(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
以下、本発明の一実施の形態を図面に基づいて説明する。
図1は、本発明に係る故障診断装置4の診断対象となる、エンジン(内燃機関)1を車体に対して支持する防振装置2の装着状態を示す分解斜視図である。同図に示すように、エンジン1に取り付けられたフロントエンジンマウントブラケット11と車体フレーム(不図示)との間に装着された電子制御式フロントエンジンマウント21や、同じくエンジン1に取り付けられたリヤエンジンマウントブラケット12と車体フレーム(不図示)との間に装着された電子制御式リヤエンジンマウント22が、本発明に係る故障診断装置4の診断対象たる防振装置に該当する。ただし、本発明に係る故障診断装置4の診断対象たる防振装置2は、以下に示す構造のものにのみ限定されない。なお、
図1において符号23は右エンジンマウントインシュレータ、符号25はアッパトルクロッド、符号13はこれら右エンジンマウントインシュレータ23及びアッパトルクロッド25をエンジン1に固定するための右エンジンマウントブラケット、符号24は左エンジンマウントインシュレータ、符号26はリヤトルクロッド、符号14はリヤトルクロッド26をエンジン1に固定するためのリヤトルクロッドブラケットである。以下、これら電子制御式エンジンマウント21,22の一例を説明し、これを組み込んだエンジン制御装置3の一例を説明したのち、本発明に係る故障診断装置4の実施形態を説明する。
【0010】
《能動型防振装置の構成》
図2は電子制御式フロントエンジンマウント21や電子制御式リヤエンジンマウント22に具体化される能動型防振装置2の縦断面図、
図3は、
図2の下部拡大断面図である。
図2及び
図3に示すように、本例の能動型防振装置2は、軸線Lに関して実質的に軸対称な構造を有するもので、主として、概略円筒状のアッパハウジング201と、その下側に配置された概略円筒状のロアハウジング202と、ロアハウジング202内に収容され上面が開放した概略カップ状のアクチュエータケース203と、アッパハウジング201の上側に接続したダイアフラム204と、アッパハウジング201内に格納された環状の第1弾性体支持リング205と、第1弾性体支持リング205の上側に接続した第1弾性体206から構成されている。
【0011】
アッパハウジング201の下端のフランジ部201aと、ロアハウジング202の上端のフランジ部202aとの間に、アクチュエータケース203の外周のフランジ部203aと、環状の第1弾性体支持リング205の外周部と、アクチュエータケース203内の上部側に配置された環状の第2弾性体支持リング207の外周部とが重ね合わされてカシメにより結合される。このとき、ロアハウジング202のフランジ部202aと、アクチュエータケース203のフランジ部203aとの間に環状の第1フロートラバー208を介在させ、かつアクチュエータケース203の上部と第2弾性体支持リング207の内面との間に環状の第2フロートラバー209を介在させることで、アクチュエータケース203はアッパハウジング201及びロアハウジング202に対して上下方向に相対移動可能にフローティング支持されることになる。
【0012】
第1弾性体支持リング205と、軸線L上に配置された第1弾性体支持ボス210には、厚肉のラバーで形成された第1弾性体206の下端及び上端がそれぞれ加硫接着により接合されている。また第1弾性体支持ボス210の上面にはダイアフラム支持ボス211がボルト21で固定され、アッパハウジング201にはダイアフラム204の下端の外周部が加硫接着により接合されている。なおダイアフラム20の上端の内周部はダイアフラム支持ボス211に加硫接着等によって接合されている。ダイアフラム支持ボス211の上面にはエンジン取付け部213が一体的に形成され、エンジン1のエンジンマウントブラケット11,12(
図1参照)に固定される。またロアハウジング202の下端の車体取付け部214が図示しない車体フレームに固定される。
【0013】
アッパハウジング201の上端のフランジ部201bには、ストッパ215の下端のフランジ部215aがボルト216及びナット217で結合されており、ストッパ215の上部内面に取り付けたストッパラバー218に、ダイアフラム支持ボス211の上面に突設したエンジン取付け部213が当接可能に対向する。このような構造によって、能動型防振装置2にエンジン1から大きな荷重が入力したとき、エンジン取付け部213がストッパラバー218に当接することで、エンジン1の過大な変位が抑制されることになる。
【0014】
第2弾性体支持リング207には、膜状のラバー等からなる弾性体で形成された第2弾性体219の外周部が加硫接着により接合され、この第2弾性体219の中央部に埋め込まれるように可動部材220が加硫接着により接合されている。第2弾性体219の下端の外周部は、第2弾性体支持リング207とヨーク221との間に挟持され、その先端の環状の肉厚部分がシール機能を発揮する。また、第2弾性体支持リング207の上面と第1弾性体206の外周部との間に円板状の隔壁部材222が固定され、隔壁部材222及び第1弾性体206により区画された第1液室223と、隔壁部材222及び第2弾性体219により区画された第2液室224とは、隔壁部材222の中央に形成された連通孔225を介して相互に連通するようになっている。
【0015】
第1弾性体支持リング205とアッパハウジング201との間に環状の連通路226が形成されている。そして、連通路226の一端は連通孔227を介して第1液室223に連通し、連通路226の他端は連通孔228を介して、第1弾性体206とダイアフラム204により区画された第3液室229に連通するように構成されている。これら第1液室223、第2液室224及び第3液室229には、非圧縮性流体が封入されている。
【0016】
次に、可動部材220を駆動するアクチュエータ230の構成を説明する。
図3に示すように、アクチュエータ230は、アクチュエータケース203の内部に、透磁率が高い金属又は合金からなるステータコア231、コイルアッシ232及びヨーク221が下から上に順次取り付けられている。コイルアッシ232は、ステータコア231及びヨーク221間に配置されたコイル233と、コイル233の外周を覆うコイルカバー234とで構成されている。コイルカバー234には、アクチュエータケース203及びロアハウジング202に形成した開口部203b,202cを貫通して外部に延在するコネクタ235が一体的に形成され、ここに、コイル233に給電するための給電線(不図示)が接続される。
【0017】
コイルカバー234の上部とヨーク221の下面との間にシール部材236が配置され、コイル233の下面とステータコア231の上面との間にシール部材237が配置されている。これらのシール部材236,237によって、アクチュエータケース203及びロアハウジング202に形成した開口部203b,202cからアクチュエータ230の内部空間に水や塵が入り込むのを阻止することができる。
【0018】
ヨーク221の円筒部221aの内周面には、薄肉円筒状の軸受238が上下摺動自在に嵌合し、この軸受238の上端には、径方向内向きに折り曲げられた上部フランジ238aが形成されるとともに、下端には径方向外向きに折り曲げられた下部フランジ238bが形成されている。下部フランジ238bとヨーク221の円筒部221aの下端との間には、コイルバネ239が圧縮状態で配置され、このコイルバネ239の弾発力で軸受238の下部フランジ238bを下方に付勢して、下部フランジ238bの下面とステータコア231との間に配された弾性体240を介して、ステータコア231の上面に押し付けることで、軸受238がヨーク221にて支持されることになる。
【0019】
軸受238の内周面には、概略円筒状の可動コア241が上下摺動自在に嵌合する。可動部材220の中心から下向きに伸びるロッド242が可動コア241の中心を緩く貫通し、その下端にナット243が締結されている。可動コア241の上面に設けたバネ座244と可動部材220の下面との間には、圧縮状態のコイルバネ245が配置され、このコイルバネ245の弾発力で可動コア241はナット243に押し付けられて固定される。この状態で、可動コア241の下面とステータコア231の上面とが、円錐状のエアギャップGを介して対向する。ロッド242に対し、ナット243はステータコア231の中心に形成された開口部231a内で上下位置を調整されて締結され、この開口部231aはゴム製のキャップ246で閉塞されている。
【0020】
図2,3に示すアクチュエータ230のコイル233は、エンジン制御装置(ECU)3からの通電制御により励磁され、可動コア241を吸引して可動部材220を下側に移動させる。この可動部材220の移動にともない、第2液室224を区画する第2弾性体219が下方に変形して第2液室224の容積が増加する。逆にコイル233を消磁すると、第2弾性体219が自己の弾性によって上方に変形し、可動部材220及び可動コア241が上昇し、第2液室224の容積が減少する。こうしたアクチュエータ230のコイル233への励磁・消磁により第2液室224の容積が増加・減少するので、連通孔225を介して連通する第1液室223の容積も増加・減少する。これにより、第1弾性体206、第1弾性体支持ボス210及びエンジン取付け部213を介してエンジン1に振動を印加することができる。
【0021】
《エンジン制御装置》
このように構成された能動型防振装置2は、エンジン1の振動状態に応じてエンジン制御装置(ECU)3により制御される。すなわち、本例のエンジン制御装置3は、エンジン1の駆動を制御する機能に加えて、防振装置2の駆動を制御する機能を備える。以下、本例のエンジン制御装置3の構成及び機能について説明する。
【0022】
図4に示すように、本例のエンジン制御装置3は、所定の制御プログラムが格納されたROMと、演算装置としてのCPU又はMPUと、一時記憶装置としてのRAMとを含むハードウェアを備え、主として、アクセルペダルに設けられたアクセルセンサ31からエンジン1に要求される負荷(目標とするエンジン出力トルク)を検出し、エンジン1のクランク軸に設けられたクランク角センサ32によりエンジンの回転速度を検出し、吸気通路に設けられたエアフローメータ33により吸入空気量(インテークマニホールドの負圧)を検出する。そして、要求負荷に対する燃料噴射量をエンジンの回転速度および吸入空気量に基づいて演算し、必要に応じて補正を加えたのち燃料噴射バルブ34に出力する。これにより、エンジン1は、運転手のアクセルの踏込量に応じた出力トルクとなるように制御されることになる。なお、エンジン制御装置3は、クランク角センサ32からエンジンの回転と同期して出力されるクランク単位角信号(パルス信号)を一定時間カウントすること、又はクランク基準角信号の周期を計測すること、又はクランク角センサ32とは別の回転速度センサを設けることで、エンジン回転速度を検出する。
【0023】
また、エンジン制御装置3は、クランク角センサ32により各気筒のピストンの位置(行程)を検出し、吸気バルブや排気バルブを開閉駆動するカムシャフトに設けられたカム角センサ35により特定の行程(たとえば上死点TDC)にある気筒を判別する。そして、燃料噴射バルブ34による燃料噴射のタイミングや点火プラグ36による点火タイミングを制御する。
【0024】
こうしたクランク角センサ32及びカム角センサ35は、エンジン制御装置3のエンジン制御機能にとっては必須のエンジン運転状態検出手段である。なお、クランク角センサ32は、4サイクルV型6気筒エンジンにあっては、クランク軸が1回転する際に24回のパルス信号を出力し(1回/1CA=15°)、片方のバンクのカム角センサ35はクランク軸が1回転する際に3回のパルス信号を出力する(1回/各気筒の上死点)。
【0025】
図5は、クランク角センサ32の一例を示す斜視図であり、本例のクランク角センサ32は、クランク軸に取り付けられて当該クランク軸と同じ回転速度で回転するパルサーロータ321と、当該パルサーロータ321の外周面に対向して設けられた磁気センサ322とを有し、パルサーロータ321の外周面に円周方向等配に形成された突起部323を磁気センサ322がパルス信号として出力する。パルサーロータ321の突起部323は、4サイクルV型6気筒エンジンにあっては、円周方向15°ごとに形成されているが、1箇所だけ突起部323を欠損させることでクランク軸の円周方向の定位置を検出できるようになっている。この突起部232が欠損した位置(信号欠損部323aで示す)においては、クランク角センサ32から出力されるクランク角パルス信号は欠損することになるので、本例の防振装置の制御装置において、この欠損信号を防振波形信号の生成タイミングに利用する。なお、防振波形信号の生成タイミングは欠損信号のほか、後述するカム角センサ35の突起部353aなど、クランク軸の円周方向の定位置を特定できるものであればよい。
【0026】
図6は、カム角センサ35の一例を示す斜視図であり、本例のカム角センサ35は、上述したクランク角センサ32と同様に、カムシャフトに取り付けられて当該カムシャフトと同じ回転速度で回転するパルサーロータ351と、当該パルサーロータ351の外周面に対向して設けられた磁気センサ352とを有し、パルサーロータ351の外周面に円周方向等配に設けられた突起部353を磁気センサ352がパルス信号として出力する。パルサーロータ351の突起部353は、4サイクルV型6気筒エンジンにあっては、円周方向120°ごとに形成されているが、1箇所だけ突起部353の形状を相違させる(突起部353aで示す)ことでカムシャフトの円周方向の定位置(特定の気筒)を検出できるようになっている。
【0027】
《防振装置の制御部》
図7は、
図4に示すエンジン制御装置3に含まれる防振装置2の制御部分を示すブロック図である。アクセルセンサ31、クランク角センサ32及びカム角センサ35は、
図4に示すものであり、振幅演算部37と位相演算部38は制御マップとしてROMなどのメモリに記憶され、出力デューティ比演算部39は制御プログラムとしてROMなどのメモリに記憶されるとともに演算装置としてのCPU又はMPUとしても機能する。本例の防振装置の制御装置は、エンジン1の駆動にともなって発生する上下振動を打ち消すために、防振装置2のアクチュエータ230を駆動制御する。この駆動制御は、基本的には、エンジン1の上下振動がたとえば正弦波y=Asinθで近似される場合は、これを打ち消す正弦波y=−Asinθの防振振動波形が発生するようにアクチュエータ230のコイル233に電流を流す。具体的には、演算された防振振動波形の振幅をデューティ比のパルス信号に変換して防振装置2の増幅回路に出力し、当該増幅回路にてデューティ比パルス信号に応じた電流値に変換してアクチュエータ230のコイル233に定電流を流す。
【0028】
振幅演算部37は、エンジン回転数及びエンジン出力トルクの組み合わせにより最適な防振振動波形の振幅が定められた制御マップ371を格納し、アクセルセンサ31により検出された実際の出力(要求)トルクと、クランク角センサ32により検出されたエンジン回転速度とを入力し、制御マップ371を参照して最適な振幅を抽出する。上述した一例の防振振動波形y=−Asinθでいえば波形の縦軸y(=−Asinθ)そのものであり、数値y
n(n=1〜m)の集合体として抽出される。なお、この最適な防振振動波形の振幅は、適用するエンジン1を用いた実験やコンピュータシミュレーションなどにより予め求めることができる。振幅演算部37により求められた振幅は出力デューティ比演算部39に出力される。
【0029】
位相演算部38は、エンジン回転数及びエンジン出力トルクの組み合わせにより最適な防振振動波形の位相が定められた制御マップ381を格納し、アクセルセンサ31により検出された実際の出力(要求)トルクと、クランク角センサ32により検出されたエンジン回転速度とを入力し、制御マップ381を参照して最適な位相を抽出する。上述した一例の防振振動波形−Asinθでいえば位相θであり、数値θ
n(n=1〜m)の集合体として抽出される。なお、最適な防振振動波形の位相は、適用するエンジン1を用いた実験やコンピュータシミュレーションなどにより予め求めることができる。振幅演算部37により求められた位相は出力デューティ比演算部39に出力される。
【0030】
このように、特定のエンジン回転数及びエンジン出力トルクが入力されると、これら制御マップ371,381から振幅の数値の集合体と位相の数値の集合体が抽出されるので、これらをn単位ごとに組み合わせれば、各位相に対する振幅が定められた数値の集合体(マトリックス表)が得られる。なお、詳細は後述するが、防振装置2のアクチュエータ230に出力する振幅値は、クランク角センサ32にて検出されるクランク角パルス信号の入力タイミングで出力するため、位相演算部38の制御マップ281の位相の単位はクランク角パルス信号の最小出力単位以下とされている。
【0031】
また本例の振幅演算部37及び位相演算部38は、クランク軸の所定回転ごと(たとえば2回転ごと)に、エンジン回転数とエンジン出力トルクとを読み込み、これらエンジン回転数及びエンジン出力トルクに応じた振幅と位相を抽出し、クランク軸の所定回転ごとに防振振動波形を逐次更新する。上述した従来技術では、エンジン回転数によってクランク角パルス信号の時間的間隔が相違するため、このエンジン回転数の影響を除去するための演算負荷が大きくなるといった技術的課題があったが、本例の防振装置の制御部では、クランク軸の所定回転ごとに逐次防振振動波形を更新することで、エンジン回転数の変動による影響を織り込むこととしている。そして、その際の演算についても、振幅演算部37及び位相演算部38に格納された制御マップ371,381から数値の集合体を抽出するだけの低負荷な演算とすることで全体の演算負荷を低減している。
【0032】
出力デューティ比演算部39は、クランク角センサ32からのクランク角パルス信号を読み込み、クランク軸の所定位置、具体的にはパルサーロータ231の突起部232が欠損した位置323aの欠損信号を検出して、防振振動波形の生成開始タイミングを決定する機能と、振幅演算部37及び位相演算部38で抽出された防振振動波形を規定する位相に対する振幅の数値の集合体から、クランク角パルス信号の入力タイミングに応じた振幅値をアクチュエータ230に印加する電流値に対応する出力デューティ比に変換して出力する機能を備える。
【0033】
出力デューティ比演算部39は、クランク角センサ32からのクランク角パルス信号を常時読み込んでクランク軸の欠損信号を検出するとともに、必要に応じてカム角センサ35からのカム角パルス信号も読み込んでクランク角パルス信号が正常であることを確認する。なお、クランク軸の欠損位置の検出による所定位置の確認は、クランク角センサ32による欠損信号の検出のみで行い、カム角センサ35によるクランク軸の所定位置の確認は省略してもよい。
【0034】
図9は、4サイクルV6型エンジンの片側のバンクのカムシャフトに取り付けられたカム角センサ35からのカム角パルス信号と、V6型エンジン1の各気筒NO.1〜6の行程と、クランク角センサ32から出力されるクランク角パルス信号と、防振振動波形とを横軸を時間軸として例示したタイムチャートである。V6型エンジンの気筒番号NO.1〜6は、クランク軸の先端側から左右交互にNO.1→NO.2→NO.3→…→NO.6と付したものである。すなわち、一方のバンクでいうとクランク軸の先端側からNO.1→NO.3→NO.5となり、他方のバンクでいうとクランク軸の先端側からNO.2→NO.4→NO.6となる。したがって、
図9に示すように、片側のカム角パルス信号は、120°ごとにNO.1,NO.3及びNO.5の気筒の上死点(燃焼行程及び吸気行程の各始点)において検出値を出力する。なお、同図に示す各気筒の点火順序は単なる例示であって本発明に係る防振装置の故障診断装置4をなんら制限するものではない。
【0035】
図7に戻り、出力デューティ比演算部39は、クランク角センサ32からのクランク角パルス信号を常時読み込んでクランク軸の欠損信号を検出する。
図9のクランク角パルス信号に示すように、クランク軸が1回転するたびに欠損信号が読み込まれる(欠損信号1→欠損信号2→欠損信号3…)ので、出力デューティ比演算部39は、この欠損信号の入力タイミングをトリガにして、防振振動波形の生成開始タイミングを決定する。たとえば、クランク軸の回転方向の位置とパルサーロータ323の回転方向の位置の関係は既知であり、クランク軸の回転方向の位置と各気筒の位置は既知であるので、欠損信号が読み込まれてからnパルス目にたとえばNO.1気筒の燃焼行程の始点があることが判る。したがって、欠損信号から数えてnパルス目に防振振動波形の生成を開始することを予め定めておくことができる。
【0036】
また、出力デューティ比演算部39は、振幅演算部37及び位相演算部38で抽出された防振振動波形を規定する位相の時間単位で振幅を出力するのではなく、クランク角パルス信号の入力タイミングで振幅を出力する。上述したとおり、位相演算部38で抽出される位相はクランク角パルス信号の最小単位以下であるため、クランク角パルス信号の間隔に応じた位相に対する振幅を出力する。この振幅の出力の際に振幅値に対応する印加電流値のデューティ比に変換し、このデューティ比をアクチュエータ230の増幅回路(不図示)に出力する。なお、増幅回路にはデューティ比パルス信号を入力し、これをアクチュエータ230に印加する定電流に変換する定電流出力回路が設けられ、この定電流がアクチュエータ230のコイル233に流されることになる。
【0037】
出力デューティ比演算部39は、クランク角パルス信号の入力タイミングで振幅値に応じた出力デューティ比パルス信号を出力するが、たとえば
図9に欠損信号2で示すように、クランク角パルス信号の入力中に欠損信号2が入力されると、この間に振幅値を出力できない。このため、出力デューティ比演算部39は、防振振動波形の生成開始タイミングから入力されたクランク角パルス信号をカウントし続けることで欠損信号となるタイミングを検出し、この欠損信号の入力中はタイマーを用いてその間の所定時間に応じた振幅値を演算して出力する。たとえば、欠損信号を入力してからt
m時間経過後の振幅を欠損時間中の振幅として出力する。
【0038】
次に、
図8のフローチャートを参照して本例の防振装置2の制御動作を説明する。
まずステップST1にて、クランク角センサ32からのクランク角パルス信号と、カム角センサ35からのカム角パルス信号と、アクセルセンサ31からのアクセルセンサ信号(目標出力トルク信号)とを読み込む。ステップST2では、ステップST1で読み込まれたクランク角パルス信号から欠損信号を検出することでクランク軸が初期基準位置に達したか否かを判定する。ここで、初期基準位置に達していない場合はステップST1へ戻り、初期基準位置に達するまで、再びクランク角センサ32からのクランク角パルス信号と、カム角センサ35からのカム角パルス信号と、アクセルセンサ31からの目標出力トルクとを読み込む。
【0039】
ステップST2にてクランク軸が初期基準位置に達したことを検出したら、ステップST3へ進み、出力デューティ比演算部39は防振振動波形の生成開始タイミングを演算する。たとえば、
図9に示す欠損信号1を検出した場合にこれを初期基準位置として、ここからクランク角パルス信号の2パルス目を防振振動波形の生成開始タイミングに設定する。上述したとおり、この生成開始タイミングはエンジン1の行程に関連して当該エンジン1の上下振動の基点となる。なおここまでの期間については、防振振動波形の生成を行わずに生成を禁止し、したがって防振装置2への駆動指令は行われない。
【0040】
次のステップST4では、ステップST1にて読み込んだクランク角パルス信号からエンジン回転速度を演算するとともにアクセルセンサ信号から目標出力トルクを演算し、これらエンジン回転速度と目標出力トルクを振幅演算部37及び位相演算部38にそれぞれ入力し、各制御マップ371,381に基づいて、現在のエンジン回転速度及びエンジン出力トルクに適した防振振動波形(位相及び振幅の数値集合体)を抽出する。そして、ステップST1にて読み込まれるクランク角パルス信号の入力タイミングごとに出力振幅のデューティ比を演算する。
図9に示す例にあっては、パルス信号の欠損信号1から次の欠損信号2までの間に23パルスの信号が入力されるので、これら23パルスの信号が入力される度にそのタイミングに相当する出力振幅のデューティ比を演算する。
【0041】
ステップST5では、ステップST1で読み込まれるクランク角パルス信号が欠損信号であるか否かを判断し、欠損信号ではない場合はステップST7へ進む。これに対して、
図9に示す防振振動波形の生成開始からパルス信号の欠損信号2を迎えた場合などのように、クランク角パルス信号が欠損信号である場合にはステップST6へ進み、この間の出力振幅値を補完する。この補完処理は、直前(又は直前から前にnパルス目)のクランク角パルス信号からタイマーを用いて経過時間をカウントし、欠損信号のたとえば中間のタイミングの出力振幅の出力デューティ比を演算することにより行われる。
【0042】
次のステップST7では、ステップST4又はST6で演算された出力振幅の出力デューティ比をクランク角パルス信号の入力タイミングごとに防振装置2の増幅器に出力し、当該増幅器を介してアクチュエータ230に定電流を流す。なお、ステップST7の処理を終了するとステップST1へ戻り、再びクランク角センサ32からのクランク角パルス信号と、カム角センサ35からのカム角パルス信号と、アクセルセンサ31からのアクセルセンサ信号(目標出力トルク信号)とを読み込むが、このステップST1の読み込みタイミングについては、たとえばクランク軸が2回転(4サイクルV6型エンジンにあっては各気筒の1周期)するたびに1回の読み込みを行うことが望ましい。ただし、4回転ごとや6回転ごとなど適宜の値に設定してもよい。
【0043】
ちなみに、クランク角センサ32が自己診断処理などによって正常に動作しなかったり、クランク角パルス信号の入力が検出されなかったりした場合には、ステップST1〜ST7の処理を禁止し、防振装置2への駆動指令を行わないようにしてもよい。
【0044】
《故障診断装置》
図4に戻り、本例の故障診断装置4は、車両の出荷時検査や保守点検の際にエンジン制御装置3の外部装置接続用コネクタ3cに接続され、防振装置2の駆動異常を検査するものである。このため、接続コネクタ及び配線41cを含む出力部41と、入力部42と、エンジン停止指令部43と、振動波形生成部44とを備える。これらの構成部品は、
図10に示す筐体45内に収納され、この筐体45の一面等に電源ON/OFFスイッチ451のほか入力部42を構成する各種入力ボタンが設けられている。なお、本例では故障診断装置4を防振装置の制御装置3とは別の構成としたが、故障診断装置4を防振装置の制御装置3に内蔵し、入力部42を車両に設ける又は車両の他のスイッチを利用するなど、必ずしも別々の装置とする必要はない。
【0045】
入力部42は、エンジン制御装置3に出力する振動波形の間欠時間、振幅及び位相(周波数)、防振装置の特定が可能とされ、
図10に示すように、間欠時間設定ボタン454を押すとディスプレイ453に設定画面が表示され、テンキー452を用いて所望の時間値を入力することで、振動波形と振動波形との間隔、すなわち振動波形の間欠時間を設定することができる。また、波形振幅設定ボタン455を押すとディスプレイ453に設定画面が表示され、テンキー452を用いて所望の振幅値を入力することで、振動波形の振幅を設定することができる。同様に、波形位相設定ボタン456を押すとディスプレイ453に設定画面が表示され、テンキー452を用いて所望の位相値を入力することで、振動波形の位相を設定することができる。
【0046】
本例の故障診断装置4による振動波形は、上述した防振装置2へ印加する防振振動波形とは異なり、エンジン1の上下振動を打ち消すといった必要はなく、単に防振装置2が正常に振動するか否かを検査するものである。したがって、振動波形生成部44にて生成する振動波形は、たとえば単純な正弦波Asinθで表される波形とすることができる。入力部42の波形振幅ボタン455及び波形位相ボタン456は、こうした正弦波の振幅Aと位相θを適宜設定するための入力部であり、防振装置2の振動は検査員がハンドル、シート、フロアパネル、ブレーキペダル、ボンネットなどを触診することで検査するので、制振性能が高い車両にあっては振幅の設定値を大きくしたり、位相の設定値を変えることで高周波の振動又は低周波の振動に変更したりするなど、検査員が触診により識別し易い振動波形に設定する。
【0047】
また、
図1に示すように1台の車両に複数の防振装置21,22が搭載されている場合には故障診断を行う防振装置を特定する必要があるため、防振装置設定ボタン457を押してディスプレイ453に設定画面を表示し、故障診断を行う防振装置のIDなどをテンキー452で入力する。
図10において、電源ON/OFFスイッチ451は故障診断装置4に供給される主電源をON/OFFするスイッチであり、電源は車載バッテリ又は内蔵電池などから供給される。また診断開始ボタン458は、間欠時間設定ボタン454、振動振幅設定ボタン455、振動位相設定ボタン456及び防振装置設定ボタン457により所望の設定値が入力されたのち故障診断を開始する場合にONにするボタンであり、これを押すことでエンジン停止信号と振動波形信号がエンジン制御装置3に出力されることになる。
【0048】
図4のエンジン停止指令部43は、エンジン制御装置3に対してエンジン1が作動中である場合はこれを停止する指令を生成するものであり、エンジン制御装置3へイグニッションスイッチを強制的にOFFする指令信号や燃料噴射バルブへの噴射量を強制的にゼロにする指令信号を生成する。なお、エンジン停止指令部43は、エンジン制御装置3からエンジン1が作動中か否かの信号を受け取り、作動中である場合はエンジン停止指令信号を生成するほか、エンジン1が作動中か否かに拘わらずエンジン停止指令を生成してもよい。
【0049】
図4の振動波形生成部44は、上述したようにたとえば正弦波Asinθで表される振動波形を生成するものであり、上述した防振装置2の制御部と同様にアクチュエータ230に印加する電流のデューティ比として出力部に出力する。出力部41は、入力部42を構成する診断開始ボタン458からの診断開始信号に基づいてエンジン停止指令部43からのエンジン停止信号と振動波形生成部44からの振動波形信号をエンジン制御装置3に出力する。また、診断停止ボタン459からの診断停止信号によりこれらの出力を停止する。
【0050】
次に故障診断装置4の動作について説明する。
故障診断を始めるにあたり、故障診断装置4の接続コネクタ41cをエンジン制御装置3の外部装置接続用コネクタ3cに接続する。そして、
図11のステップST21では、筐体45の間欠時間設定ボタン454により設定された振動波形の間欠時間と、波形振幅設定ボタン455及び波形位相設定ボタン456により設定された振動波形と、防振装置設定ボタン457で特定された防振装置21,22とを読み込む。次いでステップST22では、筐体45の診断開始ボタン458が押されたか否かを判断し、押された場合にはステップST23へ進み、押されていない場合はステップST21へ戻る。
【0051】
ステップST23では、エンジン制御装置3からエンジン1が作動中か否かの情報を受け取り、作動中である場合はステップST24にてエンジン停止指令信号を出力してエンジン1を停止させる。エンジン1が停止中である場合はステップST23を実行しないでステップST24へ進む。
【0052】
ステップST25では、設定された振動波形を設定された間欠時間でエンジン制御装置3へ出力し、アクチュエータ230により防振装置2を振動させる。そして、ステップST26において、検査員は車両のハンドル、シート、フロアパネル、ブレーキペダル、ボンネットなどを触診し、防振装置2の振動を感じたら正常と判定し、振動が感じられなかったら故障と判定する。ステップST27では、所定の時間が経過したか否かを判断し、経過していない場合はステップST25へ戻って振動を継続する。
【0053】
ステップST27にて所定の時間が経過したらステップST28へ進み、診断を終了すべく電源スイッチを自動的にOFFする。
【0054】
以上のとおり本例の防振装置の故障診断装置4によれば、以下の効果を奏する。
(1)本例の防振装置の故障診断装置4では、エンジン制御装置3に接続して振動波形信号を出力することで防振装置を駆動し、そのときに車体を介して伝達される振動を検査員が触診することで防振装置2の故障を判断するので、センサレスタイプの防振装置であっても故障を診断することができる。
【0055】
(2)また本例の防振装置の故障診断装置4では、防振装置2の故障診断に際しエンジン1を停止させた状態で検査員が触診するので、小さな振動であっても防振装置2の駆動を精度よく感じることができ、誤判定を防止することができる。
【0056】
(3)また本例の防振装置の故障診断装置では、防振装置に出力する振動波形を時間的間隔をおいて間欠的に出力するので、検査員の熟練度や周囲の振動騒音などと明確に識別することができ、これによっても誤判定を防止することができる。
【0057】
(4)また本例の防振装置の故障診断装置では、振動波形の間欠時間を所望の値に設定できるので、故障判定精度が高くなる間欠時間に設定することで検査精度が向上する。また、生産ラインにあっては、生産タクトタイムに応じた最適な時間に設定することで生産効率の低下を抑制することができる。
【0058】
(5)また本例の防振装置の故障診断装置では、振動波形の振幅及び位相を所望の値に設定できるので、防振装置2の能力や車体の機械的特性に応じた最適な振動波形に設定することで判定精度が向上し、誤判定を防止することができる。
【0059】
(6)また本例の防振装置の故障診断装置では、診断対象となる防振装置21,22を特定できるので、複数の防振装置が設けられた車両であっても個々の防振装置の故障を診断することができる。