【実施例1】
【0031】
図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、外部電源からバッテリに充電(プラグイン)された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
【0032】
尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車であって、外部電源からバッテリに充電する所謂プラグインが可能なものにも本発明は有効である。
【0033】
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、外気と冷媒とを熱交換させるための室外送風機15が設けられている。
【0034】
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
【0035】
また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
【0036】
また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
【0037】
また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。更に、圧縮機2の吐出側の冷媒配管13Gは分岐し、この分岐した冷媒配管13Hは室外熱交換器7の除霜を行う除霜モードにおいて開放され、圧縮機2から吐出された高温冷媒(ホットガス)を直接室外熱交換器7に流入させるための電磁弁(開閉弁)23及び逆止弁24を介して室外膨張弁6及びバイパス配管13Jの並列回路と室外熱交換器7間の冷媒配管13Iに連通接続されている。この電磁弁23が除霜手段を構成する。尚、逆止弁24は冷媒配管13I方向を順方向とされている。
【0038】
また、放熱器4を出た直後(冷媒配管13F、13Iに分岐する手前)の冷媒配管13Eは分岐しており、この分岐した冷媒配管13Kはインジェクション制御用の電動弁から成るインジェクション膨張弁30を介して圧縮機2の圧縮途中に連通接続されている。そして、このインジェクション膨張弁30の出口側と圧縮機2間の冷媒配管13Kは、圧縮機2の吐出側に位置する冷媒配管13Gと熱交換関係に設けられ、両者で吐出側熱交換器(本発明における熱交換器)35を構成している。尚、実施例では圧縮機2の吐出側と放熱器4の入口側の間に吐出側熱交換器35を構成しているが、放熱器4の出口側に熱交換器を設けても良い。
【0039】
これら冷媒配管13K、インジェクション膨張弁30、及び、吐出側熱交換器35からインジェクション回路40が構成される。このインジェクション回路40は、放熱器4から出た冷媒の一部を分流して圧縮機2の圧縮途中に戻す(ガスインジェクション)ための回路であり、インジェクション膨張弁30は冷媒配管13Kに流入した冷媒を減圧した後、吐出側熱交換器35に流入させる。吐出側熱交換器35に流入した冷媒は、圧縮機2から冷媒配管13Gに吐出され、放熱器4に流入する前の冷媒と熱交換し、冷媒配管13Gを流れる冷媒から吸熱して蒸発する構成とされている。吐出側熱交換器35で冷媒配管13Kに分流された冷媒が蒸発することで、圧縮機2へのガスインジェクションが行われることになる。
【0040】
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(
図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
【0041】
また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(
図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
【0042】
次に、
図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO
2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4から出た直後の冷媒の温度、又は、放熱器4自体の温度、又は、放熱器4にて加熱された直後の空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9から出た直後の冷媒の温度、又は、吸熱器9自体、又は、吸熱器9にて冷却された直後の空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
【0043】
また、コントローラ32の入力には更に、インジェクション回路40の冷媒配管13Kに流入し、吐出側熱交換器35を経て圧縮機2の圧縮途中に戻るインジェクション冷媒の圧力を検出するインジェクション圧力センサ50と、該インジェクション冷媒の温度を検出するインジェクション温度センサ55の各出力も接続されている。
【0044】
一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、
吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁23、22、17、21、20と、インジェクション膨張弁30と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
【0045】
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
【0046】
(1)暖房モードの冷媒の流れ
コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20及び電磁弁23を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経た後、放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
【0047】
放熱器4内で液化した冷媒は放熱器4を出た後、一部はインジェクション回路40の冷媒配管13Kに分流され、主には冷媒配管13Eを経て室外膨張弁6に至る。尚、インジェクション回路40の機能作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
【0048】
コントローラ32は、実施例では放熱器圧力センサ47(又は吐出圧力センサ42)が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、後述する目標吹出温度、放熱器温度センサ46が検出する放熱器4の温度、放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
【0049】
(2)除湿暖房モードの冷媒の流れ
次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
【0050】
吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
【0051】
コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。尚、この除湿暖房モードではインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
【0052】
(3)内部サイクルモードの冷媒の流れ
次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21も閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
【0053】
吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
【0054】
コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。尚、この内部サイクルモードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
【0055】
(4)除湿冷房モードの冷媒の流れ
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22、電磁弁20、及び、電磁弁23を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
【0056】
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
【0057】
室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
【0058】
吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
【0059】
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(
放熱器圧力Pci)を制御する。尚、この除湿冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
【0060】
(5)冷房モードの冷媒の流れ
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
【0061】
このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
【0062】
室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
【0063】
吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。尚、この冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
【0064】
(6)暖房モードにおけるガスインジェクション
次に、前記暖房モードにおけるガスインジェクションについて説明する。
図3は暖房モードにおける本発明の車両用空気調和装置1のP−h線図を示している。放熱器4を出て冷媒配管13Eに入り、その後分流されてインジェクション回路40の冷媒配管13Kに流入した冷媒は、インジェクション膨張弁30で減圧された後、吐出側熱交換器35に入り、そこで圧縮機2の吐出冷媒(圧縮機2から吐出されて放熱器4に流入する前の冷媒)と熱交換し、吸熱して蒸発する。蒸発したガス冷媒はその後圧縮機2の圧縮途中に戻り、アキュムレータ12から吸い込まれて圧縮されている冷媒と共に更に圧縮された後、再度圧縮機2から冷媒配管13Gに吐出されることになる。
【0065】
図3において35で示す線がインジェクション回路40で圧縮機2に戻される冷媒である。インジェクション回路40から圧縮機2の圧縮途中に冷媒を戻すことにより、圧縮機2から吐出される冷媒量が増大するので、放熱器4における暖房能力が向上するものであるが、圧縮機2に液冷媒が戻ると液圧縮を引き起こしてしまうので、インジェクション回路40から圧縮機2に戻す冷媒はガスでなければならない。
【0066】
そのためにコントローラ32は、インジェクション圧力センサ50及びインジェクション温度センサ55がそれぞれ検出する吐出側熱交換器35後の冷媒の圧力及び温度から圧縮機2の圧縮途中に向かう冷媒の過熱度を監視しており、吐出冷媒との熱交換で所定の過熱度が付くようにインジェクション膨張弁30の弁開度を制御するものであるが、実施例では吐出側熱交換器35において、圧縮機2から吐出されて放熱器4に流入する前の極めて高温の冷媒とインジェクション回路40を流れる冷媒とを熱交換させているので、大きな熱交換量が得られる。従って、インジェクション膨張弁30の弁開度を大きくしてインジェクション量を増やしても、冷媒は吐出側熱交換器35において十分に蒸発することができ、必要な過熱度が得られることになる。
【0067】
これにより、従来の如く放熱器後の冷媒とインジェクション冷媒とを熱交換させる場合に比して、圧縮機2へのガスインジェクション量を十分に確保し、圧縮機2の吐出冷媒量を増大させて暖房能力の向上を図ることができるようになる。
【0068】
(7)車両走行中における暖房モードでの圧縮機、室外膨張弁及びインジェクション膨張弁の制御
次に、車両(電気自動車)の走行中における前記暖房モード時の圧縮機2及び室外膨張弁6の制御と、当該暖房モードでのインジェクション回路40のインジェクション膨張弁30(ガスインジェクション)の制御について説明する。
【0069】
図4は前記暖房モードにおけるコントローラ32による圧縮機2と室外膨張弁6とインジェクション膨張弁30の制御ブロック図を示す。コントローラ32は目標吹出温度TAOを目標放熱器温度演算部57と目標放熱器過冷却度演算部58と目標インジェクション冷媒過熱度演算部59に入力させる。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値であり、下記式(I)からコントローラ32が算出する。
【0070】
TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的にこの目標吹出温度TAOは
図5に示すように外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
【0071】
コントローラ32の目標放熱器温度演算部57にて目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、コントローラ32は目標放熱器圧力演算部61にて目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の圧力(放熱器圧力)Pciとに基づき、コントローラ32は圧縮機回転数演算部62にて圧縮機2の回転数Ncを算出し、この回転数Ncにて圧縮機2を運転する。即ち、コントローラ32は圧縮機2の回転数Ncにより放熱器4の圧力Pciを制御する。
【0072】
また、コントローラ32は目標放熱器過冷却度演算部58にて目標吹出温度TAOに基づき、放熱器4の目標放熱器過冷却度TGSCを算出する。一方、コントローラ32は、放熱器圧力Pciと放熱器温度センサ46が検出する放熱器4の温度(放熱器温度Tci)に基づき、放熱器過冷却度演算部63にて放熱器4における冷媒の過冷却度(放熱器過冷却度SC)を算出する。そして、この放熱器過冷却度SCと目標放熱器過冷却度TGSCに基づき、目標室外膨張弁開度演算部64にて室外膨張弁6の目標弁開度(目標室外膨張弁開度TGECCV)を算出する。そして、コントローラ32はこの目標室外膨張弁開度TGECCVに室外膨張弁6の弁開度を制御する。
【0073】
コントローラ32の放熱器過冷却度演算部63は目標吹出温度TAOが高い程、目標放熱器過冷却度TGSCを上げる方向に演算を行うが、それに限らず、後述する要求暖房能力Qtgtと暖房能力Qmaxhpの差(能力差)や放熱器圧力Pci、目標放熱器圧力PCOと放熱器圧力Pciの差(圧力差)に基づいて算出してもよい。その場合コントローラ32は、能力差が小さい程、圧力差が小さい程、室内送風機27の風量が小さい程、又は、放熱器圧力Pciが小さい程、目標放熱器過冷却度TGSCを下げることになる。
【0074】
更に、コントローラ32は目標インジェクション冷媒過熱度演算部59にて目標吹出温度TAOに基づき、インジェクション回路40から圧縮機2の圧縮途中に戻されるインジェクション冷媒の過熱度の目標値(目標インジェクション冷媒過熱度TGSH)を算出する。一方、コントローラ32は、インジェクション圧力センサ50が検出するインジェクション冷媒の圧力(インジェクション冷媒圧力Pinj)とインジェクション温度センサ55が検出するインジェクション冷媒の温度(インジェクション冷媒温度Tinj)に基づき、インジェクション冷媒過熱度演算部66にてインジェクション冷媒の過熱度INJSHを算出する。
【0075】
そして、このインジェクション冷媒過熱度INJSHと目標インジェクション冷媒過熱度TGSHに基づき、目標インジェクション膨張弁開度演算部67にてインジェクション膨張弁30の目標弁開度(目標インジェクション膨張弁開度TGINJCV)を算出する。そして、コントローラ32はこの目標インジェクション膨張弁開度TGINJCVにインジェクション膨張弁30の弁開度を制御する。
【0076】
目標インジェクション冷媒過熱度演算部59は、例えば目標吹出温度TAOが高くなるに従って目標インジェクション冷媒過熱度TGSHを低くする(ヒステリシス有り)。目標インジェクション冷媒過熱度TGSHを低くするということは、インジェクション膨張弁30の弁開度を拡張してインジェクション量を増大させることである。即ち、コントローラ32は目標吹出温度TAOが高くなる程、インジェクション膨張弁30により、圧縮機2に戻すインジェクション量を増やし、圧縮機2の吐出冷媒量を増やして暖房能力を増大させる。
【0077】
また、コントローラ32は式(II)、式(III)を用いて要求される放熱器4の暖房能力である要求暖房能力Qtgtと、インジェクション回路40に冷媒を流していないとき、即ち、ガスインジェクションを行っていないときに放熱器4が発生可能な最大の暖房能力である暖房能力Qmaxhp(即ち、暖房能力の限界値。推定値)を算出する。
【0078】
Qtgt=(TCO−Te)×Cpa×ρ×Qair ・・(II)
Qmaxhp=f(Tam、Nc、BLV、VSP、Te) ・・(III)
ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m
3]、Qairは放熱器4を通過する風量[m
3/h](室内送風機27のブロワ電圧BLV等から推定)、VSPは車速センサ52から得られる車速である。
【0079】
尚、式(II)においてはTCO、Teに代えて、或いは、それに加えて、放熱器4に流入する空気の温度、又は、放熱器4から流出する空気の温度を採用してもよい。また、式(III)の圧縮機2の回転数Ncは冷媒流量を示す指標の一例であり、ブロワ電圧BLVは空気流通路3内の風量を示す指標の一例であり、暖房能力Qmaxhpはこれらの関数から算出される。また、Qmaxhpはそれらと放熱器4の出口冷媒圧力、放熱器4の出口冷媒温度、放熱器4の入口冷媒圧力、及び、放熱器4の入口冷媒温度のうちの何れか、若しくは、組み合わせから算出してもよい。
【0080】
そして、コントローラ32は要求暖房能力Qtgtが暖房能力Qmaxhp以下の場合、インジェクション無しの制御とする。この場合、コントローラ32はインジェクション膨張弁30を全閉(全閉位置)としてインジェクション回路40に冷媒を流さない。一方、要求暖房能力Qtgtが暖房能力Qmaxhpを超えている場合、即ち、放熱器4による暖房能力Qmaxhpが要求暖房能力Qtgtに対して不足する場合、インジェクション有りの制御として、ガスインジェクションを実行する。この場合、コントローラ32はインジェクション膨張弁30の弁開度を所定の値として開き、圧縮機2にガスインジェクションを行う。即ち、コントローラ32は前述した如く目標インジェクション膨張弁開度TGINJCVにインジェクション膨張弁30の弁開度を制御する。
【0081】
(8)プラグイン中におけるプレ空調(暖房モード)
次に、
図6、
図7を参照しながら車両(電気自動車)のプラグイン中に前記暖房モードとされ、車室内をプレ空調(暖房)するときの熱媒体循環回路23と冷媒回路Rの制御について説明する。
【0082】
コントローラ32は、車両が外部電源に接続され、バッテリに充電されているプラグイン中にも暖房モードを実行することができるように構成されている。この場合、コントローラ32は
図6のステップS1で、現在車両はプラグイン中であり、且つ、使用者による暖房要求(暖房モード開始の入力操作)があったか否か判断しており、先ず、プラグイン中では無い場合、又は、暖房要求が無い場合は、ステップS1からステップS12に進み、室外熱交換器7に着霜していないか否か判断し、着霜していない場合はステップS13で車両用空気調和装置1の運転を停止する。また、室外熱交換器7に着霜している場合にはステップS14に進み、除霜モードに移行して室外熱交換器7の除霜運転を実行する。尚、このステップS12における室外熱交換器7の着霜判定及びステップS14における除霜モードについては後に詳述する。
【0083】
一方、現在車両はプラグイン中であり、且つ、使用者による暖房要求がある場合、コントローラ32はステップS1からステップS2に進み、各センサからのデータを読み込み、ステップS3で前記ステップS12と同様に室外熱交換器7に着霜していないか否か判断する。車両がプラグインされる前の走行時において、暖房モードでは室外熱交換器7には外気中の水分が霜となって付着する。この霜が成長すると室外熱交換器7と通風される外気との間の熱交換が著しく阻害され、空調性能が悪化してしまう。
【0084】
(8−1)室外熱交換器の着霜判定
コントローラ32はステップS3(前記ステップS12も同様)でその機能としての着霜推定手段により、室外熱交換器7への着霜状態を判定(推定)する。次に、室外熱交換器7の着霜状態の判定例を説明する。
【0085】
コントローラ32は室外熱交換器圧力センサ56から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7の着霜状態を判定する。この場合のコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(IV)を用いて決定する。
【0086】
TXObase=f(Tam、NC、BLV、VSP)
=k1×Tam+k2×NC+k3×BLV+k4×VSP・・(IV)
ここで、式(IV)のパラメータであるTamは外気温度センサ33から得られる前記外気温度、NCは圧縮機2の回転数、BLVは室内送風機27のブロワ電圧、VSPは車速センサ52から得られる車速であり、k1〜k4は係数で、予め実験により求めておく。
【0087】
上記外気温度Tamは室外熱交換器7の吸込空気温度を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
また、上記圧縮機2の回転数NCは冷媒回路R内の冷媒流量を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
また、上記ブロワ電圧BLVは放熱器4の通過風量を示す指標であり、ブロワ電圧BLVが高い程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ風量やエアミックスダンパ28開度SWでもよい。
また、上記車速VSPは室外熱交換器7の通過風速を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。
【0088】
尚、プラグイン中は車速VSPは0となるので、この場合には、室外熱交換器7の通過風速を示す指標として室外送風機15の室外ファン電圧FANVoutを代用する。また、実施例では式(IV)のパラメータとして外気温度Tam、圧縮機2の回転数NC、室内送風機27のブロワ電圧BLV、及び、車速VSPを用いているが、これらに車両用空気調和装置1の負荷をパラメータとして加えてもよい。この負荷を示す指標としては、目標吹出温度TAO、圧縮機2の回転数NC、室内送風機27のブロワ風量、放熱器4の入口空気温度、放熱器4の放熱器温度Tciが考えられ、負荷が大きい程、TXObaseは低くなる傾向となる。更に、車両の経年劣化(運転年数や運転回数)をパラメータに加えてもよい。また、式(IV)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。
【0089】
次にコントローラ32は、式(IV)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を算出し、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定の着霜検知閾値ΔT1より大きくなった状態(ΔTXO>ΔT1)が例えば所定の着霜状態推定時間継続した場合、室外熱交換器7に着霜が生じているものと判定する。
【0090】
(8−2)室外熱交換器の除霜モード
ステップS3(前記ステップS12も同様)で室外熱交換器7に着霜している場合、ステップS6(前記ステップS14も同様)に進んで除霜モードを実行する。コントローラ32はステップS6(ステップS14)の除霜モードでは、電磁弁23と電磁弁21を開き、電磁弁22及び電磁弁17を閉じる。そして、外部電源からの電力、或いは、外部電源で充電されているバッテリからの電力で圧縮機2を運転する除霜運転を行う。これにより、圧縮機2から吐出された高温高圧のガス冷媒(ホットガス)は、
電磁弁23を経て冷媒配管13Hを通り、逆止弁24を経て冷媒配管13Iから室外熱交換器7に直接流入する状態となる。これにより、室外熱交換器7は加熱されるので、霜は融解除去される。
【0091】
室外熱交換器7から出た冷媒は冷媒配管13Aから電磁弁21を経て冷媒配管13Dに入り、冷媒配管13Bを経て圧縮機2に吸い込まれる。そして、除霜モードの開始から所定時間経過した場合、コントローラ32は除霜モードを終了してステップS1に戻り、暖房モードに復帰する。
【0092】
(8−3)室外熱交換器の着霜予測
一方、ステップS3で差ΔTXOが着霜検知閾値ΔT1以下(ΔTXO≦ΔT1)で室外熱交換器7に着霜していないと判定された場合、コントローラ32はステップS4に進んで今度は室外熱交換器7に着霜すると予測されるか否か判断する。
図7はステップS4における着霜予測のフローチャートの一例を示している。
【0093】
コントローラ32は先ず
図7のステップS16で、下記式(V)を用いて室外熱交換器7に着霜しない範囲で放熱器4が発生可能な最大の暖房能力の目標値、即ち、車両が現在置かれている環境下で、冷媒を放熱器4で放熱させ、室外熱交換器7で蒸発させるヒートポンプ運転を行った場合に、室外熱交換器7に着霜させずに放熱器4が発生可能な最大の暖房能力の目標値である無着霜最大暖房能力予測値TGQhpNfstを予測して算出する。
【0094】
TGQhpNfst=f(Tam) ・・(V)
ここで、Tamは外気温度センサ33が検出する前述した外気温度である。尚、式(V)においては外気温度Tamに加えて、時刻、日射センサ51が検出する日射量、降雨、位置、気象等の各環境条件や外部情報を参照し、無着霜最大暖房能力予測値TGQhpNfstを補正してもよい。
【0095】
図8は係る無着霜最大暖房能力予測値TGQhpNfstと外気温度の関係(無着霜最大暖房能力予測値の変化の傾向)を示している。放熱器4が発生可能な暖房能力Qmaxhpは外気温度Tamの上昇に比例して増大する。そして、室外熱交換器7に霜が生じない外気温度が+5℃程であるものとすると、+5℃以下においてそのまま最大の暖房能力Qmaxhpで運転すると、室外熱交換器7に霜が発生してしまうので、
図8に破線で示すように、無着霜最大暖房能力予測値TGQhpNfstは外気温度の低下に伴い、最大の暖房能力Qmaxhpよりも大きい角度で減少していく傾向となる。
【0096】
コントローラ32は、ステップS16で上記式(V)を用いて無着霜最大暖房能力予測値TGQhpNfstを算出した後、前述した(II)により要求暖房能力Qtgtを算出し、ステップS17で無着霜最大暖房能力予測値TGQhpNfstが要求暖房能力Qtgt−α1より小さいか否か判断する(TGQhpNfst<(Qtgt−α1))。このα1は着霜に対して余裕度を持たせるための値であり、Qtgt−α1は、要求暖房能力Qtgtより小さいがそれに近い値となる。尚、余裕度が不要な場合には、α1=0としてステップS17ではTGQhpNfst<Qtgtで判断してもよい。
【0097】
そして、この実施例では無着霜最大暖房能力予測値TGQhpNfstが要求暖房能力に近い値(Qtgt−α1)より小さい場合、ステップS18に進んで圧縮機2の運転により放熱器4で暖房を行うと、室外熱交換器7に着霜すると予測する。尚、TGQhpNfst≧(Qtgt−α1)の場合には、ステップS19に進んで着霜しないと予測する。
【0098】
図6に戻って、コントローラ32はステップS18で着霜すると予測した場合、ステップS4からステップS5に進んで圧縮機2の回転数を所定値B以下に抑制し、室外送風機15の電圧を所定値C以下として室外熱交換器7への通風量を減少させ、目標放熱器過冷却度TGSCを所定値D以上に上昇させ、室内送風機27のブロワ電圧BLVを所定値E以下として空気流通路3内の通風量を減少させる。
【0099】
圧縮機2の回転数の低下により、室外熱交換器7に循環される冷媒量が減少する。また、室外送風機15による通風量の低下により、外気との熱交換量が減少する。これらにより、室外熱交換器7における冷媒の吸熱量が抑制される。これらにより、室外熱交換器7への着霜が防止、若しくは、抑制されることになる。また、目標放熱器過冷却度TGSCの上昇で放熱器4における冷媒の過冷却度が上昇し、空気流通路3内における放熱器4への通風量が減少することで、冷媒回路Rの高圧側圧力が上昇する。これらにより、放熱器4における暖房能力の維持が図られることになる。尚、実施例ではステップS5で室外送風機15の電圧を所定値C以下とすることと、目標放熱器過冷却度TGSCを所定値D以上に上昇させることと、室内送風機27のブロワ電圧BLVを所定値E以下とすることの全てを実行しているが、これらについては何れか一つ、若しくは、それらの組み合わせを実行するかたちであっても良い。
【0100】
更に、インジェクション膨張弁30の目標弁開度(目標インジェクション膨張弁開度TGINJCV)を制御上限として圧縮機2の圧縮途中へのガスインジェクション量を最大とする。これにより、圧縮機2からの吐出冷媒量が増大して放熱器4における暖房能力が向上することになる。尚、この制御上限は、インジェクション回路40から圧縮機2の圧縮途中に戻されるインジェクション冷媒が液バックを起こさない最小の過熱度の目標値(目標インジェクション冷媒過熱度TGSH)から算出される。
【0101】
また、
図7のステップS19で着霜しないと予測した場合、コントローラ32は
図6のステップS4からステップS7に進んで再度要求暖房能力Qtgtを前記式(II)で算出し、ステップS8で暖房能力Qmaxhpを前記式(III)で算出する。次に、コントローラ32はステップS9で要求暖房能力Qtgtと暖房能力Qmaxhpとを比較し、例えば寒冷期等に暖房能力Qmaxhpが要求暖房能力Qtgtに対して不足する場合(Qtgt>Qmaxhp)、ステップS10に進んでインジェクション回路40による圧縮機2の圧縮途中へのガスインジェクションを実行する(HP+インジェクション運転)。これにより、圧縮機2の吐出冷媒量を増大させて暖房能力を向上させる。
【0102】
他方、ステップS9で要求暖房能力Qtgtに対して暖房能力Qmaxhpが満足(足りる)する場合(Qtgt≦Qmaxhp)、コントローラ32はステップS11に進んでインジェクション回路40による圧縮機2の圧縮途中へのガスインジェクションを停止し、通常のヒートポンプ運転を実行する(HPノーマル運転)。
【0103】
このように、コントローラ32は外部電源から圧縮機2、若しくは、当該圧縮機2を駆動するために電力を供給するバッテリに給電されているプラグイン状態において暖房モードを実行する際、室外熱交換器7への着霜が予測される場合、インジェクション回路40を動作させ、圧縮機2の圧縮途中に冷媒を戻すガスインジェクションを実行するので、所謂プラグイン中に車室内を予め暖房(プレ空調)する際、インジェクション回路40により圧縮機2の圧縮途中にガスインジェクションを行い、室外熱交換器7での吸熱を抑えて当該室外熱交換器7への着霜を防止し、若しくは、抑制しながら、ガスインジェクションにより圧縮機2の吐出冷媒量を増大させて放熱器4による車室内の暖房能力を確保し、その後の走行中の負荷を軽減することが可能となる。
【0104】
これにより、走行開始後の車室内を快適な温度に維持しながら、電気自動車やハイブリッド自動車の走行距離を延ばすことが可能となる。
【0105】
また、コントローラ32は、室外熱交換器7への着霜が予測される場合、圧縮機2の回転数を所定値B以下に抑制すると共に、インジェクション回路40によるガスインジェクション量を増大させるので、室外熱交換器7における吸熱量を確実に抑制して着霜を効果的に防止、若しくは、抑制することが可能となる。
【0106】
また、コントローラ32は室外熱交換器7への着霜が予測される場合、放熱器4における冷媒の過冷却度SCを上昇させ、更に空気流通路3内の通風量を減少させるので、高圧側の圧力上昇を促進することができる。これにより、圧縮機2の回転数が低下している状況における放熱器4の暖房能力を確保することが可能となる。
【0107】
また、コントローラ32は室外熱交換器7への着霜が予測される場合、室外送風機15による室外熱交換器7への通風量を減少させるので、室外熱交換器7への外気量を抑制して、外気中の水分の凝結による室外熱交換器7の着霜を一層効果的に防止、若しくは、抑制することが可能となる。
【0108】
また、コントローラ32は、室外熱交換器7に着霜しないと予測される場合、要求される放熱器4の暖房能力である要求暖房能力Qtgtと放熱器4が発生可能な暖房能力Qmaxhpとを比較し、この暖房能力Qmaxhpが要求暖房能力Qtgtより不足する場合、インジェクション回路40によるガスインジェクションを実行することにより、圧縮機2へのガスインジェクションを適切に制御し、実施例のように圧縮機2から吐出されて放熱器4に流入する前の冷媒とインジェクション回路40の冷媒を吐出側熱交換器35で熱交換させ、蒸発させる際の効率の低下を抑制することができる。
【0109】
そして、コントローラ32は室外熱交換器7に着霜しない範囲で放熱器4が発生可能な最大暖房能力の目標値である無着霜最大暖房能力予測値TGQhpNfstを算出し、この無着霜最大暖房能力予測値TGQhpNfstが、要求暖房能力Qtgt又はそれに近い値より小さくなる場合、室外熱交換器7に着霜すると予測することにより、室外熱交換器7に霜が生じる所謂霜点が検出できない場合にも、プラグイン中における室外熱交換器7への着霜を効果的に防止、若しくは、抑制することが可能となる。
【0110】
この場合、コントローラ32は外気温度Tamに基づき、若しくは、それに時刻、日射、降雨、位置、気象条件を加えて無着霜最大暖房能力予測値TGQhpNfstを算出することにより、室外熱交換器7に着霜しない無着霜最大暖房能力予測値TGQhpNfstを的確に推定し、即ち、結果として霜点を的確に推定してプラグイン中における室外熱交換器7への着霜を一層効果的に防止、若しくは、抑制することができるようになる。
【0111】
また、実施例ではインジェクション回路40を、インジェクション膨張弁30と、このインジェクション膨張弁30により減圧された冷媒を圧縮機2から吐出されて放熱器4に流入する前の冷媒と熱交換させる吐出側熱交換器35とから構成しているので、吐出側熱交換器35において圧縮機2の圧縮途中に戻される冷媒を蒸発させることができる。特にこの場合、圧縮機2から吐出されて放熱器4に流入する前の冷媒と熱交換させているので、より高温の冷媒により圧縮機2の圧縮途中に戻す冷媒を蒸発させることができ、ガスインジェクション量を十分に確保して圧縮機2の吐出冷媒量の増大を図ることが可能となる。