【課題を解決するための手段】
【0016】
課題の一つは、プラントの柔軟性を増し、従ってCO2の回収が無くとも従来の発電プラントに対して競争力を高めるために、CCS(炭素回収貯留)の長所を利用することである。本発明によれば、CO2の回収システムの電力消費は、
周波数が不足している間の発電プラントの正味電力出力(D)のための制御パラメータとして使用される。これに関連して、例えば直接のCO2圧縮機駆動の面に関する電気的電力消費、機械的電力消費、ならびに別のやり方では蒸気タービン内で電気エネルギーに転換できる生蒸気の消費は、CO2の回収システムの電力消費としてみなされている。さらに不足周波数エクスカーションもしくは低周波数事象とも呼ばれる
周波数が不足していることは、公称周波数より下の電力
送電網の周波数の減少である。特に発電プラントの周波数応答容量は、電力を変更するためにCO2の回収および圧縮設備の電力消費の高速変動を使用して改善され、発電プラントは
周波数が不足している間に
送電網に電力を供給することができる。
【0017】
本発明の真髄は、CO2の回収システムの電力消費を低減するか、あるいはこのCO2の回収システムを停止して、
送電網の周波数の低下に対する反動として発電プラントの正味を増大させる発電プラント運転方法である。この発明の背景において、CO2の回収システムは補助設備を全て備え
た、圧縮
ユニットを加えた完全なCO2の回収
ユニットとして定義される。この発電プラント運転方法により、発電プラントの現行の制御に加えて、補足柔軟性がもたらされる。この方法を用いて、CO2の回収システムを発電プラントに統合したことにより、発電プラントの正味出力は
周波数が不足している間に極めて高い比率で増大させることができ、部分負荷運転は全く必要とされず、周波数応答のための正味電力容量が保証される。高い比率の電力変動はCO2の回収システムの電力消費の変化率を速くすること(fast gradients)により達せられる。従って発電プラントはベース負荷での最適な効率でもって、もしくはベース負荷に近い最適な効率でもって運転することができる。
【0018】
従来の発電プラントにおいて、発電プラントの総電力出力を増やすことにより、および発電プラントの補助設備あるいは寄生電力消費、および発電プラントのシステムのどれかを減らすことにより、発電プラントの正味出力は
周波数が不足している間に対応して増大させることができる。総電力出力の増大は
電力プラントのベース負荷に限定されている。さらに発電プラントの総電力出力を増大させることができる比率は、発電プラントの過度電流とイナーシャ時に生じる熱負荷のために限定されている。従来の発電プラントにおいて、さらにいずれの系あるいは補助設備の寄生電力消費を減らす可能性は極めて限定される。一般的に、蒸気あるいは複合発電プラントのための最大の消費設備は、供給水ポンプ、冷却水ポンプおよび冷却設備であり、これらは連続運転の間は電源を切ることができない。
【0019】
発電プラントの安全な連続運転には要求されない、CO2の回収および圧縮の大きな電力消により、状況は変わり、かつ発電プラントに関する限界に直面することなく、正味電力の短時間でなされる過渡的変化のための新たな可能性が得られる。事実上、CO2の回収システムの電力消費は発電プラントの正味電力出力のための制御パラメータとして使用することができる。特にCO2の回収および圧縮のための電力消費は変えることができ、電力
送電網の周波数応答要件を満たすために使用することができる。さらに
周波数が不足していることに応じた発電プラントの高速過渡負荷を消費する長期間は回避でき、あるいはこの長時間は正味電力出力の変更が、CO2の回収システムの電力消費を制御することにより対処されるとこの新たな設計概念により低減できる。
【0020】
CO2の回収および圧縮による周波数応答の別の長所の一つは、予備周波数(frequency reserve)のための容量がこれ以上全く使用できない場合に
送電網により要求されるかもしれない発電プラントの容量を下げた運転を回避できることである。間次第で、一部の発電プラントは、
周波数が不足していることのための予備電力(power reserve)を残しておくために、一部の負荷で、例えば90%の負荷で運転することを要求されるかもしれない。90%での運転により、効率は低下する恐れがあり、かつ生産されるMWh当たりの資本と運転コストは上がる。ここでは、本発明により発電プラントが最適な効率でベース負荷で、あるいはほぼベース負荷で運転することができ、かつCO2の回収システムの電力消費がオフになりかつ周波数応答のために使用されることがあったときでも、尚
周波数が不足している間、固有の予備電力を有している。
【0021】
正味電力出力のための制御パラメータとしてのCO2の回収システムを使用することの第一のアプローチにおいて、CO2の回収およびCO2の圧縮の設備あるいはその設備の主たる電力消費設備は、
周波数が不足している間に簡単にスイッチが切れることがある。選択された技術とは独立して、CO2の分離を停止させ、プラントを、CO2を煙道ガスに排出する従来のプラントのように稼働させる。これによって、寄生電力需要を伴うCO2圧縮が必要とならない。
【0022】
CO2の回収および圧縮ユニットを単に停止あるいはさらには遮断させることとは関係なく、CO2の回収および圧縮設備の低減した容量に対する負荷軽減(deloading)あるいは部分負荷運転を周波数応答運転(frequency response operation)のために提案する。低減される容量は、満足できるCO2の回収率を達成するのに必要とされる容量以下のCO2の回収システムの構成設備少なくとも一つを運転することにより実現できる。その結果、回収率は周波数応答時に低減される。
【0023】
周波数が不足していることは本当にまれに、かつ短時間にわたってしか起こらないので、この運転モードのために回収されないCO2の蓄積量は一般に少量であり、かつ無視出来る。
送電網に依存して、このような短時間のCO2排出を導く
周波数が不足していることは、数年に一度しか起こらず、かつほんの数分あるいは20〜30分続くにすぎない。
【0024】
しかしながら、回収設備と圧縮ユニットの柔軟な運転により、CO2の回収および圧縮による発電プラントの競争力は増す。従ってこれにより、単なるパイロットプラント計画を超えてこの種のプラントを競争力のある市場に早期に発表することができ、結果としてCO2の排出は減少する。
【0025】
以下において、CO2の吸収の例を用いてCO2の回収及び圧縮による周波数サポートのための方法を説明する。この方法と以下に記載したその様々な変形はすべて、CO2の吸収、吸収剤の再生および回収されたCO2の圧縮を含むCO2の回収方法のために同等に適用できる。
【0026】
CO2回収及び圧縮処理の運転は、CO2の吸収、吸収剤の再生及び回収したCO2の圧縮から成るが、プラント運転の柔軟性を増大させる主な選択肢を三つ提供する。それらは、1つずつ、もしくは全て同時に行うことが出来る。それらは以下の通りである:
1.CO2圧縮ユニットを停止、もしくは低減容量で運転させる。
2.再生ユニットを停止、もしくは低減容量で運転させる。
3.吸収ユニットを停止、もしくは低減容量で運転させる。
【0027】
第一の選択肢で既に寄生電力消費を大幅に減少させるが、大量の非圧縮CO2は経済上保管出来ないため、非常に短期間内にCO2を大気中に放出することになる。従って回収したCO2の一部あるいは全ては、例えば
周波数が不足している間にはCO2圧縮のバイパスを経由して放出できる。回収したCO2の安全な処分に関しては、例えば、CO2吸収ユニットの下流で煙道ガスと混合し、発電プラントのスタックを介して放出することが出来る。
【0028】
さらに大幅な寄生電力消費の低減が、第二の選択肢によって実現することが出来る。再生は、一般に吸収剤の「再沸騰」によって行うが、これは、CO2を放出するために吸収剤を蒸気によって加熱することを意味する。そのため、蒸気はそれ以上電力生産のために利用出来ない。一旦ピーク電力需要の間に再生を停止させると、余分な蒸気を電力生産のために利用出来る。
【0029】
第三の選択肢もまた、吸収工程を停止させるかあるいは行なうものであるが、これにより補助設備の電力消費はさらに低減される。この電力消費の低減は、先の二つの選択肢において達成される節約より大幅に小さい。吸収ユニットに依存して、煙道ガスの一部もしくは全てはこの運転モード時に回収設備の周囲でバイパスされる。
【0030】
従来の配置における吸収剤は急速に飽和し、それ以上CO2を回収出来なくなるため、吸収工程の運転自体は、さらなる対策なしには意味をなさない。しかしながら、吸収剤の貯留タンクの大きさに依存して、再生のないCO2の回収とCO2の圧縮は限定された期間の間は可能である。
【0031】
CO2の回収と圧縮の遮断がシステムの負荷軽減に比べて極めて速くかつ安全である場合が多いので、システムの少なくとも一部の遮断をプラントの負荷制御と組合せることを提案する。システムの少なくとも一部が遮断されると、結果としての正味電力出力は周波数応答に関するものに比べて大きいことがある。この場合、プラントの総電力出力は、従来のプラント制御を用いて低減でき、
送電網毎に要求される適正な正味電力出力は保証される。
【0032】
CO2の回収システムの構成設備の停止に加えて、構成設備の部分負荷運転が可能である。例えばCO2の圧縮ユニットの質量流は入口案内翼のような制御手段により低減できる。二つあるいはそれ以上の平行な圧縮機トレインを含む圧縮ユニットの場合、少なくとも一つの圧縮機の停止により、CO2の圧縮ユニットの電力消費が低減するのも明白である。フル容量で運転している二つの平行な圧縮機トレインの場合、圧縮機トレインの一方の停止により、50%分だけ電力消費は減り、同様に回収したCO2の50%が圧縮でき、かつ一般に煙突までバイパスされることを示す。代替えとして、再吸収率を低減することができる。このことは例えば再生ユニットを流れる吸収剤流を低減することにより、そして残留している流れをバイパスし、さらに前記2つの流れが吸収ユニットに入る前に二つの流れを混合することにより達せられる。流れの一部だけが再生ユニットを通過すると、再生に必要とされる蒸気は低減し、余分な蒸気は電力生産に使用できる。再生された吸収剤を再生されない吸収剤を混合した結果として、CO2を吸収するための結果としての混合は低減し、低割合のCO2は煙道ガスから回収され、より少ないCO2は再生ユニットの圧縮のために放出される。最初にCO2を回収し、次いでバイパスするのはあまり経済的ではないので、回収システムの構成設備全ての容量を同時に低減することを提案する。
【0033】
周波数が不足している間に、再生せずにもしくは吸収剤を低減した容量で再生せずに、吸収ユニットを運転するための別の可能性は、この
周波数が不足している間にCO2のために貯留した吸収剤を使用することである。
【0034】
限界的
送電網状況が生じた場合、周波数が限界の敷居値以下に落ちる前に、指令センターからの信号がCO2の回収システムの電力消費の上記低減をすでに開始することができ、従って
送電網を安定化させるのに役立つ。
【0035】
CO2回収システムの異なる制御方法が可能である。一実施例は、CO2回収システムの異なる構成設備の開ループ制御である。これは特に、異なる構成設備のON/OFF制御のみを使用する場合に適している。
【0036】
また開ループ制御は、CO2回収システムの連続的な電力消費制御、つまり、異なる構成設備のON/OFFの切り替えによる電力出力における急な段階のない制御を実現する、より高度な運転処理にも考えられる。この実施例では、CO2回収システムの連続的な電力消費制御は、一度に1つの構成設備の電力消費を変化させることによって実現され、一方、残りの構成設備は、一定の負荷で動作する。しかしながら、閉ループ制御は、例えば、過渡的な運転もしくは変動する境界条件下での運転で有利であることがある。
【0037】
異なる構成設備の低減容量での運転が予測される場合、閉ループ制御は、負荷分布のさらなる最適化を可能にする。これは特に、CO2回収率の制御を実行する場合、有利であるである。この場合、CO2回収システムの電力消費は、一度に1つの構成設備を制御することによっては変化せず、一方、残りの構成設備は、一定の負荷で動作する。異なる構成設備の容量の低下は、協調させねばならない。このため、各構成設備の現在の動作条件のフィードバックは有利であり、閉ループ制御が好ましい。
【0038】
本発明の別の課題は、CO2回収システムによるカーボンベースの燃料を燃焼させるための火力発電プラントであり、このプラントは上記の周波数応答方法に従った運転のために設計されている。相応したCO2回収システムにより高速のシステム負荷軽減(deloading)が可能になっている。
【0039】
本発明の一実施例は、カーボンベースの燃料を燃焼させている発電プラントであり、この発電プラントは少なくとも一つの煙道ガス流を有している。本発明による発電プラントは、電力発生に関して知られている従来の設備に加えて、煙道ガス流からCO2を除去するためのCO2回収ユニットとCO2圧縮ユニットを備えている。CO2回収ユニットは、煙道ガス流からCO2を除去する回収設備、CO2を吸収剤から取除くための再生ユニット、吸収剤あるいは煙道ガスからのCO2を結合するための他の手段、そして搬送に関してCO2の状態を調節するための処理システムを備えているのが一般的である。圧縮ユニットはCO2を圧縮するための少なくとも一つの圧縮機から成る。さらに圧縮ユニットは、圧縮時および/または圧縮後、圧縮されたCO2を再冷却するための少なくとも一つの冷却装置あるいは熱交換器から成っているのが一般的である。
【0040】
提案された運転構想により運転を可能にするために、発電プラントの蒸気タービンは、最大蒸気流を、CO2回収ユニットのスイッチを切った状態で発電プラントにより生産されるエネルギーに転換するように設計されている。
【0041】
別の実施例において、発電機と電気システムはCO2回収ユニットのスイッチを切った状態で生産される最大パワーを電力に転換し、この電力を
送電網に送るように設計されている。
【0042】
このような発電プラントを上記のように運転するのを容易にするために、発電プラントはさらにCO2圧縮機のバイパスを備えていてもよく、このバイパスはCO2を安全に出すことができ、例えばCO2回収ユニットの煙道ガススタック下流部に案内する。
【0043】
別の実施例において、CO2回収ユニット、例えば吸収ユニットは運転中ではない場合にでも煙道ガスに耐性があるように設計されている。
【0044】
代替えとして、CO2回収ユニットのバイパスを見越してもよく、このバイパスによりCO2回収ユニットとは独立した発電プラントを運転することができる。さらにこのバイパスは発電プラントの操業を始めたり、あるいは停止したりするのに有利なだけでなく、CO2回収システムのメンテナンス時の発電プラントの運転にも有利である。
【0045】
他の実施例において、一定の期間CO2吸収材を供給するために採寸された貯留タンクが設けられており、この貯留タンクによりCO2の圧縮と再吸収が
周波数が不足している間に止まった場合にでも連続的なCO2の回収が可能となる。
【0046】
CO2回収システムが複雑なシステムであると、上記の様々な制御方法に関して論議されるような適切な制御システムが要求される。この制御システムは発電プラントの電力制御に依存しているかあるいは影響を与えている。電力制御は発電プラント制御システムの真髄の部分なので、CO2回収システムの制御を発電プラント制御システムに集約するか、あるいは発電プラント制御システムによりCO2回収システムの制御を調整し、かつ関連があるデータラインをすべて発電プラント制御システムに接続することが長所である。発電プラントが幾つかのユニットから成り、発電プラント制御システムが発電プラント制御装置とユニットマスタ制御装置から成る階層制の構造を有していると、このようにCO2回収システムの制御を各ユニットのマスタ制御装置に統合するかあるいは一元化することが有利である。
【0047】
代替えとして、CO2回収システムは、それ専用の制御装置を有し、制御装置は直接のデータリンクを介してプラント制御システムに接続されている。プラント制御システムもしくはユニットの主制御装置は、少なくとも1つの信号をCO2回収プラントの制御装置に送信せねばならない。この信号は、例えば、指令された電力消費信号であるか、もしくは指令された回収率であってもよい。
【0048】
上記の場合では、CO2回収制御装置は、必ずしも1つのハードウェア装置ではなく、1つ以上の制御装置によって協調させる駆動装置とグループ制御装置に分散化することが出来る。
【0049】
CO2回収システムの制御を発電プラント制御システムによって協調させる場合、高レベルな制御装置は、例えば、指令された質量流量の合計をCO2圧縮ユニットのグループ制御装置に送信することが出来、実際の質量流量の合計を、このグループ制御装置からの入力として受信することが出来る。この実施例における圧縮ユニットは、数列の圧縮機を含む。圧縮機の各列は、それ専用の装置制御装置を有する。グループ制御装置は、異なる圧縮機列における指令されたCO2圧縮質量流量の合計のもっと良い分布方法を決定するアルゴリズムを有し、指令された質量流量を圧縮機各列の装置制御装置に送信する。代わりに、グループ制御装置は、圧縮機各列の実際のCO2圧縮質量流量を取得する。圧縮機各列の装置制御装置は、より低いレベルで従属する制御装置で再び作動することが出来る。
【0050】
同種の階層を、CO2回収システムの全ての構成設備の制御に適用することが出来る。
【0051】
本発明、本発明の本質ならびに長所を、添付した図を利用して以下に詳細に説明する。