【実施例1】
【0018】
初めに分波器を含むモジュールについて説明する。
図1はモジュール100を例示するブロック図である。
図1に示すように、モジュール100は、アンテナ10及び20、スイッチ12及び22、4つのフィルタ16、4つの分波器26、4つのパワーアンプ(Power Amplifier:PA)30及びIC(Integrated Circuit:集積回路)32を備える。分波器26は受信フィルタ26a及び送信フィルタ26bを含む。IC32はローノイズアンプ(Low Noise Amplifier:LNA)32a及び32bを含む。
【0019】
フィルタ16は受信フィルタであり、一端は入力端子14を介してスイッチ12と接続され、他端は出力端子18を介してLNA32aと接続されている。受信フィルタ26a及び送信フィルタ26bそれぞれの一端はアンテナ端子24に共通して接続され、アンテナ端子24を介してスイッチ22と接続されている。受信フィルタ26aの他端は受信端子28aを介してLNA32bと接続されている。送信フィルタ26bの他端は送信端子28bを介してPA30と接続されている。
【0020】
アンテナ10及び20はRF(Radio Frequency)信号を受信及び送信する。スイッチ12は、4つのフィルタ16から1つを選択し、アンテナ10と接続する。フィルタ16は、アンテナ10が受信した受信信号をフィルタリングし、LNA32aは受信信号を増幅する。IC32は受信信号をダウンコンバートしベースバンド信号とする。スイッチ22は、4つの分波器26から1つを選択し、アンテナ20と接続する。受信フィルタ26aはアンテナ20が受信した受信信号をフィルタリングする。LNA32bは受信信号を増幅する。IC32はベースバンド信号をアップコンバートし送信信号を生成する。PA30は送信信号を増幅し、送信フィルタ26bは送信信号をフィルタリングする。アンテナ20は送信信号を送信する。
【0021】
4つの分波器26は異なる周波数帯域に対応する。分波器26の対応する周波数帯域は例えばW−CDMA(Wideband Code Division Multiple Access) Band1、Band2、Band5及びBand8などである。受信フィルタ26aの通過帯域は、送信フィルタ26bの通過帯域と異なる周波数に位置する。分波器26に実施例1が適用される。
【0022】
図2(a)は分波器26を例示する平面図である。リッド52は透視している。
図2(b)は
図2(a)の線A−Aに沿った断面図である。
図2(a)及び
図2(b)に示すように、分波器26は、受信フィルタ26a、送信フィルタ26b、基板40、封止部50及びリッド52を備える。
図2(b)に示すように、基板40は、絶縁層41及び42、並びに導体層43〜45を交互に積層した多層基板である。導体層の間は、絶縁層を貫通するビア配線46により電気的に接続されている。
【0023】
受信フィルタ26a及び送信フィルタ26bは基板40にフリップチップ実装されている。受信フィルタ26aと送信フィルタ26bとの間には空隙54が形成されている。受信フィルタ26a及び送信フィルタ26bは封止部50及びリッド52により封止されている。封止部50は受信フィルタ26a及び送信フィルタ26bを囲む。リッド52は受信フィルタ26a及び送信フィルタ26bの上面に接触する。受信フィルタ26aは圧電基板60及び機能部61を備える。送信フィルタ26bは圧電基板62及び機能部63を備える。機能部61及び63は後述するようにIDTであり、弾性波を励振する。機能部61及び63と基板40との間には空隙が形成されている。受信フィルタ26a及び送信フィルタ26bはバンプ47により導体層43に電気的に接続されている。
【0024】
絶縁層41及び42は例えばガラスエポキシ樹脂またはセラミックなどの絶縁体により形成されている。導体層43〜45及びビア配線46は例えば銅(Cu)などの金属により形成されている。導体層43及び45の表面は例えば金(Au)など半田に対する濡れ性の高い金属で覆われている。バンプ47は例えば錫銀(Sn−Ag)を主成分とする半田により形成されている。封止部50は例えば半田などの金属またはエポキシ樹脂などの絶縁体により形成されている。リッド52は例えばコバールなどの金属により形成されている。
【0025】
送信フィルタ26bについて詳しく説明する。
図3(a)は送信フィルタ26bを例示する平面図である。
図3(b)は
図3(a)の線B−Bに沿った断面図である。
図3(a)及び
図3(b)は模式的な図であり、電極指の本数は簡略化している。
【0026】
図3(a)に示すように、送信フィルタ26bは、圧電基板62、直列共振器S1〜S3、並列共振器P1及びP2を備えるラダー型フィルタである。
図3(a)及び
図3(b)に示すように、各共振器は、圧電基板62の表面に設けられたIDT63a及び反射器63bを有する弾性表面波(Surface Acoustic Wave:SAW)共振器である。直列共振器S1〜S3は、送信端子28bとアンテナ端子24との間に直列接続されている。入力段の直列共振器S1は2つの共振器S1a及びS2aに分割されている。出力段の直列共振器S3は2つの共振器S3a及びS3bに分割されている。入力段の直列共振器とは、複数の直列共振器のうち送信端子28bに最も近い直列共振器である。出力段の直列共振器とはアンテナ端子24に最も近い直列共振器である。並列共振器P1の一端は直列共振器S1b及びS2の間に接続され、他端は接地されている。並列共振器P2の一端は直列共振器S2及びS3aの間に接続され、他端は接地されている。
図1に示したように送信端子28bはPA30に接続され、アンテナ端子24は
図1のアンテナ20に接続される。送信フィルタ26bは、送信端子28bから入力される送信信号をフィルタリングし、アンテナ端子24に出力する。
【0027】
直列共振器S1及びS3がそれぞれ2つに分割されているため、電力は共振器S1a及びS1bに分散され、かつ共振器S3a及びS3bに分散される。電力の分散によりIDT63aの破壊を抑制することができるため、送信フィルタ26bの耐電力性能を高めることができる。共振器の分割数は3つ以上でもよいが、分割数が多くなると送信フィルタ26bが大型化する。小型化と高い耐電力性能とを両立するために、分割数は2つであることが好ましい。入力段及び出力段の並列共振器を分割してもよい。入力段及び出力段の一方の共振器を分割し、他方の共振器を分割しなくてもよい。入力段及び出力段の共振器を1つとすることで、送信フィルタ26bのさらなる小型化が可能である。
【0028】
圧電基板62は例えば42°YカットX伝播(42°カットと記載することがある)のタンタル酸リチウム(LiTaO
3)または128°YカットX伝播(128°カットと記載することがある)ニオブ酸リチウム(LiNbO
3)などの圧電体により形成されており、ストイキオメトリな組成を有する。IDT63a及び反射器63bは、例えば圧電基板62に近い方から厚さ40nmのチタン(Ti)膜63c及び厚さ130nmのアルミニウム・銅(Al−Cu)合金膜63dを積層して形成されている。電極指の幅W及び周期Tは表3において後述する。
【0029】
受信フィルタ26aについて説明する。受信フィルタ26aは送信フィルタ26bと同じラダー型フィルタとすることができる。受信フィルタ26aの圧電基板60はコングルエント組成である。
図3(c)は受信フィルタ26aを例示する断面図である。
図3(c)に示すように、受信フィルタ26aのIDT61a及び反射器61bは厚さ180nmのAl−Cu合金により形成されている。
【0030】
表1はストイキオメトリ組成及びコングルエント組成のLiTaO
3におけるLi組成比及びキュリー温度を示す表である。Li組成比とはタンタル(Ta)とリチウム(Li)との合計に対するLiの比率である。キュリー温度とは、圧電体(LiTaO
3またはLiNbO
3)が強誘電体としての性質を消失する温度である。
【表1】
表2はストイキオメトリ組成及びコングルエント組成のLiNbO
3におけるLi組成比及びキュリー温度を示す表である。Li組成比とはニオブ(Nb)とLiとの合計に対するLiの比率である。
【表2】
表1及び表2に示すように、コングルエント組成と比較してストイキオメトリ組成ではLi組成比が高い。コングルエント組成ではLiサイトに空隙が多く、ストイキオメトリ組成と比較して格子欠陥が多い。組成によりキュリー温度に違いがある。圧電体のキュリー温度を測定することにより、組成がストイキオメトリ組成またはコングルエント組成であるか調べることができる。キュリー温度の測定は、例えば示差熱分析(Differential Thermal Analysis)、及び示差走査熱量測定(Differential Scanning Calorimetry)などにより行われる。ストイキオメトリ組成のLiTaO
3及びLiNbO
3は、例えば2重るつぼを用いた回転引き上げ法(チョクラルスキー法)により製造することができる。またコングルエント組成のLiTaO
3及びLiNbO
3にVTE(Vapor Transport Equilibration)法を実施することにより、ストイキオメトリ組成のLiTaO
3及びLiNbO
3を製造することもできる。
【0031】
実施例1によれば、コングルエント組成の圧電体に比べ放熱性が高いストイキオメトリ組成の圧電体を送信フィルタ26bの圧電基板62に用いる。従って、送信フィルタ26bの放熱性が高くなり、温度上昇が抑制される。ストイキオメトリ組成のLiTaO
3の熱伝導率はコングルエント組成のLiTaO
3の熱伝導率の約1.9倍である。ストイキオメトリ組成のLiNbO
3の熱伝導率はコングルエント組成のLiNbO
3の熱伝導率の約1.5倍である。受信フィルタ26aは送信フィルタ26bと離間しているため、送信フィルタ26bにおいて発生する熱は受信フィルタ26aに伝わり難い。従って受信フィルタ26aの温度上昇も抑制される。このように、分波器26の放熱性が高くなることで、分波器26の耐電力性能が高くなる。熱伝導を抑制するため、
図2(b)に示した空隙54の幅(送信フィルタ26bと受信フィルタ26aとの距離)は、例えば50μm以上が好ましい。
【0032】
受信フィルタ26aの圧電基板60はコングルエント組成またはストイキオメトリ組成とすることができる。圧電基板60をコングルエント組成とすることが好ましい。コングルエント組成の圧電基板60はストイキオメトリ組成の圧電基板60より低コストであり、かつ熱伝導性が低いためである。圧電基板60の熱伝導性が低くなることで、送信フィルタ26bの熱が受信フィルタ26aに伝わり難くなり、温度上昇が抑制される。例えば送信フィルタ26bと受信フィルタ26aとが接触していても、コングルエント組成の受信フィルタ26aの温度は上昇し難い。金属の封止部50及びリッド52により受信フィルタ26a及び送信フィルタ26bを気密封止することができる。金属の熱伝導率は樹脂などより高い。圧電基板60をコングルエント組成とすることにより、受信フィルタ26aの温度上昇を抑制することができる。圧電基板60及び62のカット角は例えば128°などでもよい。
【0033】
通過帯域の周波数が高いほど、電極指の幅W及び周期Tが小さくなる(
図3(a)参照)。幅W及び周期Tが小さくなることにより、耐電力性能は低下する。また、送信帯域の端の周波数では送信帯域の中央の周波数より耐電力性能が低下する。送信帯域と受信帯域との間隔が狭い周波数帯域では、送信帯域の端の周波数を使用することがあるため、耐電力性能が低下する。通過帯域の周波数が高くかつ送信帯域と受信帯域との間隔が狭い周波数帯域とは、例えばW−CDMA Band2、Band3、Band25及びBand7などである。表3は、W−CDMA Band2、Band3、Band25及びBand7の送信帯域の周波数(Tx)、受信帯域の周波数(Rx)、送信帯域の中心周波数f
Tx、IDT63aにおける電極指の周期Tの例、電極指の幅Wの例を示す表である。表3において周波数帯域はW−CDMAを省略しBandのみ記載した。
【表3】
表3に示すように、送信帯域の高周波側の端から受信帯域の低周波側の端までの間隔が数十MHz程度である。周期Tは2μm前後、幅Wは1μm未満である。実施例1を、表3に示したような周波数帯域の分波器に適用することで、耐電力性能を有効に高めることができる。実施例1を表3に示した以外の周波数帯域に適用してもよく、通過帯域が1.7GHz以上の周波数帯域に適用することが好ましい。
【0034】
送信フィルタ26bの耐電力性能を高めるため、送信フィルタ26bのIDT63a及び反射器63bは高い耐電力性能を有することが好ましい。IDT63a及び反射器63bは、Al−Cu/Tiの二層膜からなるため、送信フィルタ26bの耐電力性能が高くなる。受信フィルタ26aにおける信号の損失を小さくするため、受信フィルタ26aのIDT61a及び反射器61bは低い抵抗を有することが好ましい。IDT61a及び反射器61bは、Al−Cuの単層膜からなる。Al−Cuの比抵抗は4μΩ・cmであり、Al−Cu/Tiの比抵抗5μΩ・cmより低い。従って受信フィルタ26aは低抵抗になり、信号の損失が小さくなる。IDT63a及び反射器63bには、Al−Cu/Ti以外の多層膜を用いてもよい。上記の材料以外でも、IDTの材料が送信フィルタ26bと受信フィルタ26aとで異ならせ、耐電力性能の高い材料を送信フィルタ26bに、低抵抗の材料を受信フィルタ26aに用いればよい。
【0035】
受信フィルタ及び送信フィルタの両方にコングルエント組成の圧電基板を用いると、耐電力性能の向上が困難である。非特許文献1に記載のように、コングルエント組成の42°カットLiTaO
3により形成された1つの圧電基板に受信フィルタ及び送信フィルタを形成し、温度を測定した。さらに上記1つの圧電基板の1つの面にサファイア基板を接合した場合においても温度を測定した。
【0036】
図4は温度の測定に用いた構成を例示する模式図である。分波器26はセラミックのパッケージ64に搭載されている。
図4にブロック矢印で示す信号は、パッケージ64の送信端子64aに入力され、送信フィルタ26dによりフィルタリングされた後、アンテナ端子64bから出力される。
【0037】
表4は温度の測定結果を示す表である。
【表4】
表4に示すように、サファイア基板を接合しない場合、送信フィルタ26dの温度は約100℃であり、受信フィルタ26cの温度は約80℃である。このように、大電力の信号により送信フィルタ26dの温度が上昇する。サファイア基板を接合した場合、送信フィルタ26b及び受信フィルタ26aの温度は約85℃である。サファイアの熱伝導率は圧電体の熱伝導率より高いため、送信フィルタ26bにおいて発生する熱はサファイア基板を通じて放出される。この結果、送信フィルタ26bの温度は低下する。しかし、送信フィルタ26dから放出された熱がサファイア基板を通じて受信フィルタ26cに到達することで、受信フィルタ26cの温度が上昇してしまう。このようにコングルエント組成の圧電基板を用いると分波器26の耐電力性能が低下する。