(58)【調査した分野】(Int.Cl.,DB名)
前記変化成分取得部が、前記拍動間隔データを補間して該拍動間隔データを一定の時間間隔に配置し、該補間された拍動間隔データを前記振動成分除去部に供給する補間処理部を備えたことを特徴とする請求項1から3のいずれか一項に記載の体幹筋収縮検出装置。
【発明を実施するための形態】
【0020】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。
【0021】
(第1実施形態)
まず、
図1を用いて、第1実施形態に係る体幹筋収縮検出装置1の構成について説明する。
図1は、体幹筋収縮検出装置1の構成を示すブロック図である。本実施形態の体幹筋収縮検出装置1は、拍動間隔データにおける拍動間隔の変化成分データを取得し、変化成分データから周期的な振動に対応する成分を除去して振動成分除去データを生成し、振動成分除去データのうち所定の変動成分を抽出して体幹筋収縮の発生を特定する。以下、各構成要素について詳細に説明する。
【0022】
体幹筋収縮検出装置1は、拍動を取得するための拍動センサ20、拍動間隔データを生成するための拍動間隔データ生成ユニット30、及び検出された拍動間隔データに基づいて体幹筋収縮検出のための解析を行う拍動間隔データ解析ユニット40を備える。以下、各構成要素について詳細に説明する。なお、拍動センサ20及び拍動間隔データ生成ユニット30が請求の範囲の拍動間隔データ生成手段として機能する。
【0023】
拍動センサ20は、脈拍を検知するための光電脈波センサ、心拍を検知するための心電センサ、圧電センサ等であればよい。なお、本明細書において、脈拍及び心拍をまとめて拍動というものとする。拍動センサ20は人体に装着される装着型のセンサであってもよいし、ゲームコントローラ又はスマートフォンのような手によって把持される把持型のセンサであってもよい。本実施形態においては、一例として、拍動センサ20は光電脈波センサからなるものとして説明を行う。なお、拍動センサ20(以下、「光電脈波センサ20」ともいう)は、血中ヘモグロビンの吸光特性を利用して、光電脈波信号を光学的に検出するセンサである。そのため、光電脈波センサ20は、発光素子21と受光素子22とを含んで構成されている。
【0024】
発光素子21は、拍動間隔取得ユニット30の駆動部310から出力されるパルス状の駆動信号に応じて発光する。発光素子21としては、例えば、LED、VCSEL(Vertical Cavity Surface Emitting LASER)、又は共振器型LED等を用いることができる。なお、駆動部310は、発光素子21を駆動するパルス状の駆動信号を生成して出力する。
【0025】
受光素子22は、発光素子21から照射され、例えば指先などの人体を透過して、又は人体に反射して入射される光の強さに応じた検出信号を出力する。受光素子22としては、例えば、フォトダイオードやフォトトランジスタ等が好適に用いられる。本実施形態では、受光素子22として、フォトダイオードを用いた。受光素子22は、拍動間隔取得ユニット30に接続されており、受光素子22で得られた検出信号(光電脈波信号)は拍動間隔取得ユニット30に出力される。
【0026】
拍動間隔取得ユニット30は、入力された光電脈波信号を処理して脈拍間隔を取得し、拍動間隔データを生成する。そのため、拍動間隔取得ユニット30は、増幅部311、信号処理部320、脈波ピーク検出部326、脈波ピーク補正部328及び拍動間隔データ生成部330を有している。また、信号処理部320は、アナログフィルタ321、A/Dコンバータ322、ディジタルフィルタ323、及び2階微分処理部324を有している。
【0027】
ここで、上述した各部の内、ディジタルフィルタ323、2階微分処理部324、脈波ピーク検出部326、脈波ピーク補正部328は、演算処理を行うCPU、該CPUに各処理を実行させるためのプログラムやデータを記憶するROM、及び演算結果などの各種データを一時的に記憶するRAM等により構成されている。すなわち、ROMに記憶されているプログラムがCPUによって実行されることにより、上記各部の機能が実現される。
【0028】
信号処理部320は、上述したように、アナログフィルタ321、A/Dコンバータ322、ディジタルフィルタ323、及び2階微分処理部324を有しており、増幅部311で増幅された光電脈波信号に対して、フィルタリング処理を施すことにより拍動成分を抽出する。
【0029】
アナログフィルタ321及びディジタルフィルタ323は、光電脈波信号を特徴づける周波数以外の成分(ノイズ)を除去し、S/Nを向上するためのフィルタリングを行う。より詳細には、光電脈波信号は0.1〜数十Hz付近の周波数成分が支配的であるため、ローパスフィルタやバンドパスフィルタ等のアナログフィルタ及びディジタルフィルタを用いてフィルタリング処理を施し、上記周波数範囲の信号のみを選択的に通過させることによりS/Nを向上する。
【0030】
なお、アナログフィルタ321とディジタルフィルタ323は必ずしも両方備える必要はなく、アナログフィルタ321とディジタルフィルタ323のいずれか一方のみを設ける構成としてもよい。なお、アナログフィルタ321及びディジタルフィルタ323によりフィルタリング処理が施された光電脈波信号は2階微分処理部324へ出力される。
【0031】
2階微分処理部324は、光電脈波信号を2階微分することにより、2階微分脈波(加速度脈波)信号を取得する。取得された加速度脈波信号は、脈波ピーク検出部326へ出力される。なお、光電脈波のピーク(立ち上がり点)は変化が明確でなく検出しにくいことがあるため、加速度脈波に変換してピーク検出を行うことが好ましいが、2階微分処理部324を設けることは必須ではなく、省略した構成としてもよい。
【0032】
脈波ピーク検出部326は、信号処理部320によりフィルタリング処理が施された光電脈波信号(加速度脈波)のピーク(立ち上がり点)を検出する。なお、脈波ピーク検出部326は、検出したすべてのピークについて、ピーク時刻、ピーク振幅等の情報をRAM等に保存する。
【0033】
脈波ピーク補正部328は、信号処理部320(アナログフィルタ321、ディジタルフィルタ323、2階微分処理部324)における光電脈波信号の遅延時間を求める。脈波ピーク補正部328は、求めた光電脈波信号の遅延時間に基づいて、脈波ピーク検出部326により検出された光電脈波信号(加速度脈波信号)のピークを補正する。補正後の光電脈波(加速度脈波)のピークは、拍動間隔データ生成部330に出力される。
【0034】
拍動間隔データ生成部330は、補正後の光電脈波のピークを集計して拍動間隔データを生成し、生成した拍動間隔データを拍動間隔データ解析ユニット40に出力する。拍動間隔データの一例を
図2に示す。
図2において、横軸は時間であり、縦軸は拍動間隔(AAI)あり、データPは拍動間隔(AAI)を示し、データQは体幹筋収縮検出結果を示す。ここで、拍動間隔とは、単位時間を拍動数で除した値であり、例えば60秒間の脈拍数が80回の場合、拍動間隔は0.75(=60/80)である。データPで示されるように、拍動間隔は不規則な変化を呈するものの、体幹筋収縮が発生するタイミングで急峻に低下してから増加する。例えば、
図2のグラフのデータの被験者の場合、動作A(腕を振る体幹筋収縮動作)及び動作B(前方にかがむ体幹筋収縮動作)が行われるタイミングで拍動間隔の急峻な低下及び回復(上昇)が観測される。データQの体幹筋収縮検出結果については後述する。
【0035】
本実施形態においては、このような拍動間隔の急峻な低下及び上昇の抽出によって体幹筋収縮が検出される。ところで、拍動間隔の挙動には、データPで表されるような不規則な変化及び体幹筋収縮発生時の急峻な変化に加えて、呼吸性変動のような規則的すなわち周期的な変化も観察される。例えば、
図3に拍動間隔の呼吸性変動を示す。
【0036】
図3において、横軸は時間であり、縦軸は拍動間隔(AAI)あり、データRは拍動間隔(AAI)を示し、データSは体幹筋収縮検出結果を示す。なお、
図2の拍動間隔データの被験者(以下、「被験者A」という)と
図3の拍動間隔データの被験者(以下、「被験者B」という)は別人である。呼吸性変動による拍動間隔の変化には個人差があるもののその周波数は約0.1〜0.5Hzの範囲であることが知られている。
図2及び
図3から分かるように、被験者Aの体幹筋収縮は比較的顕著に表れるが、被験者Bの体幹筋収縮は呼吸性変動にうもれて検出されにくい(なお、
図3においては、被験者Bは呼吸を行っているのみであり、体幹筋収縮は発生していない)。従って、取得された拍動間隔の変化において、体幹筋収縮に起因する急峻な変化を呼吸性変動に起因する変化から確実に識別することが必要となる。
【0037】
拍動間隔データ解析ユニット40は、変化成分取得部410、振動成分除去部420、及び変動成分抽出部430を備える。拍動間隔データ解析ユニット40は、拍動間隔データにおいて短時間のうちに発生する、拍動間隔の低下後の増加を抽出するように構成される。
【0038】
変化成分取得部410は本実施形態においては微分処理部411からなる。微分処理部411は、拍動間隔値が時系列に配列された拍動間隔データについて、所定の拍数を微分間隔として微分する。体幹筋収縮に起因する拍動変動の周波数範囲は0.04〜0.4Hz程度であるため、上記所定の拍数は2〜20拍程度であればよい。例えば、拍動間隔値AAI(i)と拍動間隔値AAI(i+n)(n:2〜20程度)の差分をとり、当該差分を時間で除すことにより微分値とすることができる。ここで、微分間隔となる拍数が小さいと(すなわち、nが小さいと)ノイズ耐性が低くなり、微分間隔となる拍数が大きい(すなわち、nが大きいと)処理速度が低下し、又は複数の体幹筋収縮動作が微分間隔中に含まれる可能性が高くなってしまう。このような事情を考慮して、上記の所定の拍数は3〜7拍であることが好ましい。このように、微分処理部411は拍動間隔データにおける変化成分データとして微分値データを振動成分除去部420に出力する。
【0039】
振動成分除去部420は、正側ピーク検出部421、正側ピーク保持部422、負側ピーク検出部423、減算部424、及び出力部425を備える。振動成分除去部420は、変化成分取得部410によって微分処理された変化成分データから、拍動間隔データにおける周期的な振動に対応する成分を除去して振動成分除去データを生成する。上述したように、体幹筋収縮に起因する拍動間隔値は短時間のうちに低下した後増加するため、この変動に対応する微分値波形は負のピークの後に正のピークが連続するものとなる。従って、この順序とは逆の順序で発生するピークの連続、すなわち、正のピークの後に負のピークが連続する波形成分を除去する処理により、上記の体幹筋収縮に起因する拍動間隔データの微分値波形が残ることになる。
【0040】
正側ピーク検出部421は上記微分波形における正のピークの有無を判定し、正のピークを検出した場合には正側ピーク保持部422に正のピークに関する正ピーク特徴値を保持する。
【0041】
負側ピーク検出部423は、正側ピーク検出部421によって正のピークが検出されてから所定の拍数が経過するまでに負のピークが発生するか否かを検出する。正のピークが検出されてから所定の拍数が経過するまでに負のピークが検出されない場合には、正側ピーク保持部422に保持された正ピーク特徴値は廃棄される。
【0042】
減算部424は、負側ピーク検出部423によって正のピークが検出されてから所定の拍数が経過するまでに負のピークが検出された場合には、負のピークに関する負ピーク特徴値を、正側ピーク保持部422に保持されていた正ピーク特徴値に基づいて減じる処理を行う。例えば、負ピーク特徴値から正ピーク特徴値が減算される。ここで、正ピーク特徴値及び負ピーク特徴値とは、それぞれのピーク値であってもよいし、時間にわたる積分値であってもよい。
【0043】
例えば、
図4に示すように、微分値波形において、時刻txに正ピーク特徴値xの正のピークXの後に、時刻tyに負ピーク特徴値yの負のピークYがある場合を想定する。時間差ty−txが所定拍数範囲内である場合には、負ピーク特徴値yから正ピーク特徴値xが減算され、時間差ty−txが所定拍数範囲外である場合には、負ピーク特徴値yに対する減算処理は行われない。なお、上記の所定の拍数範囲は、呼吸性変動に相当する拍数範囲(2〜16拍程度)から設定され、好適には1〜8拍程度である。
【0044】
図5を用いて、より詳細に振動成分除去処理を説明する。
図5は、
図4と同様に微分値波形を示し、横軸は時間を示す。同図では、時刻順に、正側では正のピークX1〜X4及び負側では負のピークY1〜Y4が例示される。それぞれの発生時刻はtx1〜tx4及びty1〜ty4であり、それぞれのピーク特徴値はx1〜x4及びy1〜y4であるものとする。また、時間差ty1−tx1、ty2−tx2、及びty3−tx3は上記の所定拍数範囲内であり、時間差ty4−tx4は所定拍数範囲外であるものとする。
【0045】
ここで、正のピークX1の直後の負のピークY1については、ピーク特徴値y1−x1が行われ、ピーク特徴値x1とピーク特徴値y1はほぼ等しいため、負のピークY1のピーク特徴値についての減算結果は実質的にゼロとなる。従って、ピークY1は振動成分として除去されたことになる。正のピークX2の直後の負のピークY2についても同様に、ピーク特徴値y2−x2が行われ、ピーク特徴値x2>ピーク特徴値y2であるため、負のピークY2のピーク特徴値についての減算結果はマイナス(又はゼロとして処理してもよい)となる。従って、ピークY2は振動成分として除去されたことになる。正のピークX3の直後の負のピークY3についてもピーク特徴値y3−x3が行われるが、ピーク特徴値x3<ピーク特徴値y3となるため、負のピークY3のピーク特徴値についての減算結果はゼロとはならない。従って、ピークY3は振動成分としては除去されないことになる。正のピークX4の後の負のピークY4については、上記のように時間差ty4−tx4が所定拍数範囲外であるので減算処理は行われず、すなわち、負のピークY4も振動成分としては除去されない。
【0046】
出力部425は、変化成分取得部410の微分処理部411からの微分データ及び減算部424からの減算データを変動成分抽出部430に出力する。出力部425は、必要に応じて、減算部424による減算結果と、減算部424によって減算処理が行われない他のデータとを時間的に整合するようにしてもよい。このように、拍動間隔データ(微分値)から周期的な振動に対応する成分(微分値)を除去した振動除去データが振動成分除去部420から変動成分抽出部430に出力される。
【0047】
変動成分抽出部430は反転部431及び比較部432を備え、振動成分除去部420から供給された振動成分除去データのうち所定の変動成分を抽出し、抽出された変動成分に基づいて体幹筋収縮の発生を特定し、所定の変動成分を与える時刻を体幹筋収縮検出時刻として決定する。
【0048】
反転部431は振動成分除去部420からの振動除去データを反転し、反転された振動除去データの正側の値(以下、「反転データ」という)を出力する。これにより、
図2に示すデータQが得られる。
【0049】
比較部432は反転データのうち所定の閾値以上となるピークを抽出する。
図2のデータQを参照すると、ピークp1〜p6のうち、所定の閾値(本例ではAAI=0.1)以上となるピークp1、p2、p3、p4及びp6が抽出され、閾値未満であるピークp5は抽出されない。なお、
図3に示すように、呼吸性振動に上記各処理を施した検出結果であるデータSには、閾値以上となるピークは発生しない。これは、拍動間隔データに呼吸性変動のみが存在する場合には、上記処理の結果として、体幹筋収縮に起因する変動は検出されないことを示している。
【0050】
このように、変動成分抽出部430は、振動除去データの負側のピーク値が所定の閾値以上となるピーク部の発生に基づいて体幹筋収縮を特定し、その発生時刻を体幹筋収縮の検出時刻として出力する。ピーク部の時刻がフィルタ処理等で遅延する場合には、変動成分抽出部430は、その遅延時間を算出し、遅延時間分を補正した時間を体幹筋収縮の検出時刻として出力する。
【0051】
拍動間隔データ解析ユニット40の変動成分抽出部430によって特定された体幹筋収縮検出結果(体幹筋収縮発生の有無、体幹筋収縮検出時刻等)は表示部50等に出力される。表示部50は、例えば、液晶ディスプレイ(LCD)等からなる。なお、取得された拍動データ、拍動間隔データ、体幹筋収縮検出結果は、例えば、上述したRAMなどに蓄積して記憶しておき、計測が終了した後に、パーソナルコンピュータ(PC)等に出力して確認するようにしてもよい。また、体幹筋収縮検出結果はスピーカ55から音声によって出力されるようにしてもよい。スピーカ55からは体幹筋収縮検出時にブザー音、チャイム音、音声ガイド等が出力され得る。またさらに、上記検出結果を、通信部60を介して、例えば、PC、スマートフォン等に送信して表示させる構成とすることもできる。
【0052】
次に、
図6を参照しつつ、体幹筋収縮検出装置1の動作について説明する。まず、ステップS100では、光電脈波センサ20により検出された光電脈波信号(光電脈波波形)が読み込まれる。
【0053】
続くステップS102では、ステップS100で読み込まれた光電脈波信号に対してフィルタリング処理が施される。また、光電脈波信号が2階微分されることにより加速度脈波が取得される。次に、ステップS104では、光電脈波信号(加速度脈波信号)のピークが検出される。そして、検出されたすべてのピークについて、ピーク時刻、ピーク振幅等の情報が記憶される。さらに、光電脈波信号(加速度脈波)のピークの遅延時間(ずれ量)が求められるとともに、求められた遅延時間に基づいて光電脈波信号(加速度脈波)のピークが補正される。なお、各ピークの補正方法は上述した通りであるので、ここでは詳細な説明を省略する。ステップS106では、補正後の光電脈波のピークを集計して拍動間隔データを生成する。ここでは、拍動間隔取得ユニット30の拍動間隔データ生成部330が拍動間隔データを生成し、拍動間隔データ解析ユニット40に出力する。
【0054】
ステップ110では、変化成分取得部410の微分処理部411が、拍動間隔値が時系列に配列された拍動間隔データについて、2〜20拍程度の拍数を微分間隔として微分する。例えば、拍動間隔値AAI(i)と拍動間隔値AAI(i+n)(n:2〜20程度、好ましくは3〜7)の差分をとることにより当該差分を微分値とすることができる。そして、変化成分取得部410は変化成分データとしての微分波形データを振動成分除去部420に出力する。
【0055】
続くステップS112〜S126では、振動成分除去部420が、変化成分取得部410bによって微分処理された変化成分データから、拍動間隔データにおける周期的な振動に対応する成分を除去して振動成分除去データを生成する。上述したように、振動成分除去部420は、上記変化成分データから、正のピークの後に負のピークが連続する波形成分を除去する処理を行う。これらのステップは、正側ピーク検出部421、正側ピーク保持部422、負側ピーク検出部423、減算部424、出力部425、及びCPUによって行われる。
【0056】
ステップS112では、正側ピーク検出部421が、変化成分データにおける正のピークの有無を判定する。正のピークが検出された場合(ステップS112、Yes)、ステップS114において、正側ピーク保持部422が、正ピーク特徴値を保持する。ステップS114の後、又は正のピークが検出されなかった場合(ステップS112、No)、処理はステップS116に進む。
【0057】
ステップS116では、正側ピーク保持部422に正ピーク特徴値が保持されているか否かが判別される。正側ピーク保持部422に正ピーク特徴値が保持されている場合(ステップS116、Yes)、処理はステップS118に進み、それ以外の場合には処理はステップS126に進む。
【0058】
ステップS118では、負側ピーク検出部423が、正のピークが検出されてからの経過拍数が所定拍数範囲内であるか否かを判定する。経過拍数が所定拍数範囲内である場合(ステップS118、Yes)、処理はステップS120に進む。一方、経過拍数が所定拍数範囲外となった場合(ステップS118、No)、ステップS122において、正側ピーク保持部422に保持されていた正ピーク特徴値が廃棄される。
【0059】
ステップS120では、負側ピーク検出部423が、変化成分データにおける負のピークの有無を判定する。負のピークが検出された場合(ステップS120、Yes)、処理はステップS124に進む。負のピークが検出されなかった場合(ステップS120、No)、処理はステップS126に進む。
【0060】
ステップS124では、減算部424が、負ピーク特徴値を、正側ピーク保持部422に保持されていた正ピーク特徴値に応じて減じる処理を行う。例えば、負ピーク特徴値から正ピーク特徴値が減算される。これにより、正のピークから所定拍数範囲内に現れる負のピークの成分が変化成分データ(すなわち、微分波形データ)から除去される。
【0061】
ステップS126では、出力部425が、ステップS112において微分処理されたデータ及びステップS124において減算処理されたデータを出力する。これにより、ステップS124における減算結果とステップS124を通過しない他のデータとが必要に応じて時間的に整合された状態で振動成分除去データが変動成分抽出部430に出力される。
【0062】
ステップS128〜S130では、変動成分抽出部430が、振動成分除去部420から供給された振動成分除去データのうち所定の変動成分を抽出し、抽出された変動成分に基づいて体幹筋収縮の発生を特定する。
【0063】
ステップS128では、反転部431が、振動成分除去部420からの振動成分除去データを反転し、反転された振動成分除去データの正側の値である反転データを出力する。
【0064】
ステップS130では、比較部432が、反転データを所定の閾値と比較し、閾値以上となる反転データをピークとして抽出して体幹筋収縮の発生を特定し、所定の変動成分を与える時刻を体幹筋収縮検出時刻として特定する。
【0065】
ステップS132では、表示部50等が、ステップS130で特定された体幹筋収縮検出結果(体幹筋収縮の発生の有無、体幹筋収縮検出時刻等)を表示するなどして出力する。
【0066】
なお、本実施形態においては、周期的振動成分を除去する構成として、正のピークの直後の負のピークを実質的に消去する構成を採用したが、呼吸性変動の拍数に相当する振動成分を適応的に除去する適応フィルタが採用されてもよい。また、本実施形態においては、変化成分取得部410による微分処理の後に、振動成分除去部420による振動成分除去処理を行う構成を示したが、振動成分除去処理の後に微分処理を行う構成としてもよい。また、本実施形態においては、拍動センサ(光電脈波センサ)20、拍動間隔データ生成ユニット30、拍動間隔データ解析ユニット40等が一体化されたものとして説明を行ったが、拍動間隔データ解析ユニット40は拍動間隔データ生成ユニット30と別体のものであってもよい。この場合、拍動間隔データ生成ユニット30からの拍動間隔データは有線通信又は無線通信により拍動間隔データ解析ユニット40に送信される。
【0067】
以上のように、本実施形態の構成によると、拍動間隔データから、呼吸等に起因する周期的振動成分が除去されるので、体幹筋収縮に起因する拍動変動を確実に抽出することができる。また、体幹筋収縮が発生してから検出結果が出力されるまでの時間は実質的には微分処理のための数拍程度しか要さないので、準リアルタイム的に適時に検出結果を得ることが可能となる。
【0068】
(第2実施形態)
図7を用いて、第2実施形態に係る体幹筋収縮検出装置2の構成について説明する。
図7は、体幹筋収縮検出装置2の構成を示すブロック図である。なお、第1実施形態の体幹筋収縮検出装置1と同様の構成要素には同様の符号を付しその説明を省略する。体幹筋収縮検出装置2は拍動間隔データ解析ユニット40bを備え、拍動間隔データ解析ユニット40bは、変化成分取得部410b、振動成分除去部420b及び変動成分抽出部430を備える。すなわち、変化成分取得部410b及び振動成分除去部420bが第1実施形態の変化成分取得部410及び振動成分除去部420と異なる。変化成分取得部410bは補間処理部412及び微分処理部413を備える。
【0069】
補間処理部412は、拍動間隔が時系列順に並べられた拍動間隔データの補間処理を行う。ここで、補間処理はスプライン補間等であればよく、これにより拍動間隔データが一定の時間間隔(例えば、0.01秒間隔)で切り出されることができる。この補間処理によってその後の処理において、データを周波数の関数として処理することができる。
【0070】
微分処理部413は、補間された拍動間隔データを所定の時間間隔で微分する。ここで、体幹筋の収縮によって発生する拍動変動の周波数範囲は0.04〜0.4Hz程度であるため、微分のための時間間隔は1.25〜12.5秒程度が好適である。
【0071】
振動成分除去部420bは適応フィルタ427からなる。適応フィルタ427は、変化成分取得部410bからの波形データの周期的振動を除去するように構成される。除去対象となる周期的振動は呼吸性変動に相当する周波数0.1〜0.5Hz程度の範囲であるので、適応フィルタ427はこの範囲の周波数成分を除去するように、最適化アルゴリズムに従ってその伝達関数を自己適応させる。これにより、上記周波数によって周期的に変動することのない拍動成分が振動成分除去データとして抽出される。なお、本実施形態では振動成分除去部420bとして適応フィルタ427を用いているが、除去すべき周期的振動の成分の周波数が予め分かっている場合(例えば、特定の被験者専用に拍動間隔データ解析ユニット40bが作成される場合等)はカットオフ周波数範囲が比較的狭い周波数フィルタ等が採用されてもよい。
【0072】
このように、振動成分除去部420bからの振動成分除去データが変動成分抽出部430に入力され、変動成分抽出部430では第1実施形態と同様のデータ抽出処理が行われる。変動成分抽出部430によって特定された体幹筋収縮検出結果(体幹筋収縮発生の有無、体幹筋収縮検出時刻等)は表示部50又はスピーカ55に出力される。また、上記検出結果を、通信部60を介して、例えば、PC、スマートフォン等に送信して表示させる構成とすることもできる。
【0073】
次に、
図8を参照しつつ、本実施形態の体幹筋収縮検出装置2の動作について説明する。ステップS102〜S106の処理は
図6に示す第1実施形態のステップS102〜S106の処理と同様であるので説明を省略する。
【0074】
ステップS106の後のステップS210では、補間処理部412が、拍動間隔が時系列順に並べられた拍動間隔データに、スプライン補間等の補間処理を適用し、拍動間隔データを、例えば、0.01秒間隔程度の一定間隔で切り出す。
【0075】
ステップS212では、微分処理部413が、補間された拍動間隔データを1.25〜12.5秒程度の時間間隔で微分し、これを変化成分データとして振動成分除去部420bに出力する。
【0076】
ステップS214では、適応フィルタ427が、変化成分取得部410bから入力された変化成分データにおける、例えば0.1〜0.5Hz程度の周期的振動を除去し、この上記周波数によって周期的に変動しない拍動成分を振動成分除去データとして抽出する。
【0077】
ステップS214の後のステップS228〜S232は第1実施形態のステップS128〜S132と同様である。すなわち、ステップS228で反転部431が振動成分除去データを反転して反転データを出力し、ステップS230では、比較部432が、反転データを所定の閾値と比較し、閾値以上となる反転データをピークとして抽出して体幹筋収縮の発生を特定し、所定の変動成分を与える時刻を体幹筋収縮検出時刻として特定する。そして、ステップS232では、表示部50等が、ステップS230で特定された体幹筋収縮検出結果(体幹筋収縮発生の有無、体幹筋収縮検出時刻等)を表示するなどして出力する。
【0078】
以上のように、本実施形態の構成によると、補間処理によって拍動間隔データを周波数軸上で処理することが可能となり、振動成分除去のための処理の設計自由度が向上する。また、例えば2〜3拍数程度に対応する短い振動周期の拍動間隔データについて、補間処理が施されることにより、その振動特性が捕捉され易くなるので、振動成分除去の精度を向上することができる。
【0079】
(第3実施形態)
図9を用いて、第3実施形態に係る体幹筋収縮検出装置3の構成について説明する。
図9は、体幹筋収縮検出装置3の構成を示すブロック図である。なお、第2実施形態の体幹筋収縮検出装置2と同様の構成要素には同様の符号を付しその説明を省略する。体幹筋収縮検出装置3は拍動間隔データ解析ユニット40cを備え、拍動間隔データ解析ユニット40cは、変化成分取得部410c、振動成分除去部420b及び変動成分抽出部430cを備える。すなわち、変化成分取得部410c及び変動成分抽出部430cの構成が第2実施形態の変化成分取得部410b及び変動成分抽出部430と異なる。
【0080】
変化成分取得部410cは補間処理部412を備える。補間処理部412は、拍動間隔が時系列順に並べられた拍動間隔データの補間処理を行う。ここで、補間処理はスプライン補間等であればよく、これにより拍動間隔データが一定の時間間隔(例えば、0.01秒間隔)で切り出されることができる。この補間処理されたデータは周波数の関数として処理される。
【0081】
振動成分除去部420bは第2実施形態と同様に適応フィルタ427からなる。すなわち、適応フィルタ427は、変化成分取得部410cからの波形データの周期的振動(0.1〜0.5Hz)を除去して振動成分除去データを生成する。振動成分除去部420bからの振動成分除去データは変動成分抽出部430cに入力される。
【0082】
変動成分抽出部430cは基準波形記憶部433、相関係数算出部434、相関度決定部435及び判定部436を備える。
【0083】
基準波形記憶部433は、検出対象となる拍動変動のモデルとなる基準波形を記憶する。この基準波形として、体幹筋動作時に発生する拍動変動をモデル化したものが使用され、単純なモデルとしては、拍動数変動を矩形波、三角波等で近似したものを使用することができる。
【0084】
相関係数算出部434は、振動成分除去データと基準波形記憶部433に記憶される基準波形との相関係数を算出する。相関度決定部435は、相関係数算出部434によって算出された相関係数が所定値を超えた場合に検出信号及び相関度を出力する。
【0085】
判定部436は、検出信号が入力された場合に相関度に従って変動成分を抽出して体幹筋収縮の発生を特定し、変動成分を与える時刻を体幹筋収縮検出時刻として特定する。このように、変動成分抽出部430によって特定された体幹筋収縮検出結果(体幹筋収縮発生の有無、体幹筋収縮検出時刻等)は表示部50又はスピーカ55に出力される。また、上記検出結果を、通信部60を介して、例えば、PC、スマートフォン等に送信して表示させる構成とすることもできる。
【0086】
次に、
図10を参照しつつ、本実施形態の体幹筋収縮検出装置3の動作について説明する。ステップS102〜S106の処理は
図6に示す第1実施形態のステップS102〜S106の処理と同様であるので説明を省略する。
【0087】
ステップS106の後のステップS310では、補間処理部412が、拍動間隔が時系列順に並べられた拍動間隔データに、スプライン補間等の補間処理を適用し、拍動間隔データを、例えば、0.01秒間隔程度の一定間隔で切り出す。
【0088】
ステップS312では、適応フィルタ427が、変化成分取得部410cから入力された変化成分データにおける、例えば0.1〜0.5Hz程度の周期的振動を除去し、この上記周波数によって周期的に変動しない拍動成分を振動成分除去データとして抽出する。
【0089】
ステップS314では、基準波形記憶部433から、検出対象となる拍動変動のモデルとなる基準波形が読み出される。
【0090】
ステップS316では、相関係数算出部434が、振動成分除去データと基準波形との相関係数を算出し、ステップS318では、相関度決定部435が、ステップS316において算出された相関係数が所定値を超えた場合に検出信号及び相関度を出力する。
【0091】
ステップS320では、判定部436が、検出信号が入力された場合に相関度に基づいて変動成分を抽出して体幹筋収縮の発生を特定し、変動成分を与える時刻を体幹筋収縮検出時刻として特定する。そして、ステップS332では、表示部50等が、ステップS320で特定された体幹筋収縮検出結果(体幹筋収縮発生の有無、体幹筋収縮検出時刻等)を表示するなどして出力する。
【0092】
なお、本実施形態においては、振動成分除去処理に適応フィルタを用いる構成を示したが、ウェーブレット変換を行い、その変換データから周期振動成分を除去し、周期振動成分除去後のデータから体幹筋収縮に起因する変動成分を抽出する構成としてもよい。また、変動成分抽出処理として、振動成分除去データと基準波形との相関係数を算出する構成を示したが、所定時間間隔で微分処理を行い、負のピークが所定の閾値以上であるピークを抽出し、このピークの時刻を体幹筋収縮検出時刻として出力する構成としてもよい。
【0093】
以上のように、本実施形態の構成においても、第2実施形態と同様に、拍動間隔データを周波数軸上で処理することが可能となり、振動成分除去のための処理の設計自由度が向上する。また、例えば2〜3拍数程度に対応する短い振動周期の拍動間隔データについて、補間処理が施されることにより、その振動特性が捕捉され易くなるので、振動成分除去の精度を向上することができる。