに基づく、段階を備え、
前記複数年の間において各充電サイクルの前に、
現在のバッテリパック容量を決定する段階と、
前記現在のバッテリパック容量及び前記事前設定された走行距離に基づいて最適化された複数の充電パラメータのセットを決定する段階であって、前記最適化された複数の充電パラメータのセットは、前記電気自動車が、前記事前設定された複数の走行条件のセットの下で、前記事前設定された走行距離を実現可能であることを保証するために十分な電力を前記バッテリパックに供給しつつ、バッテリ寿命を最適化するように選択される、段階と、
前記最適化された複数の充電パラメータのセットに従って、前記バッテリパックを充電する段階と、
を含む、方法。
【請求項2】
前記初期バッテリパック容量は、初期バッテリパックエネルギー容量に対応し、前記最終バッテリパック容量は最終バッテリパックエネルギー容量に対応し、前記現在のバッテリパック容量は現在のバッテリパックエネルギー容量に対応する、請求項1に記載の方法。
【請求項3】
前記現在のバッテリパック容量を決定する前記段階は、自己診断キャリブレーション処理を実行する段階をさらに含み、前記現在のバッテリパック容量を決定する前記段階は、各充電サイクルの発生を監視する段階をさらに含み、前記自己診断キャリブレーション処理を実行する前記段階は、連続する自己診断キャリブレーション処理の間に完了した事前設定された充電サイクル数に基づいて、定期的に実行される、請求項1に記載の方法。
【請求項4】
前記バッテリパックを充電する前記段階は、(i)前記最適化された複数の充電パラメータのセットを決定する前記段階の完了直後に実行されるか、または、(ii)前記最適化された複数の充電パラメータのセットを決定する前記段階の完了後に遅延されるかのいずれかである、請求項1に記載の方法。
【請求項5】
前記現在のバッテリパック容量を決定する前記段階は、複数のバッテリパック特性のセットを監視する段階と、前記複数のバッテリパック特性のセットに基づいて、前記現在のバッテリパック容量を推定する段階と、をさらに含む、請求項1に記載の方法。
【請求項6】
前記事前設定された走行距離は、前記初期バッテリパック容量の80%未満であるか、または、前記初期バッテリパック容量の70%未満である、バッテリパック容量に対応する、請求項1に記載の方法。
【請求項7】
前記複数年は、少なくとも5年間、または少なくとも8年間、または少なくとも10年間に対応する、請求項1に記載の方法。
【請求項8】
前記方法は、前記複数年の間において各充電サイクルの前に、現在のバッテリパック温度及び現在の周囲温度を決定する段階をさらに備え、前記最適化された複数の充電パラメータのセットを決定する前記段階は、前記現在のバッテリパック容量、前記事前設定された走行距離、前記現在のバッテリパック温度及び前記現在の周囲温度に基づいて、前記最適化された複数の充電パラメータのセットを決定する段階をさらに含む、請求項1から7のいずれか1項に記載の方法。
【請求項9】
前記方法は、前記複数年の間において各充電サイクルの前に、現在の自動車高度を決定する段階をさらに備え、前記最適化された複数の充電パラメータのセットを決定する前記段階は、前記現在のバッテリパック容量、前記事前設定された走行距離及び前記現在の自動車高度に基づいて、前記最適化された複数の充電パラメータのセットを決定する段階をさらに含む、請求項1から7のいずれか1項に記載の方法。
【請求項10】
前記方法は、前記複数年の間において各充電サイクルの前に、現在のバッテリパック温度及び現在の周囲温度及び現在の自動車高度を決定する段階をさらに備え、前記最適化された複数の充電パラメータのセットを決定する前記段階は、前記現在のバッテリパック容量、前記事前設定された走行距離、前記現在のバッテリパック温度、前記現在の周囲温度及び前記現在の自動車高度に基づいて、前記最適化された複数の充電パラメータのセットを決定する段階をさらに含む、請求項1から7のいずれか1項に記載の方法。
【請求項11】
前記最適化された複数の充電パラメータのセットを決定する前記段階は、前記電気自動車が、前記事前設定された複数の走行条件のセットの下で、前記事前設定された走行距離を実現可能であることを保証するために十分な電力を前記バッテリパックに供給しつつ、前記充電する段階の間にバッテリパック充電状態(SOC)を最小化するように、前記最適化された複数の充電パラメータのセットを選択する段階をさらに含む、請求項1から7のいずれか1項に記載の方法。
【請求項12】
前記現在のバッテリパック容量を決定する前記段階及び前記最適化された複数の充電パラメータのセットを決定する前記段階は、前記バッテリパックが充電電源に電気的に接続される場合、毎日事前設定された時刻、及び前記電気自動車が事前設定された場所に位置する場合の少なくとも1つの場合に実行される、請求項1から7のいずれか1項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、電気自動車に関し、より詳細には、電気自動車において一定の走行距離を実現するシステム及び方法に関する。
【背景技術】
【0002】
燃料価格のかつてない高騰及び地球温暖化の切迫した影響の両方に駆り立てられた消費者の要求に応じて、自動車産業は、超低排出かつ高効率な自動車の必要性を、徐々に受け入れ始めている。産業内では、より効率的な内燃エンジンの開発によってこれらの目標を実現しようとするいくつかの試みがあるが、他方では、ハイブリッドまたは全電気動力伝達装置をこれらの自動車ラインナップに組み込んでいる。しかしながら、消費者の期待に応えるためには、自動車産業は、より環境に優しい動力伝達装置を実現するのみならず、合理的なレベルの性能、走行距離、信頼性、安全及びコストを維持しつつ、これを実現しなければならない。
【0003】
低排出かつ高効率な自動車を実現するために最も一般的なアプローチは、内燃エンジン(ICE)が1つまたは複数の電気モータと組み合わせられたハイブリッド動力伝達装置を利用することである。ハイブリッド自動車は、従来のICEベースの自動車より燃費効率を向上させ、より低排出な自動車を実現するが、従来の自動車と比べて低減されたレベルではあるものの、これらが内燃エンジンを含むことによって、依然として有害な汚染物質を排出している。さらに、内燃エンジン及びバッテリパック付きの電気モータの両方を含むことによって、ハイブリッド自動車の動力伝達装置は、典型的には、従来のICEベースの自動車または全電気自動車と比べ、より一層複雑であり、その結果、コスト及び重量の増加をもたらしている。従って、いくつかの自動車製造業者は、電気モータのみ、すなわち複数の電気モータを用いる自動車を設計しており、これにより、動力伝達装置の複雑性を大幅に低減させつつ、一汚染源を排除している。
【0004】
電気自動車において用いられる電気動力伝達装置は、信頼性が高く、並外れた性能の提供を可能とすることを明らかにしている。残念ながら、電気自動車の販売台数は、特に、これらの自動車の性能及び信頼性を考えると、人々の予想を下回ることが明らかとなっている。これらの販売台数低迷は、電気自動車が新しい場合には走行距離が限定的であること、及び、車が古くなるにつれて走行距離が減少することに関する、多くの潜在的購入者の懸念に少なくとも部分的に起因しているようである。これらの懸念は、典型的な車の所有者/購入者が聞いたことがあったとしても典型的には十分に理解していない(図1に示される)バッテリ寿命と充電速度との間、及び(図2に示される)保管時に維持されるバッテリ寿命と充電レベルとの間の比較的複雑な関係によって、さらに悪化することがある。充電速度及び充電状態(SOC)がバッテリ寿命に与える影響を十分に理解していない結果として、運転手が充電パラメータを設定可能な自動車であったとしても、典型的な車の所有者は、これらのパラメータの最適化を困難に感じてしまう。従って、必要とされるものは、所与の自動車寿命にわたって比較的一定の走行距離をユーザに提供し、そこで、車が古くなるにつれて距離が減少することに関連する不安を排除するシステム、及び、この走行距離を維持すべく、ユーザが充電パラメータを設定及び/または監視する必要のないシステムである。本発明は、このようなシステムを提供する。
【発明の概要】
【0005】
本発明は、電気自動車に複数年にわたって一定の走行距離を提供する方法を提供し、ここで、自動車の電気動力伝達装置に結合されたバッテリパックは、複数年の開始時において初期バッテリパック容量を有し、複数年の終了時において最終バッテリパック容量を有し、最終バッテリパック容量は、初期バッテリパック容量未満であり、方法は、複数年の開始時において事前設定された走行距離を設定する段階を含み、事前設定された走行距離は、初期バッテリパック容量で実現可能な走行距離のパーセンテージに対応し、事前設定された走行距離は、事前設定された複数の走行条件のセットに基づく。各充電サイクルの前に、方法は、(i)現在のバッテリパック容量を決定する段階と、(ii)現在のバッテリパック容量及び事前設定された走行距離に基づいて最適化された複数の充電パラメータのセットを決定する段階と、を含み、最適化された複数の充電パラメータのセットは、事前設定された複数の走行条件のセットの下で事前設定された走行距離を確電気自動車が実現可能であることを確実にすべく、バッテリパックを十分に充電しつつ、バッテリ寿命を最適化するように選択される。方法は、最適化された複数の充電パラメータのセットに従って、バッテリパックを充電する段階をさらに含む。
【0006】
一態様において、初期バッテリパック容量は、初期バッテリパックエネルギー容量に対応してもよく、最終バッテリパック容量は、最終バッテリパックエネルギー容量に対応してもよく、現在のバッテリパック容量は、現在のバッテリパックエネルギー容量に対応してもよい。
【0007】
他の態様において、各充電サイクルの前に、方法は、(i)現在のバッテリパック温度を決定する段階と、(ii)現在の周囲温度を決定する段階と、(iii)現在のバッテリパック容量、事前設定された走行距離、現在のバッテリパック温度及び現在の周囲温度に基づいて、最適化された複数の充電パラメータのセットを決定する段階と、を含んでもよい。
【0008】
他の態様において、各充電サイクルの前に、方法は、(i)現在の自動車高度を決定する段階と、(ii)現在のバッテリパック容量、事前設定された走行距離及び自動車高度に基づいて、最適化された複数の充電パラメータのセットを決定する段階と、を含んでもよい。
【0009】
他の態様において、各充電サイクルの前に、方法は、(i)現在のバッテリパック温度を決定する段階と、(ii)現在の周囲温度を決定する段階と、(iii)現在の自動車高度を決定する段階と、(iii)現在のバッテリパック容量、事前設定された走行距離、現在のバッテリパック温度、現在の周囲温度及び自動車高度に基づいて、最適化された複数の充電パラメータのセットを決定する段階と、を含んでもよい。
【0010】
他の態様において、最適化された複数の充電パラメータのセットを決定する段階は、電気自動車が、事前設定された複数の走行条件のセットの下で、事前設定された走行距離を実現可能であることを保証するために十分な電力をバッテリパックに供給しつつ、充電する段階の間、バッテリパック充電状態(SOC)を最小化すべく、最適化された複数の充電パラメータのセットを選択する段階をさらに含んでもよい。
【0011】
他の態様において、バッテリパックを充電する段階は、最適化された複数の充電パラメータのセットを決定する段階の完了直後に実行されてもよく、または、バッテリパックを充電する段階は、最適化された複数の充電パラメータのセットを決定する段階の完了後に遅延されてもよい。
【0012】
他の態様において、現在のバッテリパック容量を決定する段階及び最適化された複数の充電パラメータのセットを決定する段階は、バッテリパックが充電電源に電気的に接続される場合に実行されてもよく、または、毎日事前設定された時刻に実行されてもよく、または、電気自動車が事前設定された場所に位置する場合に実行されてもよい。
【0013】
他の態様において、現在のバッテリパック容量を決定する段階は、自己診断キャリブレーション処理を実行する段階を含んでもよい。自己診断キャリブレーション処理は、連続する自己診断キャリブレーション処理の間に、事前設定された充電サイクル数の完了に基づいて、定期的に実行されてもよい。
【0014】
他の態様において、現在のバッテリパック容量を決定する段階は、複数のバッテリパック特性のセットを監視する段階と、複数のバッテリパック特性のセットに基づいて、現在のバッテリパック容量を推定する段階とを含んでもよい。
【0015】
他の態様において、事前設定された走行距離は、初期バッテリパック容量の80%未満のバッテリ容量に、または、初期バッテリパック容量の70%未満に対応するように設定されてもよい。
【0016】
他の態様において、複数年は、少なくとも5年間に、または、少なくとも8年間に、または、少なくとも10年間に対応するように設定されてもよい。
【0017】
本発明の本質及び利点のさらなる理解は、本明細書及び図面の残りの部分を参照することによって実現され得る。
【図面の簡単な説明】
【0018】
添付された複数の図は、例示のみを意味し、本発明の範囲を限定するものではなく、縮尺通りであると考えてはならないことを理解すべきである。さらに、異なる図に付された同じ参照符号は、同じコンポーネントまたは同様の機能を有するコンポーネントを指すことを理解されたい。
【0019】
図1】充電速度とバッテリ寿命との間の関係を示す。
【0020】
図2】様々な充電レベルでバッテリを保管することがバッテリ寿命に与える影響を示す。
【0021】
図3】本発明の少なくとも1つの実施形態において用いられる複数の主なEVシステムのシステムレベルの図を提供する。
【0022】
図4】本発明の基本的方法論を示す。
【0023】
図5図4に示される方法論の変更例を示す。
【0024】
図6図5に示される方法論の変更例を示す。
【0025】
図7】従来のシステムにおけるバッテリパック容量と走行距離との間の関係を示す。
【0026】
図8】本発明に従って用いられる例示的なシステムにおけるバッテリパック容量と走行距離との間の関係を示す。
【発明を実施するための形態】
【0027】
本明細書において用いられるように、単数形「a」、「an」及び「the」は、そうではないことを文脈が明確に示さない限り、複数形をも含むことが意図される。「備える(comprises)」、「備える(comprising)」、「含む(includes)」及び/または「含む(including)」という用語は、本明細書において用いられるように、記載された特徴、処理段階、動作、要素及び/またはコンポーネントの存在を規定するが、1つまたは複数の他の特徴、処理段階、動作、要素、コンポーネント、及び/またはこれらのグループの存在または付加を除外するものではない。本明細書において用いられるように、「及び/または」という用語及び「/」という記号は、関連付けられて列挙された事項の1つまたは複数の任意の及び全ての組み合わせを含むことが意味される。さらに、第1、第2等の用語は、本明細書において、様々な段階、計算またはコンポーネントを説明するために使用可能であるが、これらの段階、計算またはコンポーネントは、これらの用語によって限定されてはならず、むしろ、これらの用語は、1つの段階、計算またはコンポーネントを他から区別するためにのみ用いられる。例えば、本開示の範囲から逸脱することなく、第1の計算は、第2の計算と称されてもよく、同様に、第1の段階は、第2の段階と称されてもよく、同様に、第1のコンポーネントは、第2のコンポーネントと称されてもよい。
【0028】
以下の説明において、「バッテリ」、「セル」及び「バッテリセル」という用語は、互換的に用いられてもよく、様々な異なるバッテリ構成及び化学的性質のいずれかを指してもよい。バッテリの典型的な化学的性質は、限定されるものではないが、リチウムイオン、リチウムイオンポリマ、ニッケル金属水素化物、ニッケルカドミウム、ニッケル水素、ニッケル亜鉛及び銀亜鉛を含む。本明細書において用いられる「バッテリパック」という用語は、望ましい電圧及び容量を実現すべく、電気的に相互接続される1つまたは複数のバッテリのアセンブリを指し、バッテリアセンブリは、典型的には、収容器内に含まれる。「電気自動車」及び「EV」という用語は、互換的に用いられてもよい。
【0029】
再充電可能バッテリの性能は、経時的に低下することが周知であり、ここで、性能は、典型的には、容量(Ah)またはエネルギー容量(kWh)のいずれかの単位で示される。この老朽化の影響に寄与する多数の要因があるが、これらの要因は概して、化学的性質、形状的要素、使用状況及び環境の4つのグループに分類されてもよい。バッテリの化学的性質(例えば、ニッケル金属水素化物対リチウムイオン対リチウムイオンポリマ等)及びバッテリの形状的要素(例えば、角柱対円筒等)は、予想されるバッテリの性能を決定し、ここで、性能は、概して、電力密度、充電特性、サイクル寿命、公称セル電圧、過充電許容値、セル電圧、負荷電流、自己放電速度、及び動作温度範囲の単位で与えられる。バッテリの使用状況は、バッテリの年数、充電/放電サイクル数、1サイクル当たりの放電深さ、充電サイクル当たりの充電レベル(すなわち、容量のパーセンテージ)、及び充電サイクル毎に用いられる充電速度/充電電圧を考慮する。環境条件は、保管温度、使用時の温度、及び充電時の温度を含む。
【0030】
再充電可能バッテリを用いる典型的なシステムにおいて、システムが無線電力ツールであるかEVであるかに関わらず、バッテリの経年劣化は、公知であり、予想されることの両方である。バッテリ劣化の影響は、バッテリ劣化が複数の充電サイクル間の使用時間の減少をもたらすだけの無線電力ツールのような多くの用途においては軽微なこともあるが、EVにおける影響は、バッテリ劣化の結果が走行距離の減少を招くため、かなり重大となる。従って、新しい場合にはユーザの典型的な毎日の通勤に適した走行距離を生むEVは、わずか数年間使用した後は、全く適さないことが明らかになることがある。典型的なEV購入者が、バッテリの老朽化がEVの走行距離に与える影響を十分に理解していない可能性があり、放電深度、充電レベル、充電速度。温度等がバッテリ劣化に与える影響を殆ど理解していないとすると、EV所有者は、自身のEVの性能に混乱し、失望し、徐々に不満を持つようになることが、かなり一般的である。次に、この不満は、悪評と、新規販売台数及び反復購入者の両方に関する販売台数減少とをもたらす。これらの問題を克服すべく、本発明は、新しい場合には所与の走行距離を生み、少なくとも自動車の公称平均寿命にわたっては経年劣化しないEVをユーザに提供し、ここで、公称平均寿命は、主に市場に応じて、典型的には、5、8、または10年で設定される。結果として、EV所有者は、自身のEVが、車が古くなっても自身のニーズを満たし続けるか否かについて、または、どのようにバッテリ充電を最適化するかについて、もはや懸念しなくてもよい。
【0031】
図3は、本発明に従って用いられるEV300及び走行距離制御システムにおいて用いられる主システムの高レベルの図である。図3に示されるシステム構成は、1つの可能な構成であるが、他の複数の構成が、本発明の機能を維持しながら利用可能であることが理解されるべきである。さらに、図3に示される複数の要素の1つまたは複数は、単一のデバイス及び/または回路基板及び/または集積回路において、共にグループ化されてもよい。
【0032】
自動車300は、自動車システムコントローラ301を含み、これは、本明細書において自動車管理システムとも称され、中央処理装置(CPU)を備える。システムコントローラ301は、メモリ303をさらに含み、メモリ303は、EPROM、EEPROM、フラッシュメモリ、RAM、ソリッドステートドライブ、ハードディスクドライブ、または任意の他のタイプのメモリもしくは複数のメモリタイプの組み合わせを含む。ユーザインタフェース305は、自動車管理システム301に結合される。インタフェース305は、運転手または乗客が、自動車管理システムと情報を送受信すること、例えば、ナビゲーションシステムへのデータ入力、暖房、換気及び空調(HVAC)システムの変更、自動車の娯楽システム(例えば、ラジオ、CD/DVDプレイヤ等)の制御、自動車設定(例えば、シート位置、照明制御等)の調整、及び/または自動車300の機能の変更を行うことを可能にする。少なくともいくつかの実施形態において、インタフェース305は、運転手及び/または乗客に情報を提供する自動車管理システムの手段をさらに含み、情報は、ナビゲーションマップまたは複数の運転指示、及び様々な自動車システム(例えば、バッテリパック充電レベル、選択されたギア、音量レベル及び選択曲情報のような娯楽システムの現在の設定、外部照明設定、現在の自動車速度、車内温度及び/またはファン設定等のような現在のHVAC設定)のいずれかの動作性能などである。インタフェース305は、運転手に自動車の状態(例えば、低バッテリ充電レベル)を警告及び/または動作システム機能不良(バッテリシステムが適切に充電しない、充電ケーブルが適切に接続されない、低タイヤ空気圧、照明の機能不良等)を伝達するためにさらに用いられてもよい。インタフェース305は、単一のインタフェース、例えば、タッチスクリーンディスプレイ、またはプッシュボタンスイッチ、容量性スイッチ、スライドもしくはトグルスイッチ、ゲージ、ディスプレイスクリーン、可視及び/または可聴警告インジケータ等のような複数のユーザインタフェースの組み合わせを備えてもよい。ユーザインタフェース305は、グラフィックディスプレイを含み、コントローラ301は、グラフィック処理装置(GPU)をさらに含んでもよく、GPUは、CPUと別個のもの、または、CPUと同じチップセットに含まれるもののいずれかであることが理解されよう。
【0033】
自動車300は、1つまたは複数のモータを備える推進源307を含む。自動車の推進源307は、前車軸/車輪、後車軸/車輪、またはその両方に機械的に結合されてもよく、様々な変速機タイプ(例えば、単一速度、多段速度)及びディファレンシャルタイプ(例えば、オープン、ロック、リミテッドスリップ)のいずれかを用いてもよい。
【0034】
エネルギーは、バッテリパック309によって源307内のモータに供給される。バッテリパック309は、1つ、数百または数千の再充電可能バッテリを備えてもよく、好ましくは、電力を必要とする様々な自動車システム(例えば、照明、娯楽システム、ナビゲーションシステム等)に必要なエネルギーを供給するためにさらに用いられる。典型的には、バッテリパック309は、駆動モータに供給されるエネルギーが適切な形式(例えば、正しい電圧、電流、波形等)であることを確実にする電力制御システム311(すなわち、インバータ及びモータコントローラ)を介して、モータ307に結合される。
【0035】
バッテリパック309は、充電システム313によって充電される。好ましくは、充電システム313は、図示されるように、自動車300に組み込まれるが、外部充電システムが、自動車300にさらに用いられてもよい。充電システム313は、地域の電力グリッドのような外部電源315に、典型的には、電力コード317を用いることによって、電気的に接続されるように構成される。少なくとも一構成において、充電システム313は、例えば、その上に自動車300が駐車する誘導充電パッドを用いて、外部電源315に無線接続される。バッテリパック309は、少なくとも部分的に、再生ブレーキシステムのようなオンボード充電システムを用いてさらに充電されてもよい。
【0036】
自動車300は、暖房サブシステム321及び冷却サブシステム323の両方を含む温度管理システム319を含む。温度管理システム319は、乗客キャビン325を望ましい温度範囲内に維持し、バッテリパック309内の複数のバッテリを複数のバッテリの望ましい動作、充電及び/または保管温度範囲内に確実に維持するために用いられてもよい。システム319がバッテリパック309の温度を制御するために用いられる場合、システムは、バッテリパック全体において暖気または冷気を循環させる暖気または冷気を用いてもよく、または、冷媒循環システムがバッテリパックに熱的に結合され、冷媒が、必要に応じてヒータ321によって加熱または冷房323によって冷却される。
【0037】
自動車システムコントローラ301は、詳細に後述されるように、バッテリパック309の複数の充電パラメータを設定すべく得られたデータを用いて、様々な他の状態及びサブシステムをさらに監視してもよい。例えば、システムは、バッテリパックがクロック/カレンダサブシステム327に用いられる時間長を監視し、これにより、コントローラが、システムの年数に基づいて複数のバッテリ状態を調節することを可能にする。クロック/カレンダサブシステム327は、別個のサブシステムとして示されるが、典型的には、この機能は、システムコントローラ301に組み込まれることが理解されよう。システムは、様々な温度センサ329にさらに結合される。少なくとも、複数のセンサ329は、バッテリ温度を監視し、ここで、バッテリ温度は、個々に監視されたバッテリ温度に基づいてもよく、バッテリパック内の複数のバッテリに対応する平均温度に基づいてもよい。バッテリ温度は、個々のバッテリレベルで監視されてもよく、または、バッテリ温度は、複数のバッテリのグループ、例えば、パック内に搭載された互いに近接する複数のバッテリ毎に監視されてもよく、または、バッテリ温度は、バッテリパック温度を制御すべく、温度管理システム319によって用いられる熱移動流体(例えば、冷媒)の温度に基づいてもよく、または、バッテリ温度は、バッテリパックを排出させる空気温度に基づいてもよい。他の複数の技術が、バッテリ/バッテリパック温度を監視するために用いられてもよく、本発明は、具体的な技術に限定されるものではないことを理解すべきである。
【0038】
典型的な自動車構成において、自動車管理システム301に結合されるのは、通信リンク331である。通信リンク331は、外部データソース(例えば、製造業者、ディーラ、サービスセンタ、ウェブベースアプリケーション、リモートホームベースシステム、第三者ソース等)から、複数の構成のアップデートを無線で取得するために、または、外部データベース333、例えば、車の製造業者もしくは他の第三者によって維持されるデータベースにアクセスするために用いられてもよい。通信リンク331は、システムコントローラ101と、ユーザデバイスまたはシステム335、例えば、ユーザのスマートフォン、タブレット、パーソナルデジタルアシスタント(PDA)、ホームコンピュータ、ワークコンピュータ、ネットワークベースのコンピューティングシステム等との間に通信リンクを提供するためにさらに用いられてもよい。リンク331は、様々な異なる技術(例えば、GSM(登録商標)、EDGE、UMTS、CDMA、DECT、WiFi、WiMAX等)のいずれかを用いてもよい。
【0039】
いくつかの実施形態において、通信リンク331は、USB、サンダーボルト、または他のポートのようなオンボードポート337をさらに含んでもよい。ポート337は、システムコントローラ301とユーザデバイスまたはシステム339(例えば、スマートフォン、タブレット、パーソナルデジタルアシスタント(PDA)、ホームコンピュータ、ワークコンピュータ、ネットワークベースのコンピューティングシステム等)との間で、有線の通信リンクを介した通信を可能にする。
【0040】
典型的には、自動車300は、グローバルポジショニングシステム(GPS)341をさらに含み、これにより、自動車の位置決定を可能にする。GPS341は、スタンドアロンシステムであってもよく、好ましくは、ナビゲーションシステム343に組み込まれてもよい。自動車システムコントローラ301は、海水位に対する車の高度及び高度の複数の変化を監視する1つまたは複数の高度センサ345にさらに結合されてもよい。
【0041】
図4は、本発明の基本的方法論を示す。第1の段階は、システム開始(段階401)である。少なくとも1つの実施形態において、システム開始は、充電システム313が電力源315に差し込まれた場合に生じる。本発明の処理は、また、例えば車の走行中はいつでもバックグラウンドで生じるように設定されてもよく、これによって、システムが充電源315に差し込まれた場合に、充電パラメータが既に決定されているようにする。少なくとも1つの実施形態において、処理は、事前設定された時刻、例えば、システムコントローラが毎日のメンテナンスルーチン(例えば、通信リンク331を用いたソフトウェアアップデートのチェック)を実行する場合に、開始される。処理はまた、GPS341によって決定される、ユーザの住宅のような事前設定された場所に、車が位置する場合に開始されてもよい。
【0042】
一度処理が開始されると(段階401)、システムは、好ましくはメモリ303に格納された、事前設定された走行距離を検索する(段階403)。事前設定された走行距離は、バッテリパック309が新しい場合に、自動車が実現可能なものより小さい値であって、潜在的には、これより大幅に小さい値に設定される。例えば、事前設定された走行距離は、バッテリパック309が新しい場合にその容量の90%、80%、70%またはそれより小さい値に基づいてもよい。
【0043】
処理の次の段階は、バッテリパックの現在の容量を考慮して、複数の適切な充電パラメータを決定する(段階405)。複数の充電パラメータは、典型的には、事前設定された走行距離を提供するために十分な充電状態(SOC)をなおも保証しつつ、充電電圧を最小化することによって、バッテリ寿命を最適化すべく選択される。一度複数の適切な充電パラメータが決定されると(段階405)、バッテリパック309は、これらの充電パラメータに従って充電される(段階407)。典型的には、充電は直ちに実行されるが、少なくとも1つの実施形態において、充電は遅延され、例えば、EVの主要充電ステーション(例えば、住宅)にEVが駐車する次の時まで遅延される。
【0044】
段階405において、複数の適切な充電パラメータを決定すべく、システムは、第1に、バッテリパック309の現在の容量を決定しなければならない(段階409)。一実施形態において、バッテリパックは、自己診断キャリブレーション処理を用いて定期的に診断される(段階411)。自己診断は様々な態様で実行可能であるが、一構成では、車が充電源に差し込まれた場合であって、その車が診断処理の完了を可能にするための十分な時間を要求されないと決定した後に、システムは自己診断モードに入る。システムコントローラ301は、例えば、インタフェース305を用いて、診断を実行するために適切な時間(例えば、夜間)を決定すべく、運転手に質問をしてもよい。好ましくは、自己診断は、スケジュールに従って、例えば、所与の期間毎に一度(例えば、月に一度)または所与の充電サイクル数毎に一度(例えば、45充電サイクル毎に一度)、実行される。自己診断は、様々な態様で、例えば、バッテリパックを十分に充電し、次に事前設定されたレベルまで(典型的には、「低バッテリ」レベルまで)パックを放電し、次にバッテリパックを再充電しつつ、バッテリ性能を監視することによって、実行されてもよい。
【0045】
他の実施形態において、バッテリパックの現在の容量は、パックの日常的な使用状況を監視し、次に、監視された使用状況に基づいてバッテリパック容量を推定することで決定される(段階413)。好ましくは、1サイクル当たりの放電深さ、これまでの充電/放電サイクル数、バッテリパックの年数、1サイクル当たりの充電レベル/電圧、使用時の温度、及び保管温度は、全て監視され、現在の複数の性能を推定するために用いられる。本構成において、メモリ303内に保管されるのは、好ましくは様々な条件下におけるバッテリパック309についてのバッテリパック容量のマトリクスであり、これにより、コントローラ301は、これまでの使用状況に基づいて、現在の容量を決定することが可能となる。
【0046】
さらに他の実施形態において、段階413に関して上述されたように、バッテリパックの日常的な使用状況を監視することに加えて、バッテリパックは、例えば上述されたように、自己診断処理を用いて定期的にキャリブレーションされる(段階415)。定期的なキャリブレーションにより、システムコントローラ301は、監視されたバッテリの使用状況に基づく推定処理に定期的な複数の訂正を加えることが可能となり、これにより、自己キャリブレーションの必要性を最小化しつつ、バッテリパックの現在の容量のより正確な表現を実現する。
【0047】
上述されたように、段階405の間、システムは、典型的には、事前設定された走行距離を実現するために十分な電力をなおも供給しつつ、バッテリパックを充電可能な最も低いSOCレベルといった最適な充電レベルを決定する。従って、車の公称寿命(例えば、自動車の保証期間)にわたって、バッテリが古くなりその性能が低下するにつれ、システムは、車が新しかった場合と同じ走行距離を維持すべく、複数の充電パラメータを自動的に変更する。これは、バッテリパックの容量が低下する理由(例えば、単純な老朽化、高温及び高SOCでの保管、反復的な急速充電、充電前における高放電深度までの反復的な使用等)に関わらず、あてはまる。
【0048】
上述された処理の変更例において、図5に示されるように、システムは、現在のバッテリ温度(段階501)及び現在の周囲温度(段階503)を、さらに監視する。次に、段階405の間、これらの温度は、複数の適切な充電パラメータ(例えば、最適な充電レベル)を決定する場合に、現在のバッテリパック性能及び事前設定された走行距離に加えて考慮される。
【0049】
上述された処理のさらに他の変更例において、図6に示されるように、システムは、自動車高度をさらに監視する(段階601)。次に、段階405の間に複数の適切な充電パラメータを決定する場合、自動車高度は、現在のバッテリパック容量及び事前設定された走行距離と併せて考慮される。本構成において、図示されるように、好ましくは、段階501/503において決定される複数の温度も考慮される。
【0050】
事前設定された走行距離と、当該走行距離が車の所与の平均寿命(例えば、保証期間)にわたって一定であることを保証すべく、複数の充電パラメータを設定するためのシステムの複数の性能とは、「標準的な」運転とみなされる事前設定された複数の条件のセットの下で、車が運転されることを前提とすることを理解すべきである。好ましくは、事前設定された複数の条件のセットは、電気自動車の効率を評価するために、EPA(環境保護庁)または同様の官庁によって用いられるものである。従って、従来のICEベースの自動車の燃費が複数の想定及び複数の条件のセットに基づくこと、及び、ユーザの実際の効率が自身の車の運転の仕方に応じて変化し得ることと同様に、運転手が本発明を利用して事前設定された走行距離を実現するか超過するかは、複数の走行条件がどれだけ厳密に診断による複数の想定及び複数の条件を反映するかに依存する。
【0051】
図7および8は、従来のシステムにおいて用いられるバッテリパック(図7)及び本発明に従って動作されるバッテリパック(図8)の、バッテリパック性能と寿命との間の複数の関係を示し、これにより、本発明の複数の利点及び複数の利益を示す。これらの図に示されるデータは、所与の複数のパラメータに対する一般的な複数の性能傾向の例示的なものであり、実験を通して得られる実際のデータを表すものと解釈されてはならない。
【0052】
図7において、列701は、特定のEVのバッテリパックについて、最初の8年間の使用におけるバッテリパック容量を表し、ここで、容量は、新しい場合のバッテリパックの容量(Ah)または新しい場合のエネルギー容量(kWh)のパーセンテージ単位で与えられる。この例の場合、バッテリパックが新しい場合、自動車の走行距離は200マイルである。列701に示される性能の比較的急速な降下は、バッテリの不適切な使用によってもたらされる。バッテリの不適切な使用は、反復される深い放電、高充電速度または放電速度、高SOC及び高温でのバッテリ保管等のような様々な条件の結果、もたらされることがあるが、この特定の例の場合、バッテリの不適切な使用は、バッテリパックを充電サイクル毎に100%SOCまで充電した結果と想定される。この充電事象の複数の影響は、バッテリパック容量(列701)において、及び同様に、対応する走行距離(列703)において示されるように、バッテリパック性能の急速な低下である。列705および707は、バッテリパックが充電サイクル毎により低SOCまで充電される場合、具体的には、充電サイクル毎に94%SOCまで充電する場合に、同じ関係を表す。つまり、バッテリパックが新しく、容量の94%のみ充電される場合、188マイルの走行距離(すなわち、100%SOCまで充電することによって示されるものから、6%の低下)を生むことが可能である。しかしながら、あまり活発でない充電事象によって、バッテリ寿命及び性能は、この例の8年間にわたって向上する。従って、第2の例において用いられる充電事象が最初に走行距離の減少をもたらすにも関わらず、比較的短い時間(例えば、3年以内)にわたって、第2の例のEVの走行距離は、第1の例のEVを上回る。
【0053】
例えば、使用サイクル毎の放電深度、充電サイクル毎の充電電圧、動作及び保管温度等を慎重に管理することによって、バッテリの経年劣化を最小化するEVにおいて用いられるバッテリシステムを設計することが可能であるが、バッテリパックはなおも経年劣化し、これによって走行距離の低下もたらす。しかしながら、本発明は、走行距離をより低い値に事前設定することによってこの劣化を認識できないようにし、これは、バッテリパックが新しい場合、最初に可能である。図8において、前述の例において用いられたものと同じバッテリパックの走行距離は、140マイルに事前設定される(列801)。従って、バッテリパックが新しく、フル容量で200マイルの走行距離を生みだすことが可能である場合、システムは、容量の70%のみ充電する(列803参照)。パックを複数の前述の例よりもかなり低いレベルまで充電した結果、バッテリ寿命は大幅に増加する。バッテリ寿命は、より低SOCに充電することによって延長され得るが、バッテリパックの容量減少(列805)に示されるように、バッテリ劣化がなおも生じる。しかしながら、問題となっている8年のEV寿命全体を通して、事前設定された走行距離は減少することはない。さらに、寿命終了時において、本発明を利用するEVシステムは、従来のアプローチにおいて実現されたものより大きい走行距離を、実際に生み出している。従って、自動車の所有者は、走行距離の減少によって失望することも、適切な充電習慣に関連する質問によって混乱することもない。所有者が限定的な期間、例えば、国内横断移動の間、急速充電サイクルを反復的に用いることによって、自身の自動車のバッテリを不適切に使用し、これにより、バッテリの容量に影響を与えたとしても、本発明のシステムは、同じ事前設定された走行距離を保証すべく、複数の充電パラメータを適切に変更するだけであることが理解されよう。
【0054】
複数のシステムおよび複数の方法が、本発明の複数の詳細の理解を助けるものとして、一般的な複数の用語で説明されている。いくつかの例において、周知の複数の構造、複数の材料、及び/または複数の動作は、本発明の複数の態様を不明瞭にすることを回避するべく、具体的に示されておらず、詳細に説明されてもいない。他の複数の例において、本発明の十分な理解をもたらすべく、具体的な複数の詳細が与えられている。当業者であれば、本発明が、例えば、特定のシステム、または装置、または状況、または材料、またはコンポーネントに適応するべく、これらの趣旨または本質的な複数の特性から逸脱することなく、他の具体的な複数の形で具現化され得ることを、認識するであろう。従って、本開示および本明細書における複数の説明は、本発明の範囲の例示であることを意図しており、これを限定するものではない。
図1
図2
図3
図4
図5
図6
図7
図8