特許第6189774号(P6189774)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジオ技術研究所の特許一覧

<>
  • 特許6189774-3次元地図表示システム 図000002
  • 特許6189774-3次元地図表示システム 図000003
  • 特許6189774-3次元地図表示システム 図000004
  • 特許6189774-3次元地図表示システム 図000005
  • 特許6189774-3次元地図表示システム 図000006
  • 特許6189774-3次元地図表示システム 図000007
  • 特許6189774-3次元地図表示システム 図000008
  • 特許6189774-3次元地図表示システム 図000009
  • 特許6189774-3次元地図表示システム 図000010
  • 特許6189774-3次元地図表示システム 図000011
  • 特許6189774-3次元地図表示システム 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6189774
(24)【登録日】2017年8月10日
(45)【発行日】2017年8月30日
(54)【発明の名称】3次元地図表示システム
(51)【国際特許分類】
   G06T 17/05 20110101AFI20170821BHJP
   G06T 11/60 20060101ALI20170821BHJP
   G09B 29/00 20060101ALI20170821BHJP
   G09B 29/10 20060101ALI20170821BHJP
【FI】
   G06T17/05
   G06T11/60 300
   G09B29/00 A
   G09B29/10 A
【請求項の数】9
【全頁数】19
(21)【出願番号】特願2014-55712(P2014-55712)
(22)【出願日】2014年3月19日
(65)【公開番号】特開2015-179346(P2015-179346A)
(43)【公開日】2015年10月8日
【審査請求日】2016年2月19日
【審判番号】不服2016-11997(P2016-11997/J1)
【審判請求日】2016年8月9日
(73)【特許権者】
【識別番号】502002186
【氏名又は名称】株式会社ジオ技術研究所
(74)【代理人】
【識別番号】100165663
【弁理士】
【氏名又は名称】加藤 光宏
(72)【発明者】
【氏名】岸川 喜代成
(72)【発明者】
【氏名】荒巻 昌稔
(72)【発明者】
【氏名】手島 英治
(72)【発明者】
【氏名】内海 公志
(72)【発明者】
【氏名】中上 卓
(72)【発明者】
【氏名】阿座上 達也
(72)【発明者】
【氏名】米倉 達郎
【合議体】
【審判長】 清水 正一
【審判官】 篠原 功一
【審判官】 渡辺 努
(56)【参考文献】
【文献】 特開2005−195475(JP,A)
【文献】 特開2003−302897(JP,A)
【文献】 特開2004−294615(JP,A)
【文献】 特開平10−141971(JP,A)
【文献】 特開平9−318380(JP,A)
【文献】 特開平11−132781(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 17/05
G06T 11/60
G09B 29/00-29/10
(57)【特許請求の範囲】
【請求項1】
地物を3次元的に表した3次元地図を表示する3次元地図表示システムであって、
前記地物の3次元モデルを記憶する地図データベースと、
前記3次元地図を投影するための投影条件を設定する投影条件設定部と、
前記地物のうち地表面または他の地物によって遮蔽されているものの少なくとも一部を、その属性に応じて透過オブジェクトとして抽出する透過オブジェクト抽出部と、
前記透過オブジェクトを投影した透過オブジェクト投影図と、前記透過オブジェクト以外の地物を投影した非透過オブジェクト投影図とを、それぞれ生成する投影処理部と、
前記非透過オブジェクト投影図の上に、所定の透過率で前記透過オブジェクト投影図を重畳する重畳処理部とを備える3次元地図表示システム。
【請求項2】
請求項1記載の3次元地図表示システムであって、
前記透過オブジェクトは、地下構造物である3次元地図表示システム。
【請求項3】
請求項2記載の3次元地図表示システムであって、
前記地図データベースは、線または道路面を表すポリゴンの形でトンネルの3次元モデルを記憶しており、
前記透過オブジェクトは、前記トンネルであり、
さらに、前記地図データベースに記憶されたトンネルの3次元モデルに対して、道路面両側に壁を付すことでトンネルモデルを生成するトンネルモデル生成部を備え、
前記投影処理部は、前記トンネルモデルに基づいて前記透過オブジェクト投影図を生成する3次元地図表示システム。
【請求項4】
請求項3記載の3次元地図表示システムであって、
道路をノードおよびリンクで表したネットワークデータと、
前記3次元地図表示システムのユーザの現在位置を検出する現在位置検出部とを備え、
前記透過オブジェクト抽出部は、
前記3次元地図表示システムが案内すべき経路を前記リンクのつながりで表した経路データと前記ネットワークデータに基づいて、前記トンネルのうち、前記経路上にあるもの、または、前記現在位置が存在するリンクの前方のノードに接続されたものを、前記透過オブジェクトとして抽出する3次元地図表示システム。
【請求項5】
請求項2〜4いずれか記載の3次元地図表示システムであって、
前記投影処理部は、前記地下構造物に対して相対的に所定の視点高さにある位置に前記投影のための視点を設定した透視投影により、前記投影を行い、
前記地下構造物の3次元モデルは、地表面下の深度が前記視点高さよりも小さく抑えられた状態で用意されている3次元地図表示システム。
【請求項6】
請求項1〜5いずれか記載の3次元地図表示システムであって、
前記重畳処理部は、前記透過オブジェクト投影図の上方の透過率を、下方よりも高くして前記重畳を行う3次元地図表示システム。
【請求項7】
請求項5記載の3次元地図表示システムのための地下構造物のデータを生成する地図データ生成装置であって、
前記地下構造物の3次元モデルを格納した地図データベースと、
前記地下構造物の3次元モデルのうち、地表面下の深度が前記視点高さより大きくなる部位について、その深度が前記視点高さ以下となるように、高さデータを修正する修正部と、
該修正後の3次元モデルを、前記地図データベースに格納する地図データベース管理部とを備える地図データ生成装置。
【請求項8】
地物を3次元的に表した3次元地図を表示する3次元地図表示方法であって、
コンピュータが実行するステップとして、
前記地物の3次元モデルを記憶する地図データベースにアクセスするステップと、
前記3次元地図を投影するための投影条件を設定するステップと、
前記地物のうち地表面または他の地物によって遮蔽されているものの少なくとも一部を、その属性に応じて透過オブジェクトとして抽出するステップと、
前記透過オブジェクトを投影した透過オブジェクト投影図と、前記透過オブジェクト以外の地物を投影した非透過オブジェクト投影図とを、それぞれ生成するステップと、
前記非透過オブジェクト投影図の上に、所定の透過率で前記透過オブジェクト投影図を重畳するステップとを備える3次元地図表示方法。
【請求項9】
地物を3次元的に表した3次元地図を表示するためのコンピュータプログラムであって、
前記地物の3次元モデルを記憶する地図データベースにアクセスする機能と、
前記3次元地図を投影するための投影条件を設定する機能と、
前記地物のうち地表面または他の地物によって遮蔽されているものの少なくとも一部を、その属性に応じて透過オブジェクトとして抽出する機能と、
前記透過オブジェクトを投影した透過オブジェクト投影図と、前記透過オブジェクト以外の地物を投影した非透過オブジェクト投影図とを、それぞれ生成する機能と、
前記非透過オブジェクト投影図の上に、所定の透過率で前記透過オブジェクト投影図を重畳する機能とをコンピュータによって実現するためのコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地下構造物など視認できない地物を違和感なく表現した3次元地図を表示する3次元地図表示システムに関する。
【背景技術】
【0002】
ナビゲーション装置やコンピュータの画面等に用いられる電子地図では、建物などの地物を3次元的に表現した3次元地図が用いられることがある。3次元地図は、仮想の3次元空間に配置された地物を透視投影などで投影することによって描かれる。3次元地図は、視点位置から見た状態を再現するものであるため、トンネルなどの地下構造物や高い建物の背後にある道路など、視点位置からは視認できない死角が生じるのが宿命である。
このような死角による影響を緩和するため、特許文献1は、トンネルを破線等で描画する技術を開示する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11−24556号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
3次元地図の利点は、視点位置から見た状態がリアルに再現されるため、ユーザが直感的に地理を把握できる点にある。特許文献1のように、地図中に破線でトンネル等を描いてしまっては、3次元地図のリアリティを損ね、非常に違和感のある表現となってしまう。つまり、トンネルのような地下構造物を表示する場合、3次元地図の利点を損なわない違和感のない表現をすることが望まれる。これは、地下構造物を表示する場合だけでなく、建物の背後の死角を表示する場合など、視点位置から見えない種々の部位を表示する場合に共通の課題である。また、視点位置から見えない種々の部位を表示することは、単なる実写画像では不可能であり、かかる表示を行うことができる点は、3次元地図の大きな利点の一つでもある。
本発明は、以上の課題に鑑み、3次元地図において、視認できない地物を違和感なく表示可能とすることを目的とする。
【課題を解決するための手段】
【0005】
本発明は、
地物を3次元的に表した3次元地図を表示する3次元地図表示システムであって、
前記地物の3次元モデルを記憶する地図データベースと、
前記3次元地図を投影するための投影条件を設定する投影条件設定部と、
前記地物のうち地表面または他の地物によって遮蔽されているものの少なくとも一部を、その属性に応じて透過オブジェクトとして抽出する透過オブジェクト抽出部と、
前記透過オブジェクトを投影した透過オブジェクト投影図と、前記透過オブジェクト以外の地物を投影した非透過オブジェクト投影図とを、それぞれ生成する投影処理部と、
前記非透過オブジェクト投影図の上に、所定の透過率で前記透過オブジェクト投影図を重畳する重畳処理部とを備える3次元地図表示システムとして構成することができる。
【0006】
本発明は、地物を透過オブジェクトと非透過オブジェクトに分け、それぞれを個別に投影し、透過オブジェクト投影図と非透過オブジェクト投影図を作成し、両者を重畳して3次元地図を表示する。この際、透過オブジェクト投影図を所定の透過率で透過させる。こうすることにより、透過オブジェクト投影図は、非透過オブジェクト投影図に対して、うっすらと視認できる状態で重畳されることになるため、ユーザには、あたかも非透過オブジェクト投影図の側の地物が透過しているかのように感じられる。従って、違和感なく透過オブジェクトを視認可能に表示することができる。
【0007】
図1は、3次元地図表示システムの表示方法を示す説明図である。この表示例に基づいて、本発明における3次元地図の表示方法を説明する。
図の上段に示すように、透過オブジェクトを投影することで、透過オブジェクト投影図を生成する。この例では、地面下に存在するトンネルと、建物の一部を透過オブジェクトとしている。また、透過オブジェクト以外の地物を投影することで、図の中段に示すように、非透過オブジェクト投影図を生成する。図の例では、非透過オブジェクト投影図には、道路および川が描かれている。そして、破線の矢印で示すように、透過オブジェクト投影図を非透過オブジェクト投影図の上に重畳して、図の下段に示す重畳図を生成する。この際、透過オブジェクト投影図側の透過率を調整することによって、透過オブジェクトはうっすらと表示されることになる。こうすることで、あたかも地表面が透けてみえるかのような状態で、トンネルを表示することができるのである。
【0008】
透過オブジェクトは、任意に設定可能であるが、地表面または他の地物によって遮蔽されているもの、即ち本来は視認されないはずの地物とすることができ、例えば、地下に存在する構造物や、他の建物等の背後にある地物、即ち地表面その他によって遮蔽される何らかの地物とすることができる。図1の例では、煩雑化を避けるために、建物は他の地物で遮蔽されていない状態で描いているが、本発明の利点を活かすためには、他の地物によって遮蔽される建物を透過オブジェクトとすることが好ましい。
本発明では、上述の通り、透過オブジェクトを視認可能に表示することにより、3次元地図における死角を低減し、ユーザに地図として多くの情報を与えることができる。
従来技術において、背後の道路を遮蔽する側の建物等を透過させるものは存在する。本発明では、遮蔽する側を透過させるのではなく、遮蔽される側を透過オブジェクトに設定し、これを透過させる点が特徴である。即ち、本来ならば背後にあるはずの地物を透過させ、遮蔽している地物の前面に表示するのである。こうすることによって、ユーザの錯覚を招き、あたかも遮蔽する側の地物が透過しているように認識させることができるとともに、透過オブジェクトを前面に重畳するため、比較的明瞭に視認可能とできる利点がある。
また本発明は、地物を投影する際に透過処理を施すのではなく、投影して得られる透過オブジェクト投影図に対して透過処理を施す。従って、透過オブジェクトが多数存在する場合でも、全体に統一のとれた透過処理を軽い負荷で施すことができる利点がある。
【0009】
透過オブジェクト投影図および非透過オブジェクト投影図を作成するための投影条件は、種々の設定が可能である。まず投影方法は、透視投影、平行投影のいずれを用いても良い。また、透視投影の場合であれば、投影条件、即ち視点位置、視線方向は任意に設定可能である。平行投影の場合は、投影条件、即ち投影方向は任意に設定可能である。
投影条件は任意に設定可能であるが、透過オブジェクト投影図、非透過オブジェクト投影図は、位置のずれなく重畳させるため、同じ投影条件で投影する必要がある。
【0010】
本発明の3次元地図表示システムにおいては、
前記透過オブジェクトは、地下構造物であるものとしてもよい。
地下構造物としては、例えば、地下にあるトンネル、建物の地下部分や地下街などがあげられる。これらを透過オブジェクトとすることにより、地表面が透けて見えるかのような表示を実現することができる。
この態様は、特に、地下のトンネルを通行する場合の経路案内処理、地下街の案内、または地下鉄や地下にある店舗などのように地下に存在する目的地への案内などの際に有用である。
【0011】
また、地下構造物を透過オブジェクトとする場合には、
前記地図データベースは、線または道路面を表すポリゴンの形でトンネルの3次元モデルを記憶しており、
前記透過オブジェクトは、前記トンネルであり、
さらに、前記地図データベースに記憶されたトンネルの3次元モデルに対して、道路面両側に壁を付すことでトンネルモデルを生成するトンネルモデル生成部を備え、
前記投影処理部は、前記トンネルモデルに基づいて前記透過オブジェクト投影図を生成するものとしてもよい。
トンネルは、道路の一部として、3次元モデルは線またはポリゴンの形で用意されていることが多い。上記態様では、このような簡易なモデルに対しても、壁を付したトンネルモデルを生成した上で投影するため、トンネルをよりリアルに表現できる利点がある。
もっとも上記態様は、トンネルを透過オブジェクトとする場合に、必ず壁を付さなくてはならないことを意味するものではない。また、上記態様に代えて、予め壁を付した状態でトンネルの3次元モデルを用意しておいても構わない。
トンネルモデルを生成するときの壁の形状等は任意に設定可能である。例えば、トンネルの一般形状である半円状の断面形状となるように壁を生成してもよい。このように壁を生成する場合には、トンネルの上部を完全に覆ってしまうのではなく、所定幅の隙間を設けてもよい。こうすることにより、トンネルの道路面を視認可能とすることができ、地図として、より有用な表現を実現することができる。
【0012】
トンネルを透過オブジェクトとする場合には、さらに、
道路をノードおよびリンクで表したネットワークデータと、
前記3次元地図表示システムのユーザの現在位置を検出する現在位置検出部とを備え、
前記透過オブジェクト抽出部は、
前記3次元地図表示システムが案内すべき経路を前記リンクのつながりで表した経路データと前記ネットワークデータに基づいて、前記トンネルのうち、前記経路上にあるもの、または、前記現在位置が存在するリンクの前方のノードに接続されたものを、前記透過オブジェクトとして抽出するものとしてもよい。
こうすることにより、トンネルの一部を表示対象とすることができる。仮に、地図中にある全てのトンネルを表示すると、ユーザは普通に視認できる道路等の地物に加えて、本来は視認できないはずの多数のトンネルも視認可能となるため、情報量が多すぎて混乱を招くおそれがある。これに対し、上記態様では、ユーザにとって重要度が高いと考えられるトンネルに絞って表示するため、適度な情報をユーザに与えることができる。
上記態様では、経路上にあるトンネル、および現在位置が存在するリンクの前方のノードに接続されたトンネルを表示対象としている。前方とは、ユーザの進行方向側ということである。かかるノードは進行方向に存在する分岐を表すことになるため、仮にそのノードに接続されたトンネルを表示しておかないと、分岐がないかのような3次元地図が表示されることとなり、ユーザを混乱させてしまう。こうした状態を回避するため、上記態様では、かかるノードに接続されたトンネルを表示対象としているのである。表示対象のトンネルを決定するための条件は、上述の2つの他にも設定可能である。
【0013】
地下構造物を透過オブジェクトとする場合、
前記投影処理部は、前記地下構造物に対して相対的に所定の視点高さにある位置に前記投影のための視点を設定した透視投影により、前記投影を行い、
前記地下構造物の3次元モデルは、地表面下の深度が前記視点高さよりも小さく抑えられた状態で用意されているものとしてもよい。
上記態様のように透視投影の視点位置を地下構造物との相対的な位置関係で設定する場合、地下構造物が地中深くに存在すると、視点位置も地中に設定されてしまうおそれがある。例えば、山の中を走るトンネルなどの場合には、山の中心に近づくに連れて、視点位置が地中に設定されるおそれが高くなる。
これに対し、上記態様では、地表面下の深度を抑えた状態で地下構造物の3次元モデルを生成するため、視点位置が地中に潜ることを回避でき、違和感のない地図を表示することが可能となる。上記態様における3次元モデルは、地中の深度に規制をかける点で、地下構造物の形状を正確に表すものではないが、上述のように視点を設定する場合には、このように現実から離れた形の3次元モデルを用いた方が違和感のない表示を実現できる場合もあるのである。
単に視点位置が地中に潜るのを回避するだけであれば、視点位置を地表面から一定の高さとなるように制御する方法も考えられる。しかし、この方法では、山の中心付近では、視点位置からトンネルまでの距離が離れすぎ、トンネルを小さくしか表示できなくなるおそれがある。これに対し、上記態様であれば、地下構造物と視点位置との相対的な位置関係は維持しておくことが可能であるため、地下構造物が極端に小さくなるなどの弊害も回避できる利点がある。
【0014】
地下構造物を透過オブジェクトとするか否かに関わらず本発明の3次元地図表示システムにおいては、
前記重畳処理部は、前記透過オブジェクト投影図の上方の透過率を、下方よりも高くして前記重畳を行うものとしてもよい。
透過率を高くとは、即ち透明に近づけるということである。上記態様によれば、下方、即ち視点位置に近い部分では、透過オブジェクトを比較的はっきりと視認でき、上方、即ち遠方では、ほとんど視認できない程度にうっすらと表示させることが可能となる。こうすることによって、遠方に行くほどフェードアウトさせて透過オブジェクトを表示させることができ、違和感をさらに軽減することが可能となる。
透過率は、任意に設定可能である。下方から上方に向かうに連れて直線状に変化させてもよいし、段階的または曲線状に変化させてもよい。また、上方の一定領域では、透過オブジェクトを完全に透過させた状態、即ち視認できない状態としてもよい。
本発明では、透過オブジェクト投影図に対して透過率を変化させるため、多数の透過オブジェクトが存在する場合でも、全体に統一のとれた透過率を軽い処理負荷で与えることができる。本発明の態様と異なり、投影する際に、透過オブジェクトの透過率を個別に制御する方法をとった場合には、各透過オブジェクトについて視点位置からの距離を求め、それに応じた透過率を個別に設定する必要が生じ、非常に煩雑な処理が要求されることになる。本発明では、こうした負荷を回避することができるのである。
【0015】
本発明においては、上述した種々の特徴を必ずしも全て備えている必要はなく、適宜、その一部を省略したり、組み合わせたりして構成してもよい。
また、本発明は、3次元地図表示システムのための地下構造物のデータを生成する地図データ生成装置として構成することもできる。
即ち、地図データ生成装置は、
前記地下構造物の3次元モデルを格納した地図データベースと、
前記地下構造物の3次元モデルのうち、地表面下の深度が前記視点高さより大きくなる部位について、その深度が前記視点高さ以下となるように、高さデータを修正する修正部と、
該修正後の3次元モデルを、前記地図データベースに格納する地図データベース管理部とを備えるものである。
このように地物データを生成することにより、地表面下の深度が抑えられ、従って、視点位置が地物との相対関係で定められている場合でも、視点位置が地中に設定されるなどの不具合を回避することができる。
【0016】
本発明は、さらに他の態様として、コンピュータによって3次元地図を表示する3次元地図表示方法として構成してもよいし、かかる表示をコンピュータに実行させるためのコンピュータプログラムとして構成してもよい。また、かかるコンピュータプログラムを記録したCD−R、DVDその他のコンピュータが読み取り可能な記録媒体として構成してもよい。
【図面の簡単な説明】
【0017】
図1】3次元地図表示システムの表示方法を示す説明図である。
図2】3次元地図表示システムの構成を示す説明図である。
図3】3次元地図データベースの構造を示す説明図である。
図4】経路案内処理のフローチャートである。
図5】地図表示処理のフローチャートである。
図6】トンネルモデル生成処理のフローチャートである。
図7】3次元地図の表示例(1)を示す説明図である。
図8】3次元地図の表示例(2)を示す説明図である。
図9】第2実施例におけるトンネルデータの形状例を示す説明図である。
図10】トンネルデータ修正処理のフローチャートである。
図11】第2実施例における地図表示処理のフローチャートである。
【発明を実施するための形態】
【実施例1】
【0018】
A.システム構成:
図2は、3次元地図表示システムの構成を示す説明図である。本実施例の3次元地図表示システムは、経路探索を行い、3次元地図を表示しながら経路案内をするシステムである。3次元地図表示システムは、経路探索、経路案内機能を伴わず、単にユーザからの指示等に従って3次元地図を表示するシステムとして構成してもよい。
実施例の3次元地図表示システムは、サーバ200と端末300とをネットワークNE2で接続して構成されている。端末300としては、スマートフォンを用いるものとしたが、携帯電話、携帯側情報端末、パーソナルコンピュータ、カーナビゲーション装置など、地図を表示可能な種々の装置を利用可能である。また、3次元地図表示システムは、サーバ200と端末300とを一体化したシステムとして構成してもよい。
【0019】
サーバ200および端末300には、図示する種々の機能ブロックが用意されている。これらの機能ブロックは、本実施例では、それぞれの機能を実現するコンピュータプログラムを、サーバ200および端末300にインストールすることによってソフトウェア的に構成したが、その一部または全部をハードウェア的に構成してもよい。
本実施例では、サーバ200と端末300とからなる構成を採用したが、3次元地図表示システムは、スタンドアロンの装置として構成してもよいし、さらに多くのサーバ等からなる分散システムとして構成してもよい。
【0020】
(1)サーバ200について
地図データベース210には、3次元地図データベース211およびネットワークデータ213が格納されている。3次元地図データベース211には、地物の3次元形状を表すポリゴンデータ、ラインデータおよび文字データが格納されている。ネットワークデータ213は、道路をリンクおよびノードで表した経路探索用のデータである。
3次元地図データベース211の内容について説明する。本実施例では、地物を線状オブジェクトと、その他の一般地物とに分けて取り扱う。線状オブジェクトとは、道路のように線状の地物の総称であり、ラインデータ、即ち折れ線データで形状を表すことができるオブジェクトを言う。線状オブジェクトには、例えば、道路、トンネル、線路、経路案内表示、河川などが含まれる。線状オブジェクト以外の一般地物には、建物等が含まれる。3次元地図データベース211においては、建物等の一般地物に対しては、3次元形状を表すポリゴンデータが用意されている。線状オブジェクトに対しては、ラインデータが用意されている。ただし、後述する通り、線状オブジェクトについてポリゴンデータを併せて用意するものとしてもよい。
データベース管理部202は、地図データベース210のデータの入出力を管理する。本実施例では、3地毛に地図データベース211に格納されたオブジェクトを、透過オブジェクト、非透過オブジェクトに分類して描画を行う。3次元地図データベース211からデータを読み出すとともに、この分類を行うのもデータベース管理部202の機能である。
データベース管理部202には、トンネルモデル生成部204が用意されている。トンネルモデル生成部204は、トンネルを表すラインデータに基づいて、路面と壁とを設け、3次元的なポリゴンモデルを生成する機能を奏する。
経路探索部203は、ネットワークデータ213を利用して、端末300のユーザから指定された出発地から目的地までの経路を探索する。経路探索は、ダイクストラ法など周知の方法によって行うことができる。
送受信部201は、ネットワークNE2を介して、端末300との間で、種々のデータやコマンドの送受信を行う。
【0021】
(2)端末300について
主制御部304は、端末300に備えられた各機能ブロックの動作を統合制御する。
送受信部301は、ネットワークNE2を介してサーバ200との間で、データやコマンドの送受信を行う。
コマンド入力部302は、ユーザからの経路案内等に関する指示などを入力する。指示としては、例えば、経路案内の出発地、目的地の指定、地図表示時の表示スケールの指定などが挙げられる。
位置・通行情報取得部303は、GPS(Global Positioning System)等のセンサから端末300の現在位置等を取得する。
地図情報記憶部305は、地図を表示する際に、サーバ200から取得した3次元地図データベース211を一時的に記憶する。本実施例では、端末300は、予め全ての地図データを記憶しておくのではなく、地図の表示範囲に応じて必要となる地図データを適宜、サーバ200から取得する。地図情報記憶部305は、こうして取得された地図データを記憶している。また、併せて、経路探索の結果も記憶する。
表示制御部306は、地図情報記憶部305に記憶されている地図データを用いて、端末300のディスプレイ300dへの地図表示を行う。表示制御部306には、投影処理部307と、重畳処理部308が備えられている。投影処理部307は、地図情報記憶部305に格納されたポリゴンデータおよびラインデータを、透過オブジェクトと非透過オブジェクトに分類して、それぞれ仮想3次元空間に配置し、投影することによって透過オブジェクト投影図、非透過オブジェクト投影図を生成する機能を奏する。重畳処理部308は、生成された透過オブジェクト投影図を、非透過オブジェクト投影図に、透過率を調整して重畳し、重畳図(図1の下段参照)を生成する。
【0022】
B.地図データベース:
図3は、3次元地図データベースの構造を示す説明図である。図中には、3次元地図データベース211に記憶されているラインデータおよびポリゴンデータの構造を示した。
【0023】
ラインデータは、道路、トンネルなどの線状の地物を表すデータであり、図示するように、ID、属性、構成点などのデータが格納されている。IDは、各ラインデータの識別情報である。属性は、各ラインデータが「道路」か「トンネル」かの種別を示す情報である。属性情報には、この他に、国道、県道などの道路の種別、道路の幅、車線数、一方通行その他の規制などを含めても良い。構成点は、道路の形状を定義する点の3次元座標である。
図の例では、ID=LID1が付されたラインデータ(図中の実線で示した道路に対応する部分)は、属性によれば「道路」であり、その形状は、構成点PL1、PL2で定義されることを表している。また、LD=LID2が付されたラインデータ(図中の破線で示した道路に対応する部分)は、属性によれば「トンネル」であり、その形状は、構成点PL2〜PL5で定義されることを表している。
【0024】
ポリゴンデータは、建物などの地物を表すデータであり、ラインデータと同様のデータ構造を有している。ただし、構成点としては、3次元形状を表すポリゴンの頂点の3次元座標を与えるデータとなっている。
図の例では、ID=PID1が付されたポリゴンデータ(図中の実線で示した道路に対応する部分)は、属性によれば「地上建物」であり、その形状は、図中に示した面の構成点PP1〜PP4等で定義されることを表している。地上建物には、まだ他の面が存在するから、構成点には、各面の頂点を表す座標がさらに格納されることになる。また、LD=PID2が付されたポリゴンデータ(図中の破線で示した道路に対応する部分)は、属性によれば「地下建物」であり、その形状は、構成点PP3〜PP6等で定義されることを表している。地下建物も、まだ他の面が存在するから、構成点には、各面の頂点を表す座標がさらに格納されることになる。
本実施例では、トンネルと道路は別の地物として取り扱い、地上建物と地下建物も別の地物として取り扱う。これに代えて、図示する地上建物および地下建物の全体を一つの地物として扱い、各構成点またはポリゴンに対して、地上部分、地下部分などの属性を与える方法をとってもよい。
【0025】
C.経路案内処理:
(1)経路案内処理:
図4は、経路案内処理のフローチャートである。経路案内処理は、ユーザによって指定された出発地から目的地に向かうまでの経路を探索し、その案内を行う処理である。これは、主としてサーバ200の経路探索部203、端末300の表示制御部306などが協働して行う処理であり、ハードウェア的にはサーバ200および端末300のCPUによって行われる処理である。
処理を開始すると、端末300は、ユーザから出発地、目的地の指定を入力する(ステップS10)。現在位置を出発地として用いても良い。
サーバ200は、端末300から出発地、目的地の情報を受け、ネットワークデータ213を参照して、経路探索を行う(ステップS11)。経路探索は、ダイクストラ法などの周知の方法をとることができる。
そして、経路探索結果に基づき、経路案内データを作成する(ステップS12)。経路案内データは、経路探索の結果を、ネットワークデータ213のリンク列で表したデータである。経路案内データは、経路探索の結果として、端末300に送信される。
【0026】
端末300は、次にユーザの現在位置に応じて、3次元地図を表示しながら経路を案内する処理を行う。
まず、端末300は、ユーザの現在位置を検出する(ステップS13)。現在位置は、GPSなどのセンサを利用して検出することができる。
そして、端末300は、地図表示処理によって3次元地図を表示する(ステップS14)。処理の内容は、後で詳述する。
以上の処理を、端末300は、目的地に到着するまで繰り返し実行する(ステップS15)。
【0027】
(2)地図表示処理:
図5は、地図表示処理のフローチャートである。経路案内処理(図4)のステップS14に相当する処理であり、端末300の表示制御部306が主として実行する処理である。
処理を開始すると、端末300は、視点、視線方向、表示スケールを入力する(ステップS20)。視点は、現在位置に基づいて定めるものとしてもよい。視線方向は、現在位置および進行すべき経路に基づいて定めるものとしてもよい。
そして、3次元地図として表示すべき範囲の地図データおよび経路案内データを読み込む(ステップS21)。3次元地図を表示するために、本実施例では、端末300は、まず地図情報記憶部305に格納されているデータを読み込む、そして地図を表示するために地図データが不足している場合には、不足分をサーバ200から取得する。
【0028】
次に、サーバ200は、トンネルモデル生成処理を行う(ステップS22)。この処理は、トンネルのラインデータに基づき、路面およびトンネルの壁を生成することによって、トンネルの3次元モデルを生成する処理である。処理の詳細は後述する。この処理も、地図データ等の読み込み(ステップS21)と同様、既に生成済みのトンネルモデルは地図情報記憶部305に格納されているため、不足する分のトンネルについてのみ実行される。
【0029】
端末300は、地図内に表示される地物から、透過オブジェクトを抽出する(ステップS23)。本実施例では、トンネルを透過オブジェクトとした。
そして、端末300は、透過オブジェクトを仮想3次元空間に配置し、透視投影することで、透過オブジェクト投影図を生成する(ステップS24)。また、透過オブジェクト以外の地物、即ち非透過オブジェクトを、別途、仮想3次元空間に配置し、透視投影することで、非透過オブジェクト投影図を生成する(ステップS25)。透過オブジェクト投影図、非透過オブジェクト投影図を生成する際の投影条件、つまり視点位置、視線方向などは同じとしてある。
端末300は、最後に、得られた非透過オブジェクト投影図に、透過オブジェクト投影図を重畳する(ステップS26)。こうすることで、図1の下段に示した重畳図を得ることができる。重畳の際には、透過オブジェクト投影図の透過率を調整する。本実施例では、地表面などの非透過オブジェクト投影図の各地物が透けることによって透過オブジェクト投影図を視認できているとユーザが錯覚する程度の透過率に設定してある。透過率は、透過オブジェクト投影図の全体で一定としてもよいし、領域に応じて変化させてもよい。
【0030】
(3)トンネルモデル生成処理:
図6は、トンネルモデル生成処理のフローチャートである。この処理は、地図表示処理(図5)のステップS22に相当する処理であり、サーバ200が実行する処理である。端末300の処理能力が十分にある場合には、端末300で実行してもよい。
【0031】
サーバ200は、処理を開始すると、道路データを読み込み、トンネル区間を抽出する(ステップS30)。図中に処理の例を示した。この例では、構成点P1〜P6で定義されるラインデータの形式で道路データが与えられている。このうち、破線で示した構成点P2〜P4の区間には「トンネル」という属性が付されているとすると、サーバ200は、この構成点P2〜P4の区間をトンネル区間として抽出するのである。道路と、トンネルとが別の地物として3次元地図データベースに格納されている場合には、上述した複雑な処理を施すまでなく、「トンネル」との属性が付された地物を抽出すれば足りる。
【0032】
そして、サーバ200は、トンネル区間を拡幅し路面ポリゴンを生成する(ステップS31)。図中に処理の様子を例示した。「ライン」と示した中央の線分が、ラインデータによって与えられる線の形状である。サーバ200は、このラインに直交する左右方向にラインを平行移動することによって拡幅する。これをトンネル区間の全構成点に対して実行することにより、路面ポリゴンを生成することができる。拡幅の幅は、一定値としてもよいし、トンネルに接続された道路の幅に合わせるようにしてもよい。また、トンネル区間に対して、道路幅や車線数などの属性情報を予め用意しておき、これらの情報に基づいて拡幅の幅を決定するようにしてもよい。
【0033】
サーバ200は、路面ポリゴンの両側に、壁ポリゴンを生成する(ステップS32)。図中に処理の例を示した。この例では、断面が1/4円弧状の壁が路面ポリゴンの両側に設置されている。壁の半径Rは、任意に設定可能であるが、道路に関する法令などで規定されている高さに合わせても良い。本実施例では、両側の壁ポリゴンの間に、隙間WSを設けた。隙間WSが存在することによって、トンネルを3次元表示したときでも路面を視認することが可能となるからである。隙間WSの値も任意に決定可能であるが、本実施例では、WS=道路幅Wr−2×Rという計算式で算出される値とした。即ち、道路の両端から、半径Rでそれぞれ1/4円弧(中心角90度)の壁ポリゴンを生成したときに、必然的に得られる隙間がWSとなる。逆に、視認性を考慮して、道路幅Wrを決定した上で、半径Rを調整したり、壁ポリゴンの中心角を90度よりも小さい値としてもよい。
ここでは、円弧状の壁ポリゴンを例示したが、壁ポリゴンの形状は任意であり、平板状としてもよい。
【0034】
D.表示例:
図7は、3次元地図の表示例(1)を示す説明図である。トンネルを透過オブジェクトとして表示した例を示した。中央付近に縦方向に描かれている曲線がトンネルである。その周囲には、非透過オブジェクトとして、道路、建物等が描かれている。本来であれば、トンネルは地表面の下に位置するため、3次元地図内には表示されないが、本実施例の3次元地図では、表示されることが分かる。従って、経路案内において、トンネルを通行する経路が選択されている場合でも、現在地マークはトンネル上に表示され、ユーザに対して違和感のない表示を実現できる。
【0035】
図7の例では、透過オブジェクト投影図を重畳する際に、領域に応じて透過率を変化させている。透過オブジェクト投影図の下方の領域、即ち視点位置に近い部分は透過率を低くし、上方の領域、即ち視点から遠い部分は透過率を高くしている。こうすることによって、下方の領域TAでは、トンネルを明瞭に表示し、遠方の領域TBでは、うっすらと表示させるというように、フェードアウト表示とすることができる。この結果、トンネルの奥行きを表現することができるとともに、ユーザに過度の情報を与え、混乱を生じさせることを回避できる。視点からの距離に応じて、一つの地物であるトンネルの透過率を変化させることは通常であれば、投影前に地物の区間ごとに透過率を設定するなどの処理が必要となり、処理負荷が高くなるが、本実施例では、投影後の2次元画像としての透過オブジェクト投影図に対して透過率を設定するため、軽い処理負荷でフェードアウト表示を実現することができる。
【0036】
図8は、3次元地図の表示例(2)を示す説明図である。トンネルとともに建物の一部も透過オブジェクトとして扱った例を示した。透過率は、視点に近い部分で低く、遠方で高くなるように設定してある。建物を透過オブジェクトとして扱うことにより、トンネルや道路を認識しやすくなる利点がある。
図の例では全ての建物を透過オブジェクトとしているが、他の建物等によって遮蔽される建物のみを透過オブジェクトとしてもよい。こうすれば、地表面が透けてトンネルが視認できているかのように見えるのと同様、前方にある建物が透けて背後にある建物が視認できるかのような表示を実現することができる。
【0037】
以上で説明した第1実施例の3次元地図表示システムによれば、トンネルなど遮蔽されている地物を、あたかも遮蔽している側の地物が透けて見えるかのように表示することができ、違和感なく地図としての有用性の高い表示を実現することができる。
【実施例2】
【0038】
次に第2実施例の3次元地図表示システムについて説明する。第2実施例では、透過オブジェクトとして扱われるトンネルのデータ構造が第1実施例とは相違する。
【0039】
(1)トンネルデータの修正:
図9は、第2実施例におけるトンネルデータの形状例を示す説明図である。山の中をほぼ水平に貫通するトンネルを横から見た状態を示した。図の上段には、地形を模式的に表し、下段には、地表面からの深さDを表すグラフを示した。深さDは、上段に示すように、地表面からトンネルまでの距離を表し、トンネルが地中にある場合を正とする。
上段の図において上に凸の曲線状に描かれた地表面が山である。トンネルは下方に実線で示す通り、ほぼ水平に走っている。地表面が山のように起伏しているため、地表面からの深さDは、下段の図に示すように中央付近で極大となる。
【0040】
かかる状態でトンネルを移動する際に経路案内表示する場合を考える。経路案内表示する際の視点位置(以下、カメラ位置とも言う)および視線方向は、現在位置の後上方から現在位置に向けて設定することが好ましい。
例えば、現在位置P1に対しては、その後方の高さhの点をカメラ位置C1として透視投影を行う。こうすれば現在位置およびその進行方向の経路を含む3次元地図を表示することができる。
しかし、現在位置P2、P3になると、この方法では、カメラ位置C2、C3に設定されることとなる。これらのカメラ位置は、地中にあるため、3次元地図は、トンネル以外の地物は全く描かれない状態となってしまう。これを回避するために、例えば、カメラ位置C2、C3を地表面の高い位置に設定すれば、今度は、トンネルまでの距離が離れすぎ、トンネルが非常に小さくしか描かれないという別の課題が生じることになる。
【0041】
本実施例では、こうした弊害を回避するため、トンネルの地表面からの深さDが最大値Dmax以下となるように修正する。この修正を施したトンネル修正データは、図の上段に破線で示すように、山の形状に沿って上側に曲線状に曲がった形となる。修正するのは、トンネルの高さデータのみであり、2次元的な位置データは修正しない。トンネル修正データを用いて経路案内をする場合を考える。
現在位置P4にあるとき、視点位置は、トンネル修正データに沿って後方で高さhのカメラ位置C4に設定される。これは地表面より上にあるため、違和感のない3次元地図を表示可能となる。
また、現在位置P3にあるとき、視点位置は、トンネル修正データに沿って後方で高さhのカメラ位置C5に設定される。従って、この場合も、地表面より上に設定されるため、違和感のない3次元地図を表示可能となる。
【0042】
トンネル修正データは、現実のトンネル形状を表すものではない。しかし、このようにトンネルの地中深さを修正した地図表示の便宜上のデータを用意することにより、複雑なアルゴリズムを用いるまでなく、経路案内時に違和感のない地図の表示を実現することが可能となるのである。
地中深さの最大値Dmaxは、上述の通り、カメラ位置が地中に潜ることを回避するための規制値であるから、カメラ位置を決定する高さhの値よりも大きい範囲で任意に設定可能である。
【0043】
(2)トンネルデータ修正処理:
図10は、トンネルデータ修正処理のフローチャートである。この処理は、サーバ200(図1参照)が実行するものとしてもよいし、サーバ200に接続された他の地図データ生成装置で実行するものとしてもよい。いずれの場合においても、図10に示す機能を実現するためのコンピュータプログラムをインストールすることによってソフトウェア的に構成することができる。ここでは、サーバ200が実行するものとして説明する。
【0044】
トンネルデータ修正処理を開始すると、サーバ200は、まずトンネルデータを読み込み(ステップS40)、地表面からの深さD≦最大値Dmaxとなるように、トンネルデータの各構成点の高さデータを修正する(ステップS41)。
図中に修正方法の例を示した。実線が修正前のトンネルデータを表しており、構成点RP[1]〜RP[7]で構成されている。地表面からの深さDは、中央付近の構成点RP[3]〜RP[5]では、最大値Dmaxを超えている。
高さデータの第1の修正方法では、構成点RP[3]〜RP[5]のそれぞれを地表面深さが最大値Dmaxとなるように修正する。この方法での修正データが、それぞれ構成点RPA[3]〜RPA[5]である。第1の修正方法では、修正後のトンネル経常が、中央付近でやや歪んだ状態となるが、修正すべき構成点が少なくて済む点が特徴である。
第2の修正方法では、まず、最も地表面深さが大きくなる構成点RP[4]の高さを最大値Dmaxに修正する。この構成点がRPB[4]である。そして、トンネル区間の両端の構成点RP[1]、RP[7]と、修正阿田尾の構成点RPB[4]を通る滑らかな曲線、例えばスプライン曲線、を求め、この曲線上に乗るように、各構成点の高さを修正する。この結果、構成点RP[2]、RP[3]、RP[5]、RP[6]は、それぞれRPB[2]、RPB[3]、RPB[5]、RPB[6]に修正される。第2の修正方法では、修正すべき構成点は多いが、全体として滑らかなトンネル形状を実現することができる利点がある。
第1および第2の修正方法は、いずれを選択してもよい。
【0045】
以上の処理によってトンネルデータを修正すると、サーバ200は、この修正後のデータを格納して(ステップS42)、トンネルデータ修正処理を終了する。経路案内では、修正後のデータを用いてトンネルの表示が行われることになる。
【0046】
(3)地図表示処理:
図11は、第2実施例における地図表示処理のフローチャートである。実施例1における地図表示処理(図5)において、トンネルモデル生成処理(図5のステップS22)の前に、表示対象となるトンネルを選択する処理を追加した(図11のステップS21A)。トンネルは、本来、視認できないはずの地物であるため、全てのトンネルを表示対象とすると、地図が非常に煩雑となり、ユーザを混乱させるおそれがあるため、第2実施例では、重要性の高いトンネルのみを表示対象とするのである。
【0047】
重要性の高いトンネルは、次の2つの条件に基づいて判断する。
条件1:経路上のトンネル;
条件2:現在リンクの先端に接続されたトンネル
第2実施例では、条件1または条件2の少なくとも一方を満たすものが表示対象とされ、そうでないものは表示対象から除外される。
【0048】
図中に、上記条件の判断例を示した。経路探索の結果、図中に実線で示す経路が得られているとする。それぞれの矢印は、経路の進行方向を表すとともに、経路を構成するリンクを表している。リンクの接続部分の●はノードを表している。
最上段に描かれているトンネル1は、経路上にあるトンネルである。従って、トンネル1は上述の条件1により表示対象となる。
中段のトンネル2は、現在位置が存在するリンクの先方のノードに接続されたトンネルである。従って、トンネル2は上述の条件2により表示対象となる。トンネル2が経路上のトンネルでないにも関わらず表示対象となる理由は、次の通りである。トンネル2は、経路上のノードと接続されているため、ユーザが経路を走行していくと必ず通過する分岐点を構成することになる。仮にトンネル2を表示対象から除外してしまうと、経路案内に用いられる地図上は、あたかも上述の分岐点が存在しない表示となってしまい、ユーザを混乱させるおそれがある。本実施例では、こうした混乱を回避するため、トンネル2のように現在位置の先で分岐を構成するものについては、表示対象としているのである。
下段のトンネル3は、条件1、2のいずれにも該当しないため、表示対象から除外される。トンネル3も経路と接続し、分岐を構成してはいるが、現在位置は既にその分岐を通過しているため、非表示としてもユーザを混乱させる心配はないからである。先に表示対象とされていたトンネル2についても、分岐を通過した時点でトンネル3と同様に非表示に切り替わることになる。
【0049】
トンネルを選択した後の処理は、第1実施例(図5)と同様である。選択されたトンネルに対してトンネルモデルを生成し(図5のステップS22)、透過オブジェクトの抽出(ステップS23)、透過オブジェクト投影図の生成(ステップS24)、非透過オブジェクト投影図の生成(ステップS25)、そして両者の重畳(ステップS26)を行って、3次元地図を表示する。
【0050】
第2実施例によれば、第1実施例の効果に加え、現在位置との相対関係でカメラ位置を設定しても、カメラが地中に潜るといった支障を回避することができる。また、表示対象となるトンネルを選択することによってユーザに提供される情報を適度に抑えることができる。
【0051】
以上、本発明の実施例について説明した。
以上の実施例1、2で説明した種々の特徴点は、必ずしも全てを備えている必要はなく、適宜、一部を省略したり組み合わせたりして適用してもよい。例えば、第2実施例で示したトンネルデータの修正や、トンネルの選択処理は、第1実施例にも適用可能である。また、第2実施例においては、地下建物を対象として、トンネルと同様に深さの修正や表示対象の選択を行ってもよい。
また、本発明は、上述した実施例の他、種々の変形例をとることができる。
(1)透過オブジェクトとできる地物は、必ずしもトンネルや地下建物には限らない。地上に存在する地物を透過オブジェクトとしてもよい。
(2)実施例においてソフトウェアで処理している部分はハードウェアに置き換えることもでき、その逆も可能である。
【産業上の利用可能性】
【0052】
本発明は、地下構造物など視認できない地物を違和感なく表現した3次元地図を表示する3次元地図表示システムに関する。
【符号の説明】
【0053】
200…サーバ
201…送受信部
202…データベース管理部
203…経路探索部
204…トンネルモデル生成部
210…地図データベース
211…3次元地図データベース
213…ネットワークデータ
300…端末
301…送受信部
302…コマンド入力部
303…位置・通行情報取得部
304…主制御部
305…地図情報記憶部
306…表示制御部
307…投影処理部
308…重畳処理部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11