【文献】
熊谷友良 他,セルソータの液滴荷電遅延時間設定の簡易化,静電気学会講演論文集,日本,1993年 9月29日,1993年,p215 - p216
(58)【調査した分野】(Int.Cl.,DB名)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する請求項1〜6のいずれか一項に記載の粒子分取装置。
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する請求項8〜12のいずれか一項に記載の粒子分取方法。
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の粒子分取装置では、一般に、光検出部での検出時間から一定時間後に回収対象の粒子の取得動作を行うよう制御されている。そして、検出から取得までの時間は、液圧や検出位置から分取位置までの距離などに基づいて、予め設定されている。しかしながら、このように到達時間を固定した制御方法は、粒子の通流速度が変動すると、回収物の純度や取得率が低下するという問題がある。
【0007】
一方、特許文献1に記載の装置では、粒子の通流速度の変動による純度低下を防止するため、粒子毎に移動速度を検出し、その移動速度に基づいて各粒子に電荷を付与するタイミングを制御している。しかしながら、荷電液滴方式の場合、各粒子がどの液滴に属するかのみ判断すればよいが、マイクロチップ内で分取を行う装置の場合、近接する粒子それぞれの属性に加え、流体機構的特性を考慮する必要がある。ここで、「粒子の属性」とは、その粒子が分取対象の粒子か否かなどであり、「流体機構的特性」とは、取得動作のパルス信号の立ち上がり時に発生する逆流などである。
【0008】
また、荷電液滴方式では液滴に対して制御を行うが、特許文献2に記載されているようなマイクロチップ内で分取を行う装置では、個々の粒子に対して制御を行う必要がある。更に、荷電液滴方式と、マイクロチップ内で分取する方式とでは、取得位置に達するまでの経路や、粒子の到達に影響を与える因子が異なる。以上の理由から、特許文献1に記載の技術を、マイクロチップ内で分取を行う特許文献2に記載の装置に、単純に適用することはできない。
【0009】
そこで、本開示は、マイクロチップ内において効率よく粒子を分取することができる粒子分取装置及び粒子分取方法を提供することを主目的とする。
【課題を解決するための手段】
【0010】
本開示に係る粒子分取装置は、流路を通流する粒子に励起光を照射する励起光照射部と、前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射部と、前記粒子から発せられた光を検出する光検出部と、前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、各粒子が前記流路に連通する分取部に到達する時間を個別に算出する到達時間算出部と、前記粒子の分取を制御する分取制御部と、を有し、前記流路及び前記分取部はマイクロチップ内に設けられており、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記粒子を回収するか否かを判断する。
前記分取制御部は、例えば、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する。
前記速度検出用光は前記励起光と波長が異なるものでもよい。
その場合、前記到達時間算出部は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出することができる。
また、前記励起光照射部は、異なる波長の光を出射する2以上の光源を備えていてもよい。
前記分取部は、前記流路に連通する負圧吸引部を有していてもよい。
その場合、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記負圧吸引部の動作を制御する。
また、前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御することもできる。
【0011】
本開示に係る粒子分取方法は、マイクロチップ内に設けられた流路を通流する粒子に励起光を照射する励起光照射工程と、前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射工程と、前記粒子から発せられた光を検出する光検出工程と、前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、前記マイクロチップ内に設けられ前記流路に連通する分取部に、各粒子が到達する時間を、個別に算出する到達時間算出工程と、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記粒子を回収するか否かを判断する分取制御工程と、を有する。
前記分取制御工程は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断してもよい。
また、前記速度検出用光として前記励起光とは波長が異なる光を用いることもできる。
その場合、前記到達時間算出工程において、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出してもよい。
前記励起光照射工程は、2以上の光源からそれぞれ異なる波長の光を出射することもできる。
一方、前記分取部は前記流路に連通する負圧吸引部を有していてもよく、その場合、前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記負圧吸引部の動作を制御する。
また、前記分取制御工程において、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御することもできる。
【発明の効果】
【0012】
本開示によれば、分取制御部で、光検出部で検出された各粒子のデータと、到達時間算出部で算出された到達時間に基づいて、粒子を回収するか否かを判断しているため、粒子の取得性能を向上させることができる。
【発明を実施するための形態】
【0014】
以下、本開示を実施するための形態について、添付の図面を参照して詳細に説明する。なお、本開示は、以下に示す各実施形態に限定されるものではない。また、説明は、以下の順序で行う。
1.第1の実施の形態
(分取制御部を備える粒子分取装置の例)
2.第1の実施の形態の変形例
(モード切り替え機能を備える粒子分取装置の例)
【0015】
<1.第1の実施の形態>
先ず、本開示の第1の実施形態に係る粒子分取装置について説明する。
図1は本開示の第1の実施形態の粒子分取装置の概略構成を示す図である。また、
図2は光検出部7での検出データを示す図である。
【0016】
[装置の全体構成]
図1に示すように、本実施形態の粒子分取装置1は、光学的手法などにより分析した結果に基づいて粒子10を分別して回収するものである。この粒子分取装置1は、例えば、流路1、分取部2、励起光照射部3、速度検出用光照射部4、光検出部7、到達時間算出部8及び分取制御部9などを備えている。
【0017】
[粒子10について]
本実施形態の粒子分取装置1により分析され、分取される粒子10には、細胞、微生物及びリボゾームなどの生体関連粒子、又はラテックス粒子、ゲル粒子及び工業用粒子などの合成粒子などが広く含まれる。
【0018】
生体関連粒子には、各種細胞を構成する染色体、リボゾーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。また、細胞には、植物細胞、動物細胞及び血球系細胞などが含まれる。更に、微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。この生体関連粒子には、核酸や蛋白質、これらの複合体などの生体関連高分子も包含され得るものとする。
【0019】
一方、工業用粒子としては、例えば有機高分子材料、無機材料又は金属材料などで形成されたものが挙げられる。有機高分子材料としては、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどを使用することができる。また、無機材料としては、ガラス、シリカ及び磁性材料などを使用することができる。金属材料としては、例えば金コロイド及びアルミニウムなどを使用することができる。なお、これら粒子の形状は、一般には球形であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
【0020】
[流路1]
流路1は、マイクロチップ内に形成されており、分取対象分取対象とする粒子10を含む液体(サンプル液)が導入される。ここで、流路1を備えるマイクロチップは、ガラスや各種プラスチック(PP、PC、COP、PDMSなど)により形成することができる。また、マイクロチップの材質は、励起光照射部3及び速度検出用光照射部4から照射される光に対して透過性を有し、自家蛍光が少なく、波長分散が小さいために光学誤差が少ない材質とすることが望ましい。
【0021】
一方、流路1の成形は、ガラス製基板のウェットエッチングやドライエッチングによって、またプラスチック製基板のナノインプリントや射出成型、機械加工によって行うことができる。そして、マイクロチップは、例えば流路1などを成形した基板を、同じ材質又は異なる材質の基板で封止することで形成することができる。
【0022】
なお、
図1には、流路1における励起光や速度検出用光が照射される部分のみを示しているが、これより上流側に、粒子10を含むサンプル液が導入されるサンプル液導入流路と、シース液が導入される1対のシース液導入流路が設けられていてもよい。この場合、シース液導入流路は、サンプル液導入流路に両側から合流し、その合流点よりも下流側に流路1が設けられる。そして、流路1内においては、サンプル流の周囲をシース流で囲み、層流を形成した状態で液が通流し、サンプル液中の粒子10は、その通流方向に対して略1列に並んで通流する。
【0023】
[分取部2]
分取部2は、回収対象の粒子10を分取するものであり、マイクロチップ内に形成されている。この分取部2は、流路13の下流側端部に連通し、吸引流路21及び負圧吸引部22などで構成されている。負圧吸引部22は、所定のタイミングで回収対象の微小粒子を吸引することができれば、その構成は特に限定されるものではないが、例えば、アクチュエータ(図示せず)などにより、負圧吸引部22の体積を任意のタイミングで拡張可能な構成とすることができる。
【0024】
[励起光照射部3]
励起光照射部3には、レーザ光などの励起光を発生する光源31と、スポット形状を成形する光学系32、ミラー33などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に励起光を照射する。なお、
図1には光源31が1個の場合を例に示しているが、本開示はこれに限定されるものではなく、2以上の光源31が設けられていてもよく、その場合、各光源31から異なる波長の光を出射してもよい。
【0025】
[速度検出用光照射部4]
速度検出用光照射部4には、速度検出用光を発生する光源41と、スポット形状を成形する光学系42、ミラー43などが設けられている。そして、例えばマイクロチップ内に形成された流路1内を通流する粒子10に、前述した励起光とは異なる位置で速度検出用光を照射する。この速度検出用光は、励起光と同じ波長の光としてもよいが、装置構成の簡素化の観点から、励起光と波長が異なる光を用いることが好ましい。
【0026】
[光検出部7]
光検出部7は、流路1を通流する粒子10から発生する光(散乱光・蛍光など)を検出するものであり、0次光除去部材71、ミラー72a〜72d、光検出器73a〜73dなどで構成されている。光検出器73a〜73dには、例えばPMT(Photo Multiplier Tube)や、CCDやCMOS素子などのエリア撮像素子を用いることができる。
【0027】
光検出部7では、例えば、光検出器73aで励起光に由来する前方散乱光を、光検出器73bで速度検出用光に由来する散乱光を、光検出器73c,73dで蛍光を、それぞれ検出する。なお、光検出部7での検出対象光はこれらに限定されるものではなく、側方散乱光、レイリー散乱やミー散乱などを検出してもよい。そして、光検出部7で検出された光は、電気信号に変換される。
【0028】
[到達時間算出部8]
励起光に由来する光と速度検出用光に由来する光の検出時間差から、各粒子10が流路に連通する分取部2に到達する時間を個別に算出する。到達時間の算出方法は、特に限定されるものではないが、例えば、
図2に示すように、光検出部7で検出された励起光に由来する前方散乱光(Ch1のデータ)と、速度検出用光に由来する前方散乱光(Ch2のデータ)の検出時間差から各粒子10の到達時間を算出する。
【0029】
ここで、分取部2への到達時間は、例えば、下記数式1に示す単純な線形近似式により算出することができる。なお、下記数式1におけるL1は励起光照射位置と速度検出用光照射位置との距離、L2は速度検出用光照射位置から分取部2の吸引流路21までの距離である(
図1参照)。また、下記数式1におけるT1は励起光に由来する光の検出時間であり、T2は速度検出用光に由来する光の検出時間であり、(T1−T2)はこれらの検出時間差である(
図2参照)。
【0031】
なお、分取部2への到達時間の算出方法は、上記数式1に示す線形計算方法に限定されるものではなく、多項式近似やルックアップテーブルなど、他の算出方法を用いてもよい。
【0032】
[分取制御部9]
分取制御部9は、粒子10の分取を制御するものであり、光検出部7で検出された各粒子10のデータと、到達時間算出部8で算出された到達時間に基づいて、粒子10を回収するか否かを判断する。この分取制御部9では、例えば、前後の粒子10の到達時間差を算出し、算出された到達時間差が予め設定された閾値以下の粒子は、「非回収」と判断する。これにより、粒子10が近接して通流している場合に、回収対象の粒子の前後の粒子を巻き込んで取得してしまうことを防止できる。
【0033】
また、分取制御部9は、前述した判断結果に基づいて、例えば、負圧吸引部22の動作を制御するなどして、分取部2に粒子10を回収するタイミングを制御する。これにより、目的とする粒子の取得精度を向上させ、純度や取得率が高い分取を行うことが可能となる。
【0034】
[動作]
次に、本実施形態の粒子分取装置の動作について説明する。本実施形態の粒子分取装置により粒子を分取する際は、マイクロチップ内に設けられたサンプルインレットに、分取対象の粒子を含むサンプル液が、シースインレットにシース液が、それぞれ導入される。そして、流路1を通流する粒子10に励起光を照射すると共に、励起光とは異なる位置で粒子10に速度検出用光を照射する。このとき、
図1に示すように、励起光及び速度検出用光が1つの集光レンズ5によって集光され、粒子10に照射されてもよいが、それぞれ別の集光レンズで集光されてもよい。
【0035】
次に、検出部7において、各粒子10から発せられた光を検出し、到達時間算出部8において、励起光に由来する光と速度検出用光に由来する光の検出時間差から、分取部2に各粒子10が到達する時間を、個別に算出する。このとき、
図1に示すように、励起光に由来する光及び速度検出用光に由来する光が、1つの集光レンズ6によって集光され、検出部7の0次光除去部材71に集光されてもよいが、それぞれ別の集光レンズで集光されてもよい。
【0036】
その後、分取制御部9において、検出部7で検出された各粒子10の光学特性データと、到達時間算出部8で算出した分取部2への到達時間とから、粒子10を回収するか否かを判断する。そして、その判断結果に基づいて、分取制御部9は、分取部2に粒子10を回収するタイミングを制御する。例えば、分取部2が流路1に連通する負圧吸引部22を有する場合は、分取制御部9は、負圧吸引部22に設けられたアクチュエータなどの動作を制御する。
【0037】
以上詳述したように、本実施形態の粒子分取装置では、個々の粒子について、分取部への到達時間を算出し、各粒子の光学特性データだけでなく、分取部への到達時間も考慮して、粒子を回収するか否かを判断している。これにより、粒子の通流位置や通流状態にかかわらず、高純度又は高取得率で、粒子を分取することが可能となる。その結果、従来の粒子分取装置に比べて取得性能を向上させることができる。
【0038】
また、本実施形態の粒子分取装置は、個々の粒子について到達時間を算出しているため、環境温度変化や供給タンク残量などによる流量変化の影響を受けにくい。これにより、流量制御を高精度に行う必要がなくなるため、低価格の圧力制御デバイスを採用することができ、流路部品管理や組立精度管理を簡素化することが可能となり、製造コストを低減することができる。
【0039】
<2.第1の実施の形態の変形例>
次に、本開示の第1の実施形態の変形例に係る粒子分取装置について説明する。本変形例の粒子分取装置では、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっている。
【0040】
図3は本変形例の粒子分取装置の到達時間算出部8及び分取制御部9の回路構成を示すブロック図である。また、
図4A及び
図4Bはイベント検出回路での処理を示す図であり、
図5A及び
図5Bはゲーティング回路での距離を示す図である。「純度優先モード」又は「取得率優先モード」での分取は、例えば、
図3に示す構成の回路で実現することができる。
【0041】
[イベント検出回路]
イベント検出回路は、Ch1及びCh2の検出信号でトリガーをかけて各Chの波形を読み込み、
図4Aに示す幅、高さ、面積を計算する。そして、励起光に由来する前方散乱光に関するCh1の検出データと、速度検出用光に由来する前方散乱光に関するCh2の検出データについては、波形中心の時間を計算し、検出時間とする。
【0042】
そして、
図4Bに示すように、イベント検出回路では、各粒子10について、時系列に取得されるCh1(励起光に由来する前方散乱光)及びCh2(速度検出用光に由来する前方散乱光)の検出信号を関連付け、各粒子の検出データ(イベント)をパケット化する。パケットは、以降の処理が進むにつれ更新される項目を含み、Flagは基本的に1/0で、各ロジックで判断する取得/非取得に対応する。なお、検出時間は、Ch1及びCh2のトリガー時間を使用することもできる。
【0043】
[到達時間計算回路]
到達時間計算回路は、Ch1及びCh2の検出時間(T1,T2)を使用して、上記数式1などから到達時間を算出し、それを、イベントパケットの”Sorting Time”とする。
【0044】
[ゲーティング回路]
ゲーティング回路は、予め設定した閾値に基づいて、粒子10の「取得/非取得」を判断し、イベントパケットの”Gate Flag”を設定する。例えば、ゲーティング取得動作開始前に、制御用コンピュータ上のGUIなどで、
図5Aに示すヒストグラムチャートや、
図5Bに示す2Dチャートなどをプロットし、取得する粒子の集団(目的とする特性を持つ粒子集団)を例えば幾何形状などで括り、指定する。
【0045】
なお、「取得/非取得」を判断するパラメータ(閾値)は、各Chで取得された検出データの幅、高さ及び面積のいずれでもよく、これらを組み合わせてもよい。
【0046】
[出力待ち行列回路]
出力待ち行列回路は、各粒子10の検出データ(イベント)を、分取部到達時間(”Sorting Time”)に基づき、分取部到達順に並べ替える。その後、「純度優先」や「取得率優先」などのユーザーにより選択された分取モードに応じて、「取得/非取得」の判断を行う。そして、その結果に基づいて、”Sort Flag”を設定する。
【0047】
粒子10が近接して通流している場合、一回の取得動作で前後の粒子10も巻き込み、複数の粒子10を分取部2に回収してしまう可能性がある。そして、「純度優先モード」と、「取得率優先モード」とでは、この粒子10が近接している場合の「取得/非取得」の判断方法が異なる。
図6は取得優先モードの動作を示す図である。また、
図7A及び
図7Bは粒子が近接している場合の検出データを示す図である。更に、
図8は純度優先モードの動作を示す図である。
【0048】
「取得率優先モード」は、捕獲粒子の純度が下がっても取得粒子数を多くするモードであり、
図6に示すように、粒子10が近接して通流している場合でも、分取対象の粒子を回収する。これに対して、「純度優先モード」は、捕獲粒子の純度を高めるモードであり、取得粒子と非取得粒子が近接してきた場合、一緒に捕獲されてしまうことを防止するため、敢えてその取得粒子を「非取得」と判断する。
【0049】
特に「純度優先モード」の場合、
図8に示すように、後から検出された粒子10の検出データ(イベント)が、前の粒子10と近接している場合、前のイベントの「取得/非取得」も再度判断が必要となる。ここで、
図7Aに示すΔT1は、設定値で、ひとつ後の粒子を巻き込む時間である(T1=Tn+ΔT1)。また、ΔT2も設定値で、ひとつ前の粒子を巻き込む時間である(T2=Tn+ΔT2)。
【0050】
[出力タイミング生成回路]
出力タイミング生成回路は、出力待ち行列の最も先に取得するイベントの時刻(Sorting time)を読み出し、Clock Counter値と比較して、その時刻に出力タイミング信号を生成する。
【0051】
[出力信号生成回路]
出力信号生成回路は、出力タイミング信号を検知し、分取部2のアクチュエーションデバイスを制御する波形信号を出力する。
【0052】
本変形例の粒子分取装置は、回収するか否かを判断する際に、「純度」を優先するか、「取得率」を優先するかを、ユーザーが選択可能となっているため、目的に応じた分取が可能となる。なお、本変形例における上記以外の構成及び効果は、前述した第1の実施形態と同様である。
【0053】
また、本開示は、以下のような構成をとることもできる。
(1)
流路を通流する粒子に励起光を照射する励起光照射部と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射部と、
前記粒子から発せられた光を検出する光検出部と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、各粒子が前記流路に連通する分取部に到達する時間を個別に算出する到達時間算出部と、
前記粒子の分取を制御する分取制御部と、を有し、
前記流路及び前記分取部はマイクロチップ内に設けられており、
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記粒子を回収するか否かを判断する粒子分取装置。
(2)
前記分取制御部は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(2)に記載の粒子分取装置。
(3)
前記速度検出用光は前記励起光と波長が異なる(1)又は(2)に記載の粒子分取装置。
(4)
前記到達時間算出部は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(3)に記載の粒子分取装置。
(5)
前記励起光照射部は、異なる波長の光を出射する2以上の光源を備える(1)〜(4)のいずれかに記載の粒子分取装置。
(6)
前記分取部は、前記流路に連通する負圧吸引部を有する(1)〜(5)のいずれかに記載の粒子分取装置。
(7)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記負圧吸引部の動作を制御する(6)に記載の粒子分取装置。
(8)
前記分取制御部は、前記光検出部で検出された各粒子のデータと、前記到達時間算出部で算出された到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(1)〜(7)のいずれかに記載の粒子分取装置。
(9)
マイクロチップ内に設けられた流路を通流する粒子に励起光を照射する励起光照射工程と、
前記粒子に前記励起光とは異なる位置で速度検出用光を照射する速度検出用光照射工程と、
前記粒子から発せられた光を検出する光検出工程と、
前記励起光に由来する光と前記速度検出用光に由来する光の検出時間差から、前記マイクロチップ内に設けられ前記流路に連通する分取部に、各粒子が到達する時間を、個別に算出する到達時間算出工程と、
前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記粒子を回収するか否かを判断する分取制御工程と、
を有する粒子分取方法。
(10)
前記分取制御工程は、前後の粒子の到達時間差を算出し、該到達時間差が閾値以下の粒子は、非回収と判断する(9)に記載の粒子分取方法。
(11)
前記速度検出用光として前記励起光とは波長が異なる光を用いる(9)又は(10)に記載の粒子分取方法。
(12)
前記到達時間算出工程は、前記励起光に由来する散乱光と前記速度検出用光に由来する散乱光の検出時間差から各粒子の到達時間を算出する(11)に記載の粒子分取方法。
(13)
前記励起光照射工程は、2以上の光源からそれぞれ異なる波長の光を出射する(9)〜(12)のいずれかに記載の粒子分取方法。
(14)
前記分取部は前記流路に連通する負圧吸引部を有し、
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記負圧吸引部の動作を制御する(9)〜(13)のいずれかに記載の粒子分取方法。
(15)
前記分取制御工程は、前記光検出工程で検出した各粒子のデータと、前記到達時間算出工程で算出した到達時間に基づいて、前記分取部に前記粒子を回収するタイミングを制御する(9)〜(14)のいずれかに記載の粒子分取方法。