特許第6189537号(P6189537)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヒュンダイ スチール カンパニーの特許一覧

特許6189537燃料電池スタック用金属分離板及びこれを有する燃料電池スタック
<>
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000002
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000003
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000004
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000005
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000006
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000007
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000008
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000009
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000010
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000011
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000012
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000013
  • 特許6189537-燃料電池スタック用金属分離板及びこれを有する燃料電池スタック 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6189537
(24)【登録日】2017年8月10日
(45)【発行日】2017年8月30日
(54)【発明の名称】燃料電池スタック用金属分離板及びこれを有する燃料電池スタック
(51)【国際特許分類】
   H01M 8/0202 20160101AFI20170821BHJP
   H01M 8/0271 20160101ALI20170821BHJP
   H01M 8/02 20160101ALI20170821BHJP
   H01M 8/10 20160101ALN20170821BHJP
【FI】
   H01M8/02 B
   H01M8/02 S
   H01M8/02 R
   H01M8/02 C
   !H01M8/10
【請求項の数】12
【全頁数】15
(21)【出願番号】特願2016-525538(P2016-525538)
(86)(22)【出願日】2014年7月24日
(65)【公表番号】特表2016-534500(P2016-534500A)
(43)【公表日】2016年11月4日
(86)【国際出願番号】KR2014006750
(87)【国際公開番号】WO2015060517
(87)【国際公開日】20150430
【審査請求日】2016年4月21日
(31)【優先権主張番号】10-2013-0126911
(32)【優先日】2013年10月24日
(33)【優先権主張国】KR
(31)【優先権主張番号】10-2013-0126914
(32)【優先日】2013年10月24日
(33)【優先権主張国】KR
(73)【特許権者】
【識別番号】510307299
【氏名又は名称】ヒュンダイ スチール カンパニー
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100082991
【弁理士】
【氏名又は名称】佐藤 泰和
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100127465
【弁理士】
【氏名又は名称】堀田 幸裕
(74)【代理人】
【識別番号】100130719
【弁理士】
【氏名又は名称】村越 卓
(72)【発明者】
【氏名】パク、ジ−ヨン
(72)【発明者】
【氏名】キム、キ−ジョン
(72)【発明者】
【氏名】チョン、ユ−タク
【審査官】 松本 陶子
(56)【参考文献】
【文献】 特開2006−107968(JP,A)
【文献】 特開2012−248460(JP,A)
【文献】 特開2009−104922(JP,A)
【文献】 特開2005−116404(JP,A)
【文献】 特表2009−526347(JP,A)
【文献】 特開2005−340179(JP,A)
【文献】 特開2012−048940(JP,A)
【文献】 特開2010−153157(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/0202
H01M 8/0271
H01M 8/10
H01M 8/24
(57)【特許請求の範囲】
【請求項1】
下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、長辺に平行な2つの辺が開口しているとともに短辺に平行な2つの辺が閉口している突出パターンであって短辺方向に開口された空気流路を備える突出パターンを有するチャンネル部と、前記チャンネル部の短辺で構成されている前記チャンネル部の両側端にそれぞれ配置された反応ガス流入口及び反応ガス排出口を備えるマニホールド部を有する金属分離板本体;及び
前記金属分離板本体の上面の前記マニホールド部の縁に沿って形成された第1のガスケットと、前記チャンネル部の長辺で構成されている前記チャンネル部の縁に配置され、前記突出パターンと交互に配列される島構造で形成された第2のガスケットを有するガスケット;を含むことを特徴とする燃料電池スタック用金属分離板。
【請求項2】
前記突出パターン及び第2のガスケットは、前記空気流路に供給される空気流入の確保のために、相互に交互に行き違うジグザグ状で配列されることを特徴とする請求項1に記載の燃料電池スタック用金属分離板。
【請求項3】
前記空気流路を備える突出パターンは、3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形されたことを特徴とする請求項1に記載の燃料電池スタック用金属分離板。
【請求項4】
少なくとも2枚以上の金属分離板;及び
前記金属分離板の間にそれぞれ介在された膜−電極接合体;を含み、
前記2枚の金属分離板は、カソード用金属分離板とアノード用金属分離板を有するが、 前記カソード用金属分離板は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、長辺に平行な2つの辺が開口しているとともに短辺に平行な2つの辺が閉口している突出パターンであって短辺方向に開口された3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形された空気流路を備える突出パターンを有し、
前記アノード用金属分離板は、上面から下面方向に突出され、前記突出パターンの空気流路と交差する長辺方向に沿って形成された反応ガス流路を有することを特徴とする燃料電池スタック。
【請求項5】
下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、4つの辺のうち1つの辺が開口し且つ3つの辺が閉口している突出パターンであって短辺または長辺方向に沿って一側は開口され、他側は閉口された空気流路を備える突出パターンを有するチャンネル部と、前記チャンネル部の短辺で構成されている前記チャンネル部の両側端にそれぞれ配置された反応ガス流入口及び反応ガス排出口を備えるマニホールド部を有する金属分離板本体;及び
前記金属分離板本体の上面の前記マニホールド部の縁に沿って形成された第1のガスケットと、前記チャンネル部の長辺で構成されている前記チャンネル部の縁に配置され、前記突出パターンと交互に配列される島構造で形成された第2のガスケットを有するガスケット;を含むことを特徴とする燃料電池スタック用金属分離板。
【請求項6】
前記突出パターンは、前記短辺または長辺方向に沿って一側が開口された開口部と、前記一側に反対される他側が閉口された閉口部を有するが、
前記開口部と閉口部は、規則パターンとなるように形成されたことを特徴とする請求項5に記載の燃料電池スタック用金属分離板。
【請求項7】
前記突出パターンは、前記短辺または長辺方向に沿って配列される奇数列と偶数列の開口部及び閉口部が全部同一な方向に向かうように配列されたことを特徴とする請求項6に記載の燃料電池スタック用金属分離板。
【請求項8】
前記突出パターンは、奇数列の前記開口部と偶数列の前記開口部とが互いに反対方向に向かうように配列され、前記奇数列の閉口部と偶数列の閉口部とが互いに反対方向に向かうように配列される対称構造を有することを特徴とする請求項6に記載の燃料電池スタック用金属分離板。
【請求項9】
前記突出パターンは、4つが1つの単位セルを形成するが、前記4つの突出パターンが全部異なる方向に向かうように形成されたことを特徴とする請求項6に記載の燃料電池スタック用金属分離板。
【請求項10】
前記突出パターン及び第2のガスケットは、前記空気流路に供給される空気流入の確保のために、互いに交互に行き違うジグザグ状で配列されることを特徴とする請求項5に記載の燃料電池スタック用金属分離板。
【請求項11】
少なくとも2枚以上の金属分離板;及び
前記金属分離板の間にそれぞれ介在された膜−電極接合体;を含み、
前記2枚の金属分離板は、カソード用金属分離板とアノード用金属分離板を有するが、 前記カソード用金属分離板は4つの辺のうち1つの辺が開口し且つ3つの辺が閉口している突出パターンであって短辺または長辺方向に沿って一側は開口され、他側は閉口された3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形された空気流路を備える突出パターンを有し、
前記アノード用金属分離板は、上面から下面方向に突出され、前記突出パターンの空気流路と交差するように形成された反応ガス流路を有することを特徴とする燃料電池スタック。
【請求項12】
前記燃料電池スタックは、空冷式(air−cooled)構造または水冷式(water−cooled)構造を有することを特徴とする請求項11に記載の燃料電池スタック。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池スタック用金属分離板及びこれを有する燃料電池スタックに関し、より詳細には、短辺方向に開口された空気流路を備える突出パターンを設計するか、または一側は開口され、他側は閉口される空気流路を備える突出パターンを設計して、別途の冷却板を装着することがなくても、冷却性能及びスタックの性能を向上させることができるだけでなく、閉口された空気流路の内部から流出される水分を遮断して膜-電極接合体の加湿性能を向上させることができる燃料電池スタック用金属分離板及びこれを有する燃料電池スタックに関する。
【背景技術】
【0002】
燃料電池は、水素ガス及び酸素ガスを用いて電気化学的に電気を生産する装置であって、外部から連続的に供給される水素及び空気を電気化学反応により直接電気エネルギーと熱エネルギーに変換させる装置である。
【0003】
このような燃料電池は、酸化電極での酸化反応及び還元電極での還元反応を用いて電力を生成することになる。この時、酸化及び還元反応を促進させるために、白金または白金-ルテニウム金属などを含む触媒層と高分子電解質膜で構成された膜-電極接合体(membrane electrode assembly:MEA)が使用され、膜-電極接合体の両端に電導性物質の分離板が締結されて、セル(CELL)構造を形成する。
【0004】
燃料電池の単位セル(Unit Cell)は、電圧が低く、実用性が劣るので、一般的に数個乃至数百個の単位セルを積層して使用する。単位セルの積層の際、それぞれの単位セル間の電気的接続が行われるようにし、反応ガスを分離させる役割をするものが、金属分離板である。
【0005】
一般的な燃料電池用金属分離板は、矩形状の金属板の中心部に反応ガスチャンネル及び冷却水チャンネルが形成され、その周辺を囲むガスケットが形成される。反応ガスチャンネルと冷却水チャンネルを含んで普通にチャンネル部という。普通に反応ガスチャンネルは金属板の前面から背面にスタンピング工程により突出して形成され、冷却水チャンネルは、金属板の背面に突出された反応ガスチャンネル間の領域を活用して形成される。このように形成されたチャネル部の構造は、反応ガスが金属板の前面上で流動し、冷却水は、金属板の背面上で流動するようにする。このような点で、金属板の前面を反応ガス流動面と、金属板の背面を冷却水流動面と指称することもある。
【0006】
このような構造を有する金属分離板は、水冷式(water-cooled)金属分離板の構造であって、チャネル部の一側の冷却水流入マニホールドに流入される冷却水が、冷却水チャンネルを通過しつつ、燃料電池の動作時に活性化損失(activation loss)、陽極での還元反応及びジュール加熱(Joule heating)などの原因により発生する熱を冷却させる。前記の冷却過程を経た冷却水は、以後、チャンネル部他側の冷却水排出マニホールドを通じて分離板の外部に抜け出る。
【0007】
このような水冷式の金属分離板の場合、燃料電池の動作時に発生する熱を冷却させるために、冷却水を金属分離板に持続的に供給しなければならない。この場合、冷却水供給のためのポンプ、イオン除去器、熱交換器などの装置が必要となり、これにより、燃料電池システムの製造コストの上昇を招く原因となる。一方、空冷式の金属分離板は、これに比べて、システムの製造コストの節減効果がある。
【0008】
しかし、空冷式の金属分離板の場合、空気供給のためのカソード分離板1枚と、円滑な空気供給のための垂直方向のスペース確保及び冷却フィンの役割を遂行する冷却板1枚、合計2枚でカソード層を製作しているが、この場合、冷却板が追加で必要とするため、燃料電池スタックの全体体積と製造コストを増加させる問題があった。
【0009】
関連先行文献では、特許文献1(2003.06.02.公開)があり、前記文献には、空気冷却構造を有する冷却板が単位電池の間に積層された燃料電池スタックについて記載されている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】大韓民国公開特許公報第10-2003-0042633号
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、別途の冷却板を装着することがなくても、冷却性能及びスタック性能を向上させることができる開口された空気流路を備える燃料電池スタック用金属分離板及びこれを有する燃料電池スタックを提供するものである。
【0012】
本発明の他の目的は、別途の冷却板を装着することがなくても、円滑な反応ガス供給及び冷却性能の向上で、スタック性能を向上させることができるだけでなく、閉口された空気流路の内部から流出される水分を遮断して膜-電極接合体の加湿性能を向上させることができる燃料電池スタック用金属分離板及びこれを有する燃料電池スタックを提供するものである。
【課題を解決するための手段】
【0013】
前記目的を達成するための本発明の第1の実施例に係る燃料電池スタック用金属分離板は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺方向に開口された空気流路を備える突出パターンを有するチャンネル部と、前記チャンネル部の両側端にそれぞれ配置された反応ガス流入口及び反応ガス排出口を備えるマニホールド部を有する金属分離板本体;及び前記金属分離板本体の上面の前記マニホールド部の縁に沿って形成された第1のガスケットと、前記チャンネル部の縁に配置され、前記突出パターンと交互に配列される島構造で形成された第2のガスケットを有するガスケット;を含むことを特徴とする。
【0014】
前記目的を達成するための本発明の第1の実施例に係る燃料電池スタックは、少なくとも2枚以上の金属分離板;及び前記金属分離板の間にそれぞれ介在された膜-電極接合体;を含み、前記2枚の金属分離板は、カソード用金属分離板とアノード用金属分離板を有するが、前記カソード用金属分離板は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺方向に開口された3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形された空気流路を備える突出パターンを有し、前記アノード用金属分離板は、上面から下面方向に突出され、前記突出パターンの空気流路と交差する長辺方向に沿って形成された反応ガス流路を有することを特徴とする。
【0015】
前記他の目的を達成するための本発明の第2の実施例に係る燃料電池スタック用金属分離板は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺または長辺方向に沿って一側は開口され、他側は閉口された空気流路を備える突出パターンを有するチャンネル部と、前記チャンネル部の両側端にそれぞれ配置された反応ガス流入口及び反応ガス排出口を備えるマニホールド部を有する金属分離板本体;及び前記金属分離板本体の上面の前記マニホールド部の縁に沿って形成された第1のガスケットと、前記チャンネル部の縁に配置され、前記突出パターンと交互に配列される島構造で形成された第2のガスケットを有するガスケット;を含むことを特徴とする。
【0016】
前記他の目的を達成するための本発明の第2の実施例に係る燃料電池スタックは、少なくとも2枚以上の金属分離板;及び前記金属分離板の間にそれぞれ介在された膜-電極接合体;を含み、前記2枚の金属分離板は、カソード用金属分離板とアノード用金属分離板を有するが、前記カソード用金属分離板は短辺または長辺方向に沿って一側は開口され、他側は閉口された3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形された空気流路を備える突出パターンを有し、前記アノード用金属分離板は、上面から下面方向に突出され、前記突出パターンの空気流路と交差するように形成された反応ガス流路を有することを特徴とする。
【発明の効果】
【0017】
本発明に係る燃料電池スタック用金属分離板及びこれを有する燃料電池スタックは、短辺方向に開口された空気流路を備える突出パターンを設計するとともに、突出パターン及びチャネル領域に配置されるガスケットを相互に交互に行き違うジグザグ状で配列することにより、ガスケットによる空気の流入が妨げられることを最小化して、冷却性能を極大化することができる。
【0018】
なお、本発明に係る燃料電池スタック用金属分離板及びこれを有する燃料電池スタックは、カソード用金属分離板が開放型空気流路を備える突出パターンを有するので、別途の冷却板を装着することがなくても、優れる冷却性能及びスタック性能を確保することができるだけでなく、別途の冷却板が省略できるので、製造コストを節減することができ、全体の体積が減少される。
【0019】
さらに、本発明に係る燃料電池スタック用金属分離板及びこれを有する燃料電池スタックは、一側は開口され、他側は閉口される空気流路を備える突出パターンを設計して、冷却性能及びスタック性能を向上させることができるだけでなく、閉口された空気流路の内部から流出される水分を遮断して膜-電極接合体の加湿性能を向上させることができる。
【0020】
なお、本発明に係る燃料電池スタック用金属分離板及びこれを有する燃料電池スタックは、部分開放型空気流路を備える突出パターンを有するので、別途の冷却板を装着することがなくても、円滑な反応ガスの供給及び冷却性能の向上でスタック性能を向上させることができるだけでなく、別途の冷却板が省略できるので、製造コストを節減することができ、全体の体積が減少される。
【図面の簡単な説明】
【0021】
図1】本発明の第1の実施例に係る燃料電池スタック用金属分離板を示す斜視図である。
図2図1のA部分を拡大して示す図である。
図3】本発明の第1の実施例に係る燃料電池スタックを示す分解斜視図である。
図4】本発明の第1の実施例に係る燃料電池スタックの一部分を拡大して示す結合斜視図である。
図5図4のV-V'線に沿って切断して示す断面図である。
図6】本発明の第2の実施例に係る燃料電池スタック用金属分離板を示す斜視図である。
図7図6の突出パターン部分を拡大して示す斜視図である。
図8図7のVIII-VIII'線に沿って切断して示す断面図である。
図9】本発明の第2の実施例の変形例に係る燃料電池スタック用金属分離板の一部分を拡大して示す斜視図である。
図10図9のX-X'線に沿って切断して示す断面図である。
図11】本発明の第2の実施例に係る燃料電池スタックを示す分解斜視図である。
図12図11の突出パターン部分を拡大して示す結合斜視図である。
図13図12のXIII-XIII'線に沿って切断して示す断面図である。
【発明を実施するための形態】
【0022】
本発明の利点および特徴、なお、それらを達成する方法は、添付される図面とともに詳細に後述されている実施例を参照すると明確になる。しかし、本発明は、以下で開示される実施例に限定されるものではなく、相違する多様な形態で具現されるものであり、単に本実施例は、本発明の開示が完全であるようにして、本発明が属する技術分野で通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものであり、本発明は、請求項のカテゴリにより定義されるだけである。明細書の全体にわたって同一の参照符号は、同一の構成要素を指称する。
【0023】
以下、添付された図面を参照して、本発明の好適な実施例に係る燃料電池スタック用金属分離板及びこれを有する燃料電池スタックに関して詳細に説明すると、次の通りである。
【0024】
(第1の実施例)
図1は、本発明の第1の実施例に係る燃料電池スタック用金属分離板を示す平面図であり、図2は、図1のA部分を拡大して示す斜視図である。
【0025】
図1及び図2を参照すると、図示された本発明の第1の実施例に係る燃料電池スタック用金属分離板(100)は、金属分離板本体(120)及びガスケット(140)を含む。
【0026】
金属分離板本体(120)は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺方向に開口された空気流路(127)を備える突出パターン(125)を有するチャネル部(CA)と、チャネル部(CA)の両側端にそれぞれ配置された反応ガス流入口(160)及び反応ガス排出口(162)を備えるマニホールド部(MA)を含む。
【0027】
この時、空気流路(127)を備える突出パターン(125)は、3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形される。突出パターン(125)の幅が3mm未満である場合、空気流路(127)の内部を通過する空気量が減少する関係で冷却性能効果を十分発揮するに難しいことがあり得る。逆に、突出パターン(125)の幅が5mmを超える場合には、突出パターン(125)相互間の離間間隔が狭くなる関係でパターン設計に難しいことがあり得る。
【0028】
特に、突出パターン(125)は、金属分離板本体(120)の短辺方向には、切開されて開かれた開放型構造の空気流路(127)を有し、長辺方向には、閉じられた閉鎖型構造を有する。したがって、突出パターン(125)の空気流路(127)の内部を通過する空気は、金属分離板本体(120)の一側短辺から流入されて、他側短辺に排出が行われることになる。
【0029】
ガスケット(140)は、気密性を確保するとともに、2枚以上の金属分離板をスタックする際、金属分離板間の締結力及び付着力を強化させる役割をする。このようなガスケット(140)の材質では、ゴムが用いられるが、これに限定されるものではなく、プラスチックが用いられることもある。
【0030】
このようなガスケット(140)は、第1のガスケット(142)及び第2のガスケット(144)を含むことができる。第1のガスケット(142)は、金属分離板本体(120)の上面のマニホールド部(MA)の縁に沿って形成され、第2のガスケット(144)は、チャネル部(CA)の縁に配置されて突出パターン(125)と交互に配列される島構造(island structure)で形成される。この時、突出パターン(125)及び第2のガスケット(144)は、空気流路(127)に供給される空気流入の確保のために、相互に交互に行き違うジグザグ状(zigzag shape)で配列されることが好ましいが、これは第2のガスケット(144)が突出パターン(125)と重畳される一直線上に配置される場合、第2のガスケット(144)が突出パターン(125)の空気流路(127)に供給される空気の流入を遮断することに起因して冷却性能が急激に低下する要因として作用し得るためである。したがって、第2のガスケット(144)は、金属分離板本体(120)の長辺方向に沿って等間隔で離間配置されるが、突出パターン(125)と相互重畳しないようにジグザグ状で配列することが望ましい。
【0031】
前述の本発明の第1の実施例に係る燃料電池スタック用金属分離板は、短辺方向に開口された空気流路を備える突出パターンを設計するとともに、突出パターン及びチャネル領域に配置されるガスケットを相互に交互に行き違うジグザグ状で配列することにより、ガスケットによる空気の流入が妨げられることを最小化して、冷却性能を極大化することができる。
【0032】
一方、図3は、本発明の第1の実施例に係る燃料電池スタックを示す分解斜視図である。
【0033】
図3を参照すると、図示された本発明の第1の実施例に係る燃料電池スタック(400)は、少なくとも2枚以上の金属分離板と、金属分離板の間にそれぞれ介在された膜-電極接合体(200)を含む。このとき、2枚の金属分離板は、カソード用金属分離板(100)とアノード用金属分離板(300)を有する。
【0034】
カソード用金属分離板(100)は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺方向に開口された空気流路を備える突出パターン(125)を有する。この時、空気流路を備える突出パターン(125)は、3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形される。
【0035】
このようなカソード用金属分離板(100)は、図1及び図2に示して説明した燃料電池スタック用金属分離板と実質的に同一であるところ、これに対する具体的な説明は省略する。
【0036】
アノード用金属分離板(300)は、上面から下面方向に突出され、突出パターン(125)の空気流路と交差する長辺方向に沿って形成された反応ガス流路(325)を有する。なお、アノード用金属分離板(300)は、カソード用金属分離板(100)の反応ガス流入口(160)と対応する位置に配置される反応ガス流入マニホールド(360)と、カソード用金属分離板(100)の反応ガス排出口(162)と対応する位置に配置される反応ガス排出マニホールド(362)を有することができる。
【0037】
このようなアノード用金属分離板(300)は、マニホールド領域(未図示)とチャネル領域(未図示)の縁に沿って形成されたガスケット(340)をさらに含むことができる。このようなガスケット(340)は、気密性を確保するとともに、カソード用金属分離板(100)とのスタック時、カソード用金属分離板(100)と膜-電極接合体(200)との相互間の締結力及び付着力を強化させる役割をする。
【0038】
膜-電極接合体(200)は、カソード用金属分離板(100)及びアノード用金属分離板(300)との間にそれぞれ挿入配置される。膜-電極接合体(200)は、高分子電解質膜とその両側面にそれぞれ形成される酸化電極及び還元電極を含むことができる。
【0039】
図4は、本発明の第1の実施例に係る燃料電池スタックの一部分を拡大して示す結合斜視図であり、図5は、図4のV-V'線に沿って切断して示す断面図である。この時、図4は、図3の中央部分に沿って切断した面を示す結合斜視図である。
【0040】
図4及び図5に示すように、燃料電池スタック(400)は、アノード用金属分離板(300)、膜-電極接合体(200)及びカソード用金属分離板(100)が順番に積層された構造を有することが分かる。この時、アノード用金属分離板(300)の反応ガス流路(325)は、カソード用金属分離板(100)の空気流路(127)と交差する形態で配列されることが分かる。
【0041】
この時、カソード用金属分離板(100)の突出パターン(125)は、短辺方向には、切開されて開かれた開放型構造を有し、長辺方向には、閉じられた閉鎖型構造を有する。これにより、突出パターン(125)は、短辺方向に沿って切開された、開かれた開放型構造の空気流路(127)を備えることになる。
【0042】
つまり、カソード用金属分離板(100)は、開放型の空気流路(127)を備える突出パターン(125)が設計されているので、自体の冷却が可能となり、別途の冷却板を装着することがなくても、優れる冷却性能及びスタック性能を確保することができる。
【0043】
したがって、燃料電池スタック(400)の稼動時、カソード及びアノード用金属分離板(100、300)の一側に配置される冷却ファン(未図示)から流入される空気は、短辺方向に沿って開口された開放型の空気流路(127)を通過することになる。このとき、冷却ファンから流入される空気は、一直線上に配列される空気流路(127)及びこれと隣り合う位置に配列される空気流路(127)に分散されて通過することができる。この結果、カソード及びアノード用金属分離板(100、300)の一側に配置される冷却ファンから供給される空気が短辺方向に沿って開かれた開放型構造で設計された突出パターン(125)の空気流路(127)を通過しながら、活性化損失(activation loss)、還元反応及びジュール加熱(Joule heating)などの原因により発生する熱を冷却させることができるようになる。
【0044】
前述の本発明の第1の実施例に係る燃料電池スタックは、カソード用金属分離板が開口された空気流路を備える突出パターンを有するので、別途の冷却板を装着することがなくても、優れる冷却性能及びスタック性能を確保することができるだけでなく、別途の冷却板が省略できるので、製造コストを節減することができ、全体の体積が減少される。
【0045】
(第2の実施例)
図6は、本発明の第2の実施例に係る燃料電池スタック用金属分離板を示す斜視図であり、図7は、図6の突出パターン部分を拡大して示す斜視図であり、図8は、図7のVIII-VIII’線に沿って切断して示す断面図である。
【0046】
図6乃至図8を参照すると、図示された本発明の第2の実施例に係る燃料電池スタック用金属分離板(500)は、金属分離板本体(520)及びガスケット(540)を含む。
【0047】
金属分離板本体(520)は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺または長辺方向に沿って一側は開口され、他側は閉口された空気流路(527)を備える突出パターン(525)を有するチャネル部(CA)と、チャネル部(CA)の両側端にそれぞれ配置された反応ガス流入口(560)及び反応ガス排出口(562)を備えるマニホールド部(MA)を含む。
【0048】
この時、空気流路(527)を備える突出パターン(525)は、3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形される。突出パターン(525)の幅が3mm未満である場合、空気流路(527)の内部を通過する空気量が減少する関係で冷却性能効果を十分発揮するに難しいことがあり得る。逆に、突出パターン(525)の幅が5mmを超える場合には、突出パターン(525)の相互間の離間間隔が狭くなる関係でパターン設計が難しいことがあり得る。
【0049】
特に、突出パターン(525)は、短辺又は長辺方向に沿って一側が開口された開口部(G)と、一側に反対される他側が閉口された閉口部(C)を有する。このような開口部(G)と閉口部(C)は、規則パターンとなるように形成できる。したがって、突出パターン(525)の空気流路(527)の内部を通過する空気は、突出パターン(525)の開口部(G)に流入された後、突出パターン(525)の閉口部(C)によって空気流路(527)の内部で一定時間の間、停滞してから、空気流路(527)の外部に排出が行われることになる。この結果、突出パターン(525)の閉口部(C)は、空気流路(527)の開口部(G)を通過して流入される空気である水分が空気流路(527)の外部に流出されることを遮断する遮断膜の役割をして、突出パターン(525)の部分で乾燥現象が未然に防止され、膜-電極接合体(未図示)の加湿性能を向上させることができるようになる。
【0050】
ガスケット(540)は、気密性を確保するとともに、2枚以上の金属分離板をスタックする際、金属分離板間の締結力及び付着力を強化させる役割をする。このようなガスケット(540)の材質では、ゴムが用いられるが、これに限定されるものではなく、プラスチックが用いられることもある。
【0051】
このようなガスケット(540)は、第1のガスケット(542)及び第2のガスケット(544)を含むことができる。第1のガスケット(542)は、金属分離板本体(520)の上面のマニホールド部(MA)の縁に沿って形成され、第2のガスケット(544)は、チャネル部(CA)の縁に配置されて突出パターン(525)と交互に配列される島構造(island structure)で形成される。この時、突出パターン(525)及び第2のガスケット(544)は、空気流路(527)に供給される空気流入の確保のために、相互に交互に行き違うジグザグ状(zigzag shape)で配列されることが好ましいが、これは第2のガスケット(544)が突出パターン(525)と重畳される一直線上に配置される場合、第2のガスケット(544)が突出パターン(525)の空気流路(527)に供給される空気の流入を遮断することに起因して、冷却性能が急激に低下する要因として作用し得るからである。したがって、第2のガスケット(544)は、金属分離板本体(520)の長辺方向に沿って等間隔で離間配置されるが、突出パターン(525)と相互重畳されないようにジグザグ状に配列することが好ましい。
【0052】
前述の本発明の第2の実施例に係る燃料電池スタック用金属分離板は、一側は開口され、他側は閉口される空気流路を備える突出パターンを設計し、冷却性能及びスタック性能を向上させることができるだけでなく、閉口された空気流路の内部から流出される水分を遮断して膜-電極接合体の加湿性能を向上させることができる。
【0053】
一方、図9は、本発明の第2の実施例の変形例に係る燃料電池スタック用金属分離板の一部分を拡大して示す斜視図であり、図10は、図9のX-X'線に沿って切断して示す断面図である。
【0054】
図9及び図10を参照すると、突出パターン(525)は、短辺または長辺方向に沿って一側が開口された開口部(G)と、一側に反対される他側が閉口された閉口部(C)を有する。
【0055】
この時、突出パターン(525)は、奇数列の開口部(G)と偶数列の開口部(G)とが相互反対方向を向かうように配列され、奇数列の閉口部(C)と偶数列の閉口部(C)とが相互反対方向を向かうように配列される対称構造を有することができる。このように、奇数列と偶数列を対称構造で配列する場合、渦流現象により空気流路(527)の内部を通過する空気が突出パターン(525)の閉口部(C)で、より長時間の間、滞留できるようになる。この結果、突出パターン(525)の部分で乾燥現象が発生することが未然に防止され、膜-電極接合体の加湿性能を更に向上させることができる。
【0056】
図には図示していないが、突出パターン(525)は、4つが1つの単位セルを形成し、4つの突出パターン(525)が全部異なる方向を向かうように形成されることもある。このように、4つの突出パターン(525)を全部異なる方向を向かうように形成する場合、渦流現象によって空気の滞留時間を、より遅延させることができるようになるので、膜-電極接合体の加湿性能を更に向上させることができる。
【0057】
図11は、本発明の第2の実施例に係る燃料電池スタックを示す分解斜視図である。
【0058】
図11を参照すると、図示された本発明の第2の実施例に係る燃料電池スタック(800)は、少なくとも2枚以上の金属分離板と、金属分離板の間にそれぞれ介在された膜-電極接合体(600)を含む。このとき、2枚の金属分離板は、カソード用金属分離板(500)及びアノード用金属分離板(700)を有する。
【0059】
カソード用金属分離板(500)は、下面から上面方向にマトリックス配列を形成するように離間して突出形成されて部分切開され、短辺方向に開口された空気流路を備える突出パターン(525)を有する。この時、空気流路を備える突出パターン(525)は、3〜5mmの幅を有するようにドロービード(drawbead)の形態でブリッジ成形される。
【0060】
このようなカソード用金属分離板(500)は、図1乃至図3に示して説明した燃料電池スタック用金属分離板と実質的に同一であるところ、これに対する具体的な説明は省略する。
【0061】
アノード用金属分離板(700)は、上面から下面方向に突出され、突出パターン(525)の空気流路と交差するように形成された反応ガス流路(725)を有する。なお、アノード用金属分離板(700)は、カソード用金属分離板(500)の反応ガス流入口(560)と対応する位置に配置される反応ガス流入マニホールド(760)と、カソード用金属分離板(500)の反応ガス排出口(562)と対応する位置に配置される反応ガス排出マニホールド(762)を有することができる。
【0062】
このようなアノード用金属分離板(700)は、マニホールド領域(未図示)とチャネル領域(未図示)の縁に沿って形成されたガスケット(740)をさらに含むことができる。このようなガスケット(740)は、気密性を確保するとともに、カソード用金属分離板(500)とのスタックの際、カソード用金属分離板(500)と膜-電極接合体(600)との相互間の締結力及び付着力を強化させる役割をする。
【0063】
膜-電極接合体(600)は、カソード用金属分離板(500)及びアノード用金属分離板(700)の間にそれぞれ挿入配置される。膜-電極接合体(600)は、高分子電解質膜とその両側面にそれぞれ形成される酸化電極と還元電極を含むことができる。
【0064】
図12は、図11の突出パターン部分を拡大して示す結合斜視図であり、図13は、図12のXIII-XIII'線に沿って切断して示す断面図である。
【0065】
図12及び図13に示すように、燃料電池スタック(800)は、アノード用金属分離板(700)、膜-電極接合体(600)及びカソード用金属分離板(500)が順番に積層された構造を有することが知る。この時、アノード用金属分離板(700)の反応ガス流路(725)は、カソード用金属分離板(500)の空気流路(527)と交差する形態で配列され得る。
【0066】
この時、カソード用金属分離板(500)の突出パターン(525)は、短辺方向に沿って一側は開口され、他側は閉口された空気流路(527)を備える突出パターン(525)を有する。このような突出パターン(525)は、短辺または長辺方向に沿って一側が開口された開口部(G)と、一側に反対される他側が閉口された閉口部(C)を有する。つまり、突出パターン(525)は、4つの辺のうちの3つの辺は、閉鎖型構造を有し、残りの1つの辺だけが開放型構造を有する。
【0067】
このようなカソード用金属分離板(500)は、一側が開口され、他側が閉口された空気流路(527)を備える突出パターン(525)が設計されているので、自体の冷却が可能となり、別途の冷却板を装着することがなくても、優れた冷却性能及びスタック性能を確保することができる。
【0068】
これとともに、カソード用金属分離板(500)は、突出パターン(525)の閉口部(C)が、空気流路(527)の開口部(G)を通過して流入される空気である水分が空気流路(527)の外部に流出されることを遮断する遮断膜の役割をする。この結果、突出パターン(525)の部分で乾燥現象が発生することが未然に防止され、膜-電極接合体(600)の加湿性能を向上させることができる。
【0069】
したがって、燃料電池スタック(800)の稼動時に、カソード及びアノード用金属分離板(500、700)の一側に配置される冷却ファン(未図示)から流入される空気は、短辺または長辺方向に沿って一側が開口され、他側が閉口された部分開放型の空気流路(527)を通過することになる。このとき、冷却ファンから流入される空気は、部分開放型の空気流路(527)に分散されて通過するようになり、突出パターン(525)の閉口部(C)に流入される過程で、渦流現象により閉口部(C)の周りを回りつつ排出が行われることになる。
【0070】
この結果、カソード及びアノード用金属分離板(500、700)の一側に配置される冷却ファンから供給される空気が突出パターン(525)の空気流路(527)を通過しながら、活性化損失(activation loss)、還元反応及びジュール加熱(Joule heating)などの原因により発生する熱を冷却させるとともに、突出パターン(525)の閉口部(C)による渦流現象により開口部(G)を通過した空気が、閉口部(C)の周りを回りつつ循環するようになり突出パターン(525)の部分で乾燥現象が発生することが未然に防止され、膜-電極接合体(600)の加湿性能を向上させることができる。
【0071】
前述の本発明の第2の実施例に係る燃料電池スタックは、一側は開口され、他側は閉口される空気流路を備える突出パターンを設計して、円滑な反応ガス供給及び冷却性能の向上でスタック性能を向上させることができだけでなく、閉口された空気流路の内部から流出される水分を遮断して、膜-電極接合体の加湿性能を向上させることができる。
【0072】
なお、本発明の第2の実施例に係る燃料電池スタックは、部分開放型空気流路を備える突出パターンを有するので、別途の冷却板を装着することがなくても、優れた冷却性能及びスタック性能を確保することができるだけでなく、別途の冷却板が省略され得るので、製造コストを節減することができ、全体の体積が減少される。
【0073】
さらに、本発明の第2の実施例に係る燃料電池スタックは、空冷式(air-cooled)構造に適用することができるだけでなく、水冷式(water-cooled)構造にも同様に適用することができる。
【0074】
以上では、本発明の実施例を中心として説明したが、本発明が属する技術分野で通常の知識を有する技術者の水準で様々な変更又は変形を加えることができる。このような変更及び変形は、本発明が提供する技術思想の範囲を外れない限り、本発明に属するとできる。したがって、本発明の権利範囲は、以下に記載される請求の範囲によって判断されるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13