(58)【調査した分野】(Int.Cl.,DB名)
活性化段階および/または再生段階の酸素含有ガス流中の酸素の比率が酸素とフッ化水素の総量に対して2〜98モル%である請求項1〜3のいずれか一項に記載の方法。
【背景技術】
【0002】
本発明で得られる製品、例えばHFO−1234yfは発泡剤、冷媒、エアゾル推進薬、伝熱媒体、消火剤、その他の用途で公知の化合物である。このHFO−1234yfはオゾン破壊能がゼロ(Zero Ozone Depletion Potential、ODP)の化合物であり、地球温暖化ポテンシャル(GWP)も150以下と非常に低いことも公知である。
【0003】
オゾン層保護のためのモントリオールプロトコルによってクロロフルオロカーボン(CFC)の使用は禁止された。クロロフルオロカーボンの代わりにオゾン層への影響がより少ない化合物、例えばハイドロフルオロカーボン、HFC、例えばHFC−134aが用いられるようになった。しかし、これらの化合物は地球温暖化の原因である温室効果ガスであることが証明され、気候変動に関する京都議定書で規制された。地球の気候変動に対する懸念が引き続いているため、ODP(オゾン減損ポテンシャル)が高く、GWP(地球温暖化ポテンシャル)が高いものを置換する方法を開発するというニーズが増大している。ハイドロフルオロカーボン(HFC)はオゾン層に影響を及ぼさない化合物であり、溶剤、洗浄剤および伝熱流体としてのクロロフルオロカーボン(CFC)およびヒドロクロロフルオロカーボン(HCFC)の代替物と認定されている。しかし、それでも著しく高いGWP値を示す傾向がある。ヒドロフルオロオレフィン(HFO)はODP値がゼロで、GWP値が低い潜在的代替物であると考えられている。
従って、このHFO化合物、特にHFO−1234yfの製造方法が開発されている。
【0004】
特許文献1(国際特許公開第WO 2007/079431号公報)にはフッ素化オレフィン、例えばヒドロフルオロプロペンの製造方法が開示されている。単一反応または2つ以上の反応として広範囲に記載されたプロセスは、式C(X)
mCCl(Y)
nC(X)
mの化合物をフッ素化して少なくとも一つの式CF
3CF=CHZの化合物を製造することを含む。ここで、各X, YおよびZは独立してH, F, Cl, IまたはBrであり、各mは独立して1, 2または3であり、nは0または1である。HFO-1234yfは、HFCO-1233xfを1,1,1,2-テトラフルオロ-2-クロロプロパン (HCFC-244bb)にフッ素化し、その後、脱塩化水素することで作られる。HFCO-1233xfは対応する塩素化先駆体(CCl
2=CClCH
2Cl)のフッ素化によって作られる。
【0005】
特許文献2(欧州特許公開第EP−A−939071号公報)には多くの可能性の中で、非常に長いリストの中でハロゲン化プロペンを気相フッ素化してフッ素化プロペン(例えばHFO-1234yfリスト中)を製造することが開示されている。
【0006】
特許文献3(国際特許公開第WO 2008/054781号公報)には、必要に応じて触媒の存在下で、ハロプロパンまたはハロプロペンをHFと反応させて種々のフルオロプロパンおよびハロフルオロプロペンを製造する方法が開示されている。特許文献3にはHFの存在下で2,3-ジクロロ-1,1,1-トリフルオロプロパン (HCFC-243db)を触媒、特にCr/Co (98/2)上で反応させてHFO-1234yfの製造方法が開示されている。反応生成物はHFO-1234yfおよびHFCO-1233xfを含む。後者が主生成物で、他の生成物は1-クロロ-3,3,3-トリフルオロ-1-プロペン(HFCO-1233zd)および1,1,1,2,2-ペンタフルオロプロパン (HFC-245cb)および1,3,3,3-テトラフルオロ-1-プロペン (HFO-1234ze)である。
【0007】
特許文献4(国際特許第WO 2008/002500号)には、脱フッ化水素触媒上での1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)の触媒変換によるHFO-1234yfとHFO-1234zeとの混合物の製造方法が開示されている。
【0008】
特許文献5(国際特許公開第WO2008/040969号公報)には、HCFC-243dbを脱塩化水素化してHFCO-1233 (xf および zd)を製造し、その後の1,1,1,2-テトラフルオロ-2-クロロプロパン (HCFC-244bb)を作り、その後に脱塩化水素化で所望のHFO-1234yfを生成させる反応を含む方法が開示されている。この文献の実施例1にはZn/クロミア触媒上でHCFC-243dbをHFと大気圧で気相反応させるとHFO-1234yfとHFCO-1233xfが生成し、少量のHFC-245cbも一緒に生成されることが開示されている。
【0009】
特許文献6(国際特許公開第WO2009/015317号公報)には1,1,2,3-テトラクロロ-1-プロペン(HCO-1230xa)、1,1,1,2,3-ペンタクロロプロパン(HCC-240db)または2,3,3,3-テトラクロロ-1-プロペン(HCO-1230xf)のような塩素化物を触媒上で少なくとも一種の安定化剤の存在下に気相でHFと反応させる方法が開示されている。この方法では2-クロロ-3,3,3-トリフルオロ-1-プロペン(HFCO-1233xf)が得られる。
【0010】
特許文献7(米国特許公開第US2009/0240090号明細書)には、式(I) CX
2=CClCH
2Xまたは式(II) CX
3CCl=CH
2または式(III) CX
3CHClCH
2X(ここでX=F, Cl, Br, I)の化合物から出発する2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)の製造方法が開示されている。この方法は3つの段階を含み、その後に精製を実行する。この方法はより高い転化率および収率を可能にする再循環段階を含む。
【0011】
特許文献8(国際特許公開第WO 2010/123154号公報)の対象は酸素と酸化クロムまたはフッ素化酸化クロムを含む触媒の存在下でHFCO-1233xfをHFと反応させるHFCO-1233xfから出発するHFO-1234yfの製造方法にある。
【発明を実施するための形態】
【0015】
本発明の一実施例では、本発明方法は複数の反応段階と複数の再生段階とを交互に繰り返し行う方法であって、反応段階がフッ素化触媒の存在下で塩素化物をフッ化水素と気相反応させることを含み、再生段階がフッ素化触媒を酸化剤含有ガス流と接触させることを含む。
【0016】
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流が酸素含有ガス流である。
【0017】
本発明の一実施例では、活性化段階および/または再生段階が、フッ素化触媒を酸化剤含有ガス流と少なくとも2時間、好ましくは少なくとも4時間、より好ましくは少なくとも10時間、さらに好ましくは少なくとも15時間接触させることを含む。
【0018】
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流が酸化剤に加えてフッ化水素を含み、且つ、活性化段階および/または再生段階の酸化剤含有ガス流中の酸化剤の比率が酸化剤とフッ化水素の総量に対して好ましくは2〜98モル%、より好ましくは5〜50モル%である。
【0019】
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流がフッ化水素を含まず、好ましくは空気である。
【0020】
本発明の一実施例では、活性化段階および/または再生段階が下記(1)または(2)でフッ素化触媒をフッ化水素ガス流と接触させることを含む:
(1)フッ素化触媒を酸化剤含有ガス流と接触させる前、
(2)フッ素化触媒を酸化剤含有ガス流と接触させた後。
【0021】
本発明の一実施例では、活性化段階が、塩素化物を酸化剤含有ガス流と接触させる前に、フッ素化触媒の存在下で塩素化物をフッ化水素と気相反応させる予備段階を含む。
【0022】
本発明の一実施例では、活性化段階および/または再生段階で酸化剤含有ガス流をフッ素化触媒と250〜500℃、好ましくは300〜400℃、より好ましくは350〜380℃の温度で接触させる。
【0023】
本発明の一実施例では、フッ素化物がフルオロオレフィン、好ましくはフルオロプロペン、より好ましくは2,3,3,3−テトラフルオロ−1−プロペンである。
【0024】
本発明の一実施例では、塩素化物が、ヒドロクロロカーボン、ヒドロクロロフルオロカーボンおよびヒドロクロロフルオロオレフィンから選択され、好ましくは2−クロロ−3,3,3−トリフルオロ−1−プロペン、1,1,1,2,3−ペンタクロロプロパン、1,1,2,2,3−ペンタクロロプロパン、2,3−ジクロロ−1,1,1−トリフルオロプロパン、2,3,3,3−テトラクロロ−1−プロペンおよび1,1,2,3−テトラクロロ−1−プロペンから選択され、より好ましくは2−クロロ−3,3,3−トリフルオロ−1−プロペンである。
【0025】
本発明の一実施例では、フッ素化触媒が担持触媒であり、好ましくはフッ素化アルミナ、フッ素化クロミア(Chromia)、フッ素化活性炭またはグラファイトカーボンの中から選択される担体上に担持されている。
【0026】
本発明の一実施例では、フッ素化触媒が非担持触媒である。
本発明の一実施例では、フッ素化触媒が、Co、Zn、Mn、Mg、V、Mo、Te、Nb、Sb、Ta、P、Niまたはこれらの混合物から選択される、好ましくはNiである共触媒をさらに含み、且つ、この共触媒が好ましくはフッ素化触媒の約1〜10重量%の量で存在する。
【0027】
本発明の一実施例では、フッ素化触媒が、クロムに対するニッケルの原子比が好ましくは0.5〜2、より好ましくは約1である混成クロム/ニッケル触媒である。
【0028】
本発明の一実施例では、フッ化水素:2−クロロ−3,3,3−トリフルオロ−1−プロペンのモル比を3:1〜150:1、好ましくは4:1〜70:1、より好ましくは5:1〜50:1、さらに好ましくは10:1〜30:1にする。
本発明の一実施例では、反応段階を1〜20バール、好ましくは5〜15バール、より好ましくは7〜10バールの圧力で実行する。
【0029】
本発明の一実施例では、反応段階を200〜450℃、好ましくは300〜430℃、より好ましくは320〜420℃、さらに好ましくは340〜380℃の温度で実行する。
本発明の一実施例では、反応段階でのフッ化水素と塩素化物との接触時間が、6〜100秒、好ましくは10〜80秒、より好ましくは15〜50秒である。
【0030】
本発明の一実施例では、反応段階を、塩素化物と酸素の総量に対して0.05〜15モル%、より好ましくは0.5〜10モル%、さらに好ましくは5〜10モル%の酸化剤、例えば酸素の存在下で実施する。
【0031】
本発明は「背景技術」で示したニーズを満たす。特に、本発明はフルオロオレフィン、例えばHFO−1234yfの改良された製造方法を提供する。例えば、HFCO−1233xfの転化率が特許文献8(国際特許第WO 2010/123154号)に比べて改良される。この結果は、酸化剤、例えば酸素の存在下でフッ素化触媒を活性化したときに反応性能が向上する、という本発明者によって為された驚くべき発見によって可能になる。
【0032】
本発明の実施例の詳細な説明
以下、本発明を詳細に説明するが、本発明は下記の説明に限定されるものではない。特に断らない限り、百分比はモル%である。
フッ素化反応
本発明のフッ素化反応では、触媒の存在下で塩素化物をフッ化水素(HF)との反応によってフッ素化物に変換する。
「塩素化物」は塩素原子を有する任意の分子にすることができ、「フッ素化物」はフッ素原子を有する任意の分子にすることができる。
塩素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClである直鎖または分岐鎖の(好ましくは直鎖の)C2またはC3またはC4またはC5アルカンまたはアルケン化合物であるのが好ましい。
【0033】
フッ素化物はF, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFである直鎖または分岐鎖の(好ましくは直鎖の)C2またはC3またはC4またはC5アルカンまたはアルケン化合物(好ましくはアルケン)であるのが好ましい。
【0034】
塩素化物はF, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClであるC3アルカンまたはアルケン化合物で、フッ素化物はF, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFである、C3アルケン化合物であるのがより好ましい。
【0035】
本発明の変形例では、塩素化物はF, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClであるC4アルカンまたはアルケン化合物にすることができ、フッ素化物はF, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFであるC4アルケン化合物である。
【0036】
本発明の一実施例では、フッ素化物はヒドロフルオロオレフィンである(従って、塩素置換基を全く持たない)。
反応中に、塩素化物中の少なくとも一つのCl置換基をF置換基で置換するのが好ましい。
【0037】
塩素化物のフッ素化物への変換は直接変換(すなわち、単一反応段階または基本的に一つの反応条件下での変換)および間接変換(すなわち、2つ以上の反応段階によってまたは2つ以上の反応条件を用いた変換)である。
【0038】
さらに好ましいフッ素化反応は以下の通り:
(1)2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(2)1,1,1,2,3-ペンタクロロプロパン(HCC-240db)から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(3)1,1,2,2,3-ペンタクロロプロパン(HCC-240aa) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(4)2,3ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(5)1,1,2,3テトラクロロ-1-プロペン(HCO-1230xa) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(6)2,3,3,3テトラクロロ-1-プロペン(HCO-1230xf) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(7)1,1,1,2,3-ペンタクロロプロパン(HCC-240db)から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(8)1,1,2,2,3-ペンタクロロプロパン(HCC-240aa) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(9)2,3ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(10)1,1,2,3テトラクロロ-1-プロペン(HCO-1230xa) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(11)2,3,3,3テトラクロロ-1-プロペン(HCO-1230xf) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応。
【0039】
フッ素化反応はHFモル比を一般に3:1〜150:1、接触時間を6〜100秒、圧力を大気圧から20バールにして実施できる。触媒床温度は200〜450℃にすることができる。フッ素化反応中の触媒の非活性化が速く進むのを防ぐために酸化剤(例えば酸素または塩素)を、酸化剤と塩素化物との混合物に対して、例えば0.05〜15モル%の比率で添加できる。
【0040】
触媒
本発明で使用するフッ素化触媒は担持触媒または非担持触媒にすることができる。この触媒は例えば遷移金属酸化物またはその誘導体を含む金属またはこの金属のハロゲン化物またはオキシハライドをベースにした触媒である。触媒は例えばFeCl
3、クロムオキシフルオライド、酸化クロム(必要に応じてフッ素化されていてもよい)、フッ化クロムおよびこれらの混合物である。
他の可能な触媒はカーボン担持触媒、アンチモンベースの触媒、アルミニウムベースの触媒、(AlF
3およびAl
2O
3およびアルミナのオキシフルオライドおよびフッ化アルミニウム)である。
【0041】
一般的に使用可能な触媒はクロムオキシフルオライド、フッ化アルミニウムおよびオキシフルオライドおよびCr、Ni、Zn、Ti、V、Zr、Mo、Ge、Sn、Pb、Mgのような金属を含む担持または非担持触媒である。また、特許文献9の第7頁、第1〜5行目、第28〜32行目、特許文献10のパラグラフ[0022]、特許文献11の第9頁第22行目〜第10頁第34行目、特許文献12のクレーム1を参照することができる。これらの内容は本明細書の一部を成す。
【特許文献9】国際特許公開第WO−A−2007/079431号公報
【特許文献10】欧州特許公開第EP−A−939071号公報
【特許文献11】国際特許公開第W02008/054781号公報
【特許文献12】国際特許公開第WO2008/040969号公報
【0042】
好ましい実施例ではクロムとニッケルの両方を含む混成担持触媒である特定の触媒を使用する。金属元素に対するCr:Niのモル比は一般に0.5〜5の間、好ましくは0.7〜2の間で、1に近い。触媒は重量で0.5〜20%のクロムと、0.5〜20%のニッケル、好ましくは2〜10%の間の各金属を含むことができる。
【0043】
触媒中の金属は活性化(または再生)中の金属誘導体、例えば酸化物、ハロゲン化物またはオキシハライドに変換される。
【0044】
担持触媒に関する限り、触媒担体はより高い温度および圧力でHFと混合可能な当業者に周知の材料から選択できる。例えば、フッ素化アルミナ、予備フッ素化活性炭、グラファイトまたはフッ素化グラファイトが、適した触媒担体である。
担体はアルミニウムにするのが好ましい。他の担体、例えばアルミナ、活性アルミナまたはアルミニウム誘導体を使用することもできる。これらの誘導体は例えば特許文献13に記載のアルミニウム・ハロゲン化物およびアルミニウムのハロゲン化物酸化物を含み、また、活性化方法で得られる。
【特許文献13】米国特許第US−P−4902838号明細書
【0045】
触媒に関しては特許文献14、特にその第4頁第30行目〜第7頁第16行目を参照できる。この内容は本願明細書の一部をなす。
【特許文献14】国際特許公開第WO 2009/118628号公報
【0046】
別の実施例では、本発明方法は好ましくは担持されていない表面積の大きなCrベースの触媒を使用する。好ましい触媒は表面積の大きな非担持酸化クロム触媒である。
この触媒は必要に応じて一種以上の共触媒、例えばCo, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P およびNi塩を低レベルで含むことができる。好ましい共触媒はニッケルである。他の好ましい共触媒はマグネシウムである。
【0047】
好ましい非担持クロム触媒は、必要に応じてさらに、当業者に公知の方法、例えば含浸で調製されたコバルト、ニッケル、亜鉛またはマンガンから選択される低レベルの一種以上の共触媒、混成粉末等を含むことができる。
【0048】
共触媒の量(存在する場合)は、1〜10重量%、好ましくは1〜5重量%で変えることができる。当業者に公知の方法、例えば水溶液または有機溶液から吸着した後に溶剤を蒸発させる方法によって共触媒を触媒に添加できる。この実施例での好ましい触媒は、共触媒としてニッケルまたは亜鉛を有する純粋な酸化クロムである。変形例では、共触媒を触媒と粉砕によって物理的に混合し、均質混合物を製造することができる。別の触媒はフッ素化アルミナに担持されたクロム/ニッケル混成触媒である。下記文献(参考として本明細書の一部を成す)にはこの別の触媒の調製方法が開示されている。
【特許文献15】米国特許第5,731,481号明細書
【0049】
触媒には活性化前に乾燥段階を実施する。好ましくは乾燥ガス、好ましくは窒素を通す。乾燥段階は大気圧から20バールまでの圧力で実施できる。乾燥段階での触媒の温度は約1〜50時間、好ましくは5〜20時間の間、約1〜100秒、好ましくは約10〜40秒の接触時間で、室温から400℃まで、好ましくは約100℃〜約200℃で変えることができる。
乾燥段階の後、触媒活性の最高レベルに達するために触媒を活性化する必要がある。
【0050】
触媒の活性化
本発明者は、酸化剤含有ガス流を用いて上記触媒を活性化することによってフッ素化プロセスの効率を大幅に改善できるということを見出した。
活性化プロセスは、一種の活性化剤または2種の活性化剤を用いて2つの段階または単一段階で触媒を活性化することを含む。活性化剤の一方は酸化剤、例えば酸素または酸素/窒素混合物または空気または塩素であり、他方の活性化剤(存在する場合)はHFにすることができる。
【0051】
本発明の一実施例では、活性化プロセスは2段階活性化プロセスであり、第1に酸化剤を第1活性化剤として用い、次いで、第2活性化剤としてHFを用いる。初めに、新規な触媒を酸化剤で処理する。この活性化段階での温度は約10〜約200時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。次いで、触媒をHFで処理する。活性化剤としてHFを用いる活性化段階の温度は約1〜約50時間の間、約100〜約450℃、好ましくは約200〜約300℃、接触時間は約1〜約100秒にすることができる。
【0052】
本発明の別の実施例では、活性化プロセスは2段階活性化プロセスであり、第1ではHFを第1活性化剤として用い、次いで、第2活性化剤として酸化剤を用いる。初めに、新規な触媒をHFで処理する。この活性化段階での温度は約1〜約50時間の間、約100〜約450℃、好ましくは約200〜約300℃、接触時間は約1〜約100秒にすることができる。次いで、触媒を酸化剤で処理する。この活性化段階の温度は約10〜約200時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。
【0053】
さらに別の実施例では、活性化プロセスは2段階活性化プロセスであり、最初にフッ素化反応を行って活性化し、その後に酸化剤を用いた活性化を行う。フッ素化反応は約6〜約100時間(例えば50時間以下)実施できる。フッ素化反応中のHFモル比は約2〜約40にすることができる。酸化剤を用いた活性化段階での温度は約10〜約100時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。触媒活性がその最高レベルに達するまで両方の段階を繰り返すことができる。
【0054】
さらに別の実施例では、活性化プロセスはHFと酸化剤とを用いた一段階活性化プロセスである。HFと酸化剤との混合物中の酸化剤の比率は約2〜約98モル%にすることができる。活性化段階の温度は約10〜約200時間の間、約200〜約450℃、接触時間は約1〜約200秒にすることができる。
【0055】
さらに別の実施例では、活性化プロセスは酸化剤のみを用いた(HFを用いない)一段階活性化プロセスである。この活性化段階の温度は約10〜約300時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。
【0056】
上記活性化プロセスは大気圧から約20バールまでの圧力で実施できる。
HFを用いる上記活性化段階に関して、HFは不活性ガス、例えば窒素と一緒に系に供給できる。HFの比率は混合物の約1〜約100モル%にすることができる。
酸化剤を用いる上記活性化段階に関して、酸化剤は不活性ガス、例えば窒素と一緒に系に供給できる。酸素または塩素の比率は混合物の約1〜約100モル%にすることができる。
【0057】
酸化剤含有ガス流を用いた活性化は好ましくは少なくとも1時間、好ましくは少なくとも2時間、より好ましくは少なくとも4時間、さらに好ましくは少なくとも10時間、さらに好ましくは少なくとも15時間、250〜500℃、好ましくは300〜400℃、より好ましくは350〜380℃の温度で実行する方がよい。例えば約370℃の温度が適当である。
【0058】
活性化プロセスが2つの段階(例えば、第1活性化剤を用いる一つの段階と、第2活性化剤を用いる他方の段階)を含むときは、これらの段階を1回、2回またはそれ以上の回数で交互に繰り返すことができる。
【0059】
触媒の再生
本発明者はさらに、フッ素化反応の効率は時間とともに低下する傾向があるが、触媒に再生段階を実施することによって、再び初期効率まで、さらにはそれ以上に高められることを見出した。再生段階では初期活性化段階と同様に、触媒を酸化剤含有ガス流と接触させる。
【0060】
本発明の一実施例では、各再生段階は一段階再生段階であり、酸素または空気または酸素/窒素混合物を用いて実施される。再生段階の温度は約10〜約200時間の間、約250〜約500℃、接触時間は約1〜約200秒にすることができる。再生段階は大気圧から約20バールまでの圧力で実施できる。
【0061】
別の実施例では、各再生段階は一段階再生段階であり、酸素または空気または酸素/窒素混合物およびHFを用いて実施される。再生段階の温度は約10〜約200時間の間、約250〜約500℃、接触時間は約1〜約200秒にすることができる。再生段階は大気圧から約20バールまでの圧力で実施できる。酸素の比率は酸素とHFとの混合物に対して約2〜約98モル%にすることができ、且つ、酸素と窒素との混合物に対して約20〜約100モル%にすることができる。
【0062】
反応段階と再生段階とを交互に繰り返すとき、各反応段階の時間は50〜2000時間、好ましくは200〜1000時間にすることができ、各再生段階の時間は10〜200時間、好ましくは15〜60時間にすることができる。
【実施例】
【0063】
以下、本発明の実施例を示すが、本発明が下記実施例に限定されるものではない。
使用した設備は管状オーブンで取り囲んだINCONEL(登録商標)合金600製の内径が19mmの管状反応装置から成る。この反応装置は圧力および温度制御装置をさらに備えている。反応物は静的撹拌ヒーターで予め混合し、気相にして反応装置の頂部に導入する。
反応装置の出口で反応生成物のサンプルを採取し、プレカラムで洗浄し、低極性毛細管カラムを備えた気相クロマトグラフィでオンライン分析した。
【0064】
気相クロマトグラフィによる分析はカラムCP Sil 8CB(寸法50m・0.32mm・5μm)および充填カラム1% SP1000/carbopack B, 60/80 メッシュ5 m長さを使用して実行する。オーブンの温度は第1の温度:40℃で10分間、次いで、10℃/分の勾配で250℃になるように、且つ、第2の温度:40℃で20分間、次いで、10℃/分の勾配で180℃になるようにプログラミングした。
【0065】
xiを材料の初期モル量、xfを材料の全モル量とすると、転化率(%)は(xi−xf)/xi・100になる。生成物の選択率はこの生成物の回収されたモル量と、材料の反応の結果である生成物のモル量の合計との比から計算される。
【0066】
触媒活性を維持するために空気を添加する。
接触時間は温度および圧力の実験条件における触媒床の容積と流量の全容積との比で定義される。HFのモル比は、HFのモル流量とHFCO−1233xfのモル流量との比で定義される。酸素のモル比は酸素のモル流量とHFCO−1233xfのモル流量との比で定義される。
【0067】
実施例1
HFCO−1233xfのフッ素化:
最初にフッ素化反応し、次いで空気で処理する活性化
A1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
使用した触媒はフッ化アルミナ上に担持させたNi/Cr原子比=1の混成ニッケル/クロム触媒で、これはニッケルと無水クロム(CrO
3)の溶液を含浸させ、含浸および乾燥後に固体を320℃〜390℃の間の温度で、フッ化水素酸および窒素との混合物(窒素中の酸の濃度は5〜10体積%)で処理して作った。
活性化プロセスでは(1)接触時間が6〜12秒、HFのモル比が23、HFCO 1233xf1モル当たり4モル%の酸素、340℃の温度で46時間行われるフッ素化反応によって触媒フッ素化を実施し、(2)370℃の空気下および1.5L/時で64時間処理した。
反応装置に無水HFを8.1g/時、HFCO−1233xfを2.2g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は12.2秒であり、HFのモル比は24であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して4モル%である。HFCO−1233xfの転化率は40.8%である。全部の結果を[表1]に示した。
【0068】
実施例2
HFCO−1233xfのフッ素化:
再生後に再使用される実施例1の触媒
実施例1と同じ触媒を用いて、1.5l/時、370℃で16時間、空気下に処理して再生段階を実施した。次いで、反応装置に無水HFを4.4g/時、HFCO−1233xfを1.2g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は22.4秒であり、HFのモル比は24であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して9モル%である。転化率は64.4%であるが、時間とともに触媒の非活性化が観察され、転化率は最終的に33.4%に達した。全部の結果を[表1]に示した。
【0069】
実施例3
HFCO−1233xfのフッ素化:
最初にフッ素化反応し、次いで空気で処理する活性化
実施例1に記載のA1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
活性化プロセスは下記を5サイクルした:(1)以下に示す条件下で、6〜30時間行うフッ素化反応による触媒フッ素化の実施、その後の(2)370℃の空気による、1.5L/時、16〜64時間の触媒の処理。
フッ素化反応を目的として、反応装置に無水HFを3.4g/時、HFCO−1233xfを1g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は29秒であり、HFのモル比は22であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して7〜8モル%である。転化率は69.7%であり、時間とともに54.7%まで減少する。次いで、1.5L/時の370℃の空気の下で再生段階を16時間実施した。この段階の後、初期に観察された転化率(72.4%)よりさらに高い転化率を回復した。全部の結果を[表1]に示した。
【0070】
実施例4(比較例)
HFCO−1233xfのフッ素化:
HFのみによる活性化
実施例1に記載のA1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
空気下処理をせず、大気圧、350℃でHFによって触媒を活性化した後に、反応装置に無水HFを7.6g/時、HFCO−1233xfを2.2g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は12.7秒であり、HFのモル比は23であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して4モル%である。HFCO−1233xfの転化率は9.1%であった。
【0071】
【表1】
【0072】
実施例5(比較例)
特定の活性化を行わないHFCO−1233xfのフッ素化
実施例1に記載のA1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFO−1233xfのフッ素化を実行した。
反応装置に触媒を添加後、触媒を220℃で16時間窒素を用いて乾燥させた。次いで、反応装置の温度を350℃にし、反応装置に無水HFを4.5g/時、HFCO−1233xfおよび空気を1.2g/時の速度で、大気圧下に、350℃で連続的に供給した。接触時間は22秒であり、HF MRは24であった。酸素の量はHFCO−1233xfの量に対して9モル%である。24時間の反応後、HFCO−1233xfの転化率は14.8%に達した。
全部の結果を[表2]に示す。
【0073】
実施例6
HFCO−1233xfのフッ素化:
空気のみによる活性化
実施例1に記載のA1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
初めに、触媒を220℃で16時間窒素を用いて乾燥させた。次いで、窒素供給を停止し、空気を反応装置に2時間導入した。その後、オーブン温度を370℃にし、この温度で64時間維持した。触媒のこの活性化の後に、オーブン温度および空気流量を下記の実験用に調節した。反応装置に無水HFを5.0g/時、HFCO−1233xfを1.1g/時の速度で、大気圧下に連続的に供給した。接触時間は20秒であり、HF MRは30であった。反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して9モル%である。22時間の反応後、HFCO−1233xfの転化率は18.5%に達した。
全部の結果を[表2]に示す。
【0074】
実施例7
HFCO−1233xfのフッ素化:
HF、次いで空気による活性化
実施例1に記載のA1F
3に担持させた73cm
3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
初めに、触媒を220℃で16時間窒素を用いて乾燥させた。次いで、HFを導入し、2時間維持した。オーブン温度を350℃にし、HFを用いて3時間維持した。次いで、HFを空気で1.5l/時で置換し、オーブン温度を370℃にし、16時間維持した。その後、オーブン温度および空気流量を下記の実験用に調節し、HFおよびHFCO−1233xfを反応装置に導入した。反応装置に無水HFを4.1g/時、HFCO−1233xfを1.0g/時の速度で、大気圧下に連続的に供給した。接触時間は24秒であり、HF MRは26であった。反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して8モル%である。10時間の反応後、HFCO−1233xfの転化率は58.6%に達した。
全部の結果を[表2]に示す。
【0075】
【表2】