【課題を解決するための手段】
【0005】
本発明者は鋭意検討を重ねた結果、ポリアリーレンスルフィド樹脂に対して、分岐構造を有するポリカーボネート樹脂を含有させることによって、ポリアリーレンスルフィド樹脂が有する優れた特性を保持しつつ、成形加工時のバリ発生を大幅に抑制することが可能であることを見出し、本発明に至った。
【0006】
具体的には、上記課題は、(1)ポリアリーレンスルフィド樹脂(A成分)99〜10重量部および分岐構造を有するポリカーボネート樹脂(B成分)1〜90重量部よりなる樹脂組成物により達成される。
本発明の好適な態様の1つは、(2)A成分とB成分との合計100重量部に対し、充填材(C成分)を5〜400重量部含有する上記構成(1)の樹脂組成物である。
本発明の好適な態様の1つは、(3)B成分の分岐率が0.25〜1.6mol%である上記構成(1)または(2)の樹脂組成物である。
本発明好適な態様の1つは、(4)上記構成(1)〜(3)のいずれかの樹脂組成物を成形してなる成形品である。
【0007】
以下、本発明の詳細について説明する。
(A成分:ポリアリーレンスルフィド樹脂)
本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィドと称される範疇に属するものであれば如何なるものを用いてもよい。
ポリアリーレンスルフィド樹脂としては、その構成単位として、例えばp−フェニレンスルフィド単位、m−フェニレンスルフィド単位、o−フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げることができ、その中でも、p−フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらに、ポリ(p−フェニレンスルフィド)がより好ましい。
【0008】
ポリアリーレンスルフィド樹脂の製造方法としては、特に制限はなく、例えば一般的に知られている重合溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを反応する方法により製造することが可能であり、アルカリ金属硫化物としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム及びそれらの混合物が挙げられ、これらは水和物の形で使用しても差し支えない。これらアルカリ金属硫化物は、水硫化アルカリ金属とアルカリ金属塩基とを反応させることによって得られ、ジハロ芳香族化合物の重合系内への添加に先立ってその場で調製されても、また系外で調製されたものを用いても差し支えない。また、ジハロ芳香族化合物としては、例えばp−ジクロロベンゼン、p−ジブロモベンゼン、p−ジヨードベンゼン、m−ジクロロベンゼン、m−ジブロモベンゼン、m−ジヨードベンゼン、1−クロロ−4−ブロモベンゼン、4,4’−ジクロロジフェニルスルフォン、4,4’−ジクロロジフェニルエーテル、4,4’−ジクロロベンゾフェノン、4,4’−ジクロロジフェニル等が挙げられる。また、アルカリ金属硫化物及びジハロ芳香族化合物の仕込み比は、アルカリ金属硫化物/ジハロ芳香族化合物(モル比)=1.00/0.90〜1.10の範囲とすることが好ましい。
【0009】
重合溶媒としては、極性溶媒が好ましく、特に非プロトン性で高温でのアルカリに対して安定な有機アミドが好ましい溶媒である。有機アミドとしては、例えばN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホルアミド、N−メチル−ε−カプロラクタム、N−エチル−2−ピロリドン、N−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジノン、ジメチルスルホキシド、スルホラン、テトラメチル尿素及びその混合物、等が挙げられる。また、重合溶媒は、重合によって生成するポリマーに対し150〜3500重量%で用いることが好ましく、特に250〜1500重量%となる範囲で使用することが好ましい。重合は200〜300℃、特に220〜280℃にて0.5〜30時間、特に1〜15時間攪拌下にて行うことが好ましい。
【0010】
さらに、ポリアリーレンスルフィド樹脂は、直鎖状のものであっても、酸素存在下高温で処理し、架橋したものであっても、トリハロ以上のポリハロ化合物を少量添加して若干の架橋または分岐構造を導入したものであっても、窒素等の非酸化性の不活性ガス中で加熱処理を施したものであってもかまわないし、さらにこれらの構造の混合物であってもかまわない。
【0011】
ポリアリーレンスルフィド樹脂を製造するその他の製造方法については、米国登録特許第4,746,758号及び第4,786,713号に製造するための組成物及び製造方法が記載されている。前記製造方法は、二塩化化合物と硫化物を使う代わりにジヨードアリール化合物と固体硫黄(solid sulfur)を、極性溶媒なしに直接加熱して重合させる方法である。
【0012】
前記製造方法はヨウ化工程及び重合工程を含む。前記ヨウ化工程ではアリール化合物(aryl compounds)をヨードと反応させて、ジヨードアリール化合物を得て、続く重合工程で、ニトロ化合物触媒でジヨードアリール化合物を固体硫黄と重合反応させてPAS樹脂を製造する。ヨードはこの工程で気体状で発生し、これを回収して再びヨウ化工程に用いられる。実質的にヨードは触媒である。
【0013】
(B成分:分岐構造を有するポリカーボネート樹脂)
本発明のB成分として使用される分岐構造を有するポリカーボネート樹脂は、分岐構造を有するポリカーボネート樹脂(B−1成分)、または、B−1成分と直鎖状ポリカーボネート樹脂(B−2成分)との混合物のどちらであってもよい。B成分全体としての分岐率は好ましくは0.25〜1.6mol%であり、より好ましくは0.3〜1.2mol%、さらに好ましくは0.5〜1.1mol%である。なお、成分の一部に分岐率が0.25〜1.6mol%の範囲を外れる分岐構造を有する芳香族ポリカーボネート樹脂を含んでいてもよい。分岐率が0.25mol%未満の場合および1.6mol%を超える場合のいずれも、バリ抑制効果が小さいため好ましくない。
【0014】
本発明のB成分の粘度平均分子量は、1.0×10
4〜5.0×10
4の範囲が好ましく、1.6×10
4〜3.0×10
4の範囲がより好ましく、1.8×10
4〜2.8×10
4の範囲がさらにより好ましく、1.9×10
4〜2.6×10
4の範囲が最も好ましい。分子量が5.0×10
4を越えると溶融張力が高すぎて成形性に劣る場合があり、分子量が1.0×10
4未満であるとバリ抑制効果が発現し難い。また、本発明のB成分として使用される分岐構造を有するポリカーボネート樹脂は、分子量が前述の好ましい分子量範囲を満たすように、分岐構造を有するポリカーボネート樹脂1種あるいは2種以上を混合しても差し支えない。この場合、粘度平均分子量が前述の好ましい分子量範囲外である分岐構造を有するポリカーボネート樹脂を混合することも当然に可能である。
【0015】
なお、本発明でいう粘度平均分子量はまず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(η
SP)=(t−t
0)/t
0
[t
0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
η
SP/c=[η]+0.45×[η]
2c(但し[η]は極限粘度)
[η]=1.23×10
−4M
0.83
c=0.7
【0016】
本発明のB成分の樹脂中の全N(窒素)量は、好ましくは0〜7ppm、より好ましくは0〜5ppmである。なお、樹脂中の全N(窒素)量の測定は三菱化学社製TN−10型微量窒素分析装置(化学発光法)を用いて測定することが出来る。
また、全Cl(塩素)量が好ましくは0〜200ppm、より好ましくは0〜150ppmである。全N量が7ppmを越えるかまたは全Cl量が200ppmを越えると、熱安定性が悪くなるので好ましくない。
本発明のB−1成分である分岐構造を有するポリカーボネート樹脂は、二価フェノール、分岐剤、一価フェノール類およびホスゲンを用いて有機溶媒の存在下で行う界面重合反応法により得られる。
【0017】
本発明の分岐構造を有するポリカーボネート樹脂を得るために使用される二価フェノールの代表的な例は、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド等が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも2,2−ビス(4−ヒドロキシフェニル)プロパンすなわちビスフェノールAが好ましい。
【0018】
本発明のB−1成分である分岐構造を有するポリカーボネート樹脂の製造に使用される三価以上のフェノール(分岐剤)の代表的な例は、1,1,1−トリス(4−ヒドロキシフェニル)エタン、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリ(4−ヒドロキシフェニル)ベンゼン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノ−ル、テトラ(4−ヒドロキシフェニル)メタン、トリスフェノール、ビス(2,4−ジヒドロキシルフェニル)ケトン、フロログルシン、フロログルシド、イサンチンビスフェノール、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、トリメリト酸、ピロメリト酸、が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも、1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
【0019】
本発明のB−1成分である分岐構造を有するポリカーボネート樹脂の製造に使用される一価フェノール(末端停止剤)としてはどのような構造でもよく特に制限はない。例えば、p−tert−ブチルフェノール、p−tert−オクチルフェノール、p−クミルフェノール、4−ヒドロキシベンゾフェノン、フェノール等が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも、p−tert−ブチルフェノールが好ましい。
【0020】
すなわち、本発明のB−1成分である分岐構造を有するポリカーボネート樹脂は、分岐構造部分が1,1,1−トリス(4−ヒドロキシフェニル)エタンから誘導されてなる構造であり、分岐構造部分を除いた直鎖構造部分がビスフェノールAから誘導されてなる構造であり、末端がp−tert−ブチルフェノールから誘導されて成る構造であることが好ましい。
【0021】
本発明の分岐構造を有するポリカーボネート樹脂は、好適には下記の方法で製造される。
すなわち、二価フェノール化合物および分岐剤を溶解したアルカリ水溶液に有機溶媒の存在下でホスゲンを吹き込み反応させて、ポリカーボネートオリゴマーを得、これに一価フェノール類を投入し乳化させた後、無攪拌下で重合させることを特徴とする方法である。
【0022】
また、反応促進のために反応触媒として、例えば、トリエチルアミン、トリブチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を使用することも出来る。反応触媒は二価フェノール化合物に対して0.002モル%以下が好ましく、0.001モル%以下がより好ましい。特に無触媒で上記反応を行うことが好ましい。0.002モル%を越える場合は分岐剤量に対し溶融張力が高くなりすぎたり、ゲルが生成したりする。また触媒がクロロホーメート基と反応して熱的に不安定なウレタン結合が多くなると共に、触媒が残存することにより分岐構造を有するポリカーボネート樹脂中の全N含有量が増大し、耐衝撃性、透明性、耐熱性が低下するので好ましくない。よって上記反応を無触媒で行うことが特に好ましい。その際、反応温度は通常0〜40℃好ましく、さらに15〜38℃が好ましい。反応時間は10分〜5時間程度、反応中のpHは9.0以上に保つのが好ましく、11.0〜13.8がさらに好ましい。
【0023】
上記の界面重合反応する際に一価フェノール類を投入後に乳化させる方法としては特に制限はないが、撹拌装置で撹拌する方法、またはアルカリ水溶液を添加する方法等が挙げられ、撹拌装置としては、パドル、プロペラ、タービンまたはカイ型翼等の単純な撹拌装置、ホモジナイザー、ミキサー、ホモミキサー等の高速撹拌機、スタティックミキサー、コロイドミル、オリフィスミキサー、フロージェットミキサー、超音波乳化装置等がある。なかでも無触媒で重合する方法においてはホモミキサー、スタティックミキサー等が好ましく用いられる。
【0024】
次いで、該分岐構造を有するポリカーボネート樹脂有機溶媒溶液を洗浄、造粒、乾燥し、本発明の分岐構造を有するポリカーボネート樹脂(パウダー)を得ることができる。さらに該パウダーを溶融押出してペレット化して本発明の分岐構造を有するポリカーボネート樹脂(ペレット)が得られる。洗浄、造粒、乾燥などは特に制限はなく公知の方法が採用できる。
【0025】
また、分岐構造を有するポリカーボネート樹脂中の全Cl含有量を低下させるには、反応時溶媒として使用されるジクロロメタン(塩化メチレン)、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ジクロロエチレン、クロロベンゼン、ジクロロベンゼンなどの塩素化炭化水素溶媒を除去することが必要である。例えば、分岐構造を有するポリカーボネート樹脂パウダーやペレットの乾燥処理を十分に行なうことが挙げられる。
【0026】
本発明の分岐構造を有するポリカーボネート樹脂は実質的にハロゲン原子を含まないものであることが好ましい。実質的にハロゲン原子を含まないとは、分子中にハロゲン置換二価フェノールなどを含まないことを示し、上記芳香族ポリカーボネートの製造方法において残留する微量の溶媒(ハロゲン化炭化水素)や、カーボネート前駆体までも対象とするものではない。
【0027】
B−2成分である直鎖状芳香族ポリカーボネート樹脂は通常二価フェノールとカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。
【0028】
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテルおよび4,4’−ジヒドロキシジフェニルエステル等が挙げられ、これらは単独または2種以上を混合して使用できる。
【0029】
なかでもビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選ばれた少なくとも1種のビスフェノールより得られる単独重合体または共重合体が好ましく、特に、ビスフェノールAの単独重合体および1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンとビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパンまたはα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンとの共重合体が好ましく使用される。そのなかでもさらに2,2−ビス(4−ヒドロキシフェニル)プロパンすなわちビスフェノールAが好ましい。
【0030】
カーボネート前駆体としてはカルボニルハライド、カーボネートエステルまたはハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメート等が挙げられる。これらのうち、ホスゲンまたはジフェニルカーボネートが工業的に有利である。
上記二価フェノールとカーボネート前駆体を界面重縮合法または溶融エステル交換法によって反応させてポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤等を使用してもよい。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
【0031】
界面重縮合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0〜40℃、反応時間は10分〜5時間程度、反応中のpHは9以上に保つのが好ましい。また、かかる重合反応において、通常末端停止剤(一価フェノール)が使用される。かかる末端停止剤として単官能フェノール類を使用することができる。単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、かかる単官能フェノール類としては、一般にはフェノールまたは低級アルキル置換フェノールであって、下記式(1)で表される単官能フェノール類を示すことができる。
【0032】
【化1】
【0033】
(式中、Aは水素原子または炭素数1〜9の直鎖または分岐のアルキル基あるいはフェニル基置換アルキル基であり、rは1〜5、好ましくは1〜3の整数である。)
【0034】
上記単官能フェノール類の具体例としては、例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールおよびイソオクチルフェノールが挙げられる。
また、他の単官能フェノール類としては、長鎖のアルキル基あるいは脂肪族ポリエステル基を置換基として有するフェノール類または安息香酸クロライド類、もしくは長鎖のアルキルカルボン酸クロライド類も示すことができる。これらのなかでは、下記式(2)および(3)で表される長鎖のアルキル基を置換基として有するフェノール類が好ましく使用される。
【0035】
【化2】
【化3】
【0036】
(式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。)
【0037】
かかる式(2)の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。
【0038】
また、式(3)の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
【0039】
溶融エステル交換法による反応は、通常二価フェノールとカーボネートエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコールまたはフェノールを留出させる方法により行われる。反応温度は生成するアルコールまたはフェノールの沸点等により異なるが、通常120〜350℃の範囲である。反応後期には系を1.33×10
3〜13.3Pa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる。反応時間は通常1〜4時間程度である。
【0040】
カーボネートエステルとしては、置換されていてもよい炭素数6〜10のアリール基、アラルキル基あるいは炭素数1〜4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ビス(クロロフェニル)カーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。
【0041】
また、重合速度を速めるために重合触媒を用いることができ、かかる重合触媒としては、例えば水酸化ナトリウム、水酸化カリウム、二価フェノールのナトリウム塩、カリウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、アルカリ金属やアルカリ土類金属のアルコキシド類、アルカリ金属やアルカリ土類金属の有機酸塩類、亜鉛化合物類、ホウ素化合物類、アルミニウム化合物類、珪素化合物類、ゲルマニウム化合物類、有機スズ化合物類、鉛化合物類、オスミウム化合物類、アンチモン化合物類マンガン化合物類、チタン化合物類、ジルコニウム化合物類などの通常エステル化反応、エステル交換反応に使用される触媒を用いることができる。触媒は単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1molに対し、好ましくは1×10
−8〜1×10
−3当量、より好ましくは1×10
−7〜5×10
−4当量の範囲で選ばれる。
【0042】
また、かかる重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えばビス(クロロフェニル)カーボネート、ビス(ブロモフェニル)カーボネート、ビス(ニトロフェニル)カーボネート、ビス(フェニルフェニル)カーボネート、クロロフェニルフェニルカーボネート、ブロモフェニルフェニルカーボネート、ニトロフェニルフェニルカーボネート、フェニルフェニルカーボネート、メトキシカルボニルフェニルフェニルカーボネートおよびエトキシカルボニルフェニルフェニルカーボネート等の化合物を加えることができる。なかでも2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートが好ましく、特に2−メトキシカルボニルフェニルフェニルカーボネートが好ましく使用される。
【0043】
さらにかかる重合反応において触媒の活性を中和する失活剤を用いることが好ましい。この失活剤の具体例としては、例えばベンゼンスルホン酸、p−トルエンスルホン酸、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、p−トルエンスルホン酸メチル、p−トルエンスルホン酸エチル、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸オクチル、p−トルエンスルホン酸フェニルなどのスルホン酸エステル;さらに、トリフルオロメタンスルホン酸、ナフタレンスルホン酸、スルホン化ポリスチレン、アクリル酸メチル‐スルホン化スチレン共重合体、ドデシルベンゼンスルホン酸−2−フェニル−2−プロピル、ドデシルベンゼンスルホン酸−2−フェニル−2−ブチル、オクチルスルホン酸テトラブチルホスホニウム塩、デシルスルホン酸テトラブチルホスホニウム塩、ベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラエチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラヘキシルホスホニウム塩、ドデシルベンゼンスルホン酸テトラオクチルホスホニウム塩、デシルアンモニウムブチルサルフェート、デシルアンモニウムデシルサルフェート、ドデシルアンモニウムメチルサルフェート、ドデシルアンモニウムエチルサルフェート、ドデシルメチルアンモニウムメチルサルフェート、ドデシルジメチルアンモニウムテトラデシルサルフェート、テトラデシルジメチルアンモニウムメチルサルフェート、テトラメチルアンモニウムヘキシルサルフェート、デシルトリメチルアンモニウムヘキサデシルサルフェート、テトラブチルアンモニウムドデシルベンジルサルフェート、テトラエチルアンモニウムドデシルベンジルサルフェート、テトラメチルアンモニウムドデシルベンジルサルフェート等の化合物を挙げることができるが、これらに限定されない。これらの化合物を二種以上併用することもできる。
【0044】
失活剤の中でもホスホニウム塩もしくはアンモニウム塩型のものが好ましい。かかる失活剤の量としては、残存する触媒1molに対して0.5〜50molの割合で用いるのが好ましく、また重合後のポリカーボネート樹脂に対し、0.01〜500ppmの割合、より好ましくは0.01〜300ppm、特に好ましくは0.01〜100ppmの割合で使用する。
【0045】
なお、本発明においてB成分として、ポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体を使用してもバリ抑制効果の発現は不十分である。すなわち、B成分にはポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体は含まれない。
B成分の含有量は、A成分とB成分との合計100重量部中、1〜90重量部であり、5〜80重量部が好ましく、5〜50重量部がより好ましく、5〜20重量部がさらに好ましい。B成分の含有量が1重量部未満ではバリの抑制効果が小さく、90重量部を超えると耐薬品性に劣る。
【0046】
(C成分:充填材)
本発明では更に充填材を含有することができる。その材料は特に限定されるものではないが、繊維状、板状、粉末状、粒状などの充填剤を使用することができる。具体的には例えば、ガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、ワラステナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填材が挙げられ、これらは中空であってもよく、さらにはこれら充填材を2種類以上併用することも可能である。
【0047】
また、これら充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、およびエポキシ化合物などのカップリング剤および膨潤性の層状珪酸塩では有機化オニウムイオンで予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
C成分の含有量は、A成分とB成分との合計100重量部に対し、5〜400重量部であることが好ましい。より好ましくは10〜200重量部、特に好ましくは20〜150重量部である。C成分の含有量が5重量部未満では剛性、耐熱性が劣り、400重量部を超えると成形加工性が低下する場合があるので好ましくない。
【0048】
本発明の樹脂組成物には導電性を付与するために充填材として、導電性フィラーを含有することができる。その材料は特に限定されるものではないが、導電性フィラーとして、通常樹脂の導電化に用いられる導電性フィラーであれば特に制限は無く、その具体例としては、金属粉、金属フレーク、金属リボン、金属繊維、金属酸化物、導電性物質で被覆された無機フィラー、カーボン粉末、黒鉛、炭素繊維、カーボンフレーク、鱗片状カーボンなどが挙げられる。
【0049】
金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。
金属繊維の金属種の具体例としては鉄、銅、ステンレス、アルミニウム、黄銅などが例示できる。
かかる金属粉、金属フレーク、金属リボン、金属繊維はチタネート系、アルミ系、シラン系などの表面処理剤で表面処理を施されていてもよい。
金属酸化物の具体例としてはSnO
2(アンチモンドープ)、In
2O
3(アンチモンドープ)、ZnO(アルミニウムドープ)などが例示でき、これらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
【0050】
導電性物質で被覆された無機フィラーにおける導電性物質の具体例としてはアルミニウム、ニッケル、銀、カーボン、SnO
2(アンチモンドープ)、In
2O
3(アンチモンドープ)などが例示できる。また被覆される無機フィラーとしては、マイカ、ガラスビーズ、ガラス繊維、炭素繊維、チタン酸カリウムウィスカー、硫酸バリウム、酸化亜鉛、酸化チタン、ホウ酸アルミニウムウィスカー、酸化亜鉛系ウィスカー、チタン酸系ウィスカー、炭化珪素ウィスカーなどが例示できる。被覆方法としては真空蒸着法、スパッタリング法、無電解メッキ法、焼き付け法などが挙げられる。またこれらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
【0051】
カーボン粉末はその原料、製造法からアセチレンブラック、ガスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラックなどに分類される。本発明で用いることのできるカーボン粉末は、その原料、製造法は特に限定されないが、アセチレンブラック、ファーネスブラックが特に好適に用いられる。
【0052】
(その他の成分)
本発明における樹脂組成物中には本発明の効果を損なわない範囲で他の成分、例えば酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン等)、結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p−オキシ安息香酸オクチル、N−ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、リン酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)、他の重合体を添加することができる。
【0053】
(樹脂組成物の製造)
本発明の樹脂組成物は上記各成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは2軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第2供給口より、溶融混合された他の成分中に供給することが好ましい。
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.5mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜4mmである。
【0054】
(成形品について)
本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出し成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。