【文献】
塩谷 清司,モダリティごとに見た死因のスクリーニング,月刊新医療,株式会社エム・イー振興協会,2009年 1月 1日,第36巻 第1号,pp.135-138
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
本実施形態に係る死因推定装置は、遺体の画像データに基づいた診断情報を取得する診断情報取得部と、前記遺体に関連する生前の
傷病履歴を取得する傷病履歴取得部と、
前記診断情報と前記
傷病履歴
とに基づいて、前記遺体の直接死因とその原因とを推定する死因推定部と、を備える。
【0012】
これにより、本実施形態に係る死因推定装置は、正確かつ詳細な死亡原因を推定することができる。
【0013】
以下、本実施の形態に係る死因推定装置を備える死亡診断書作成支援システムについて、添付図面を参照して説明する。
【0014】
図1は、本実施の形態に係る死因推定装置を備える死亡診断書作成支援システム800の概略の構成の一例を示した概略構成図である。
【0015】
図1に示すように、死亡診断書作成支援システム800は、モダリティ100、Ai(Autopsy imaging)センター端末(死因推定装置)200、病院Aの端末300、病院Bの端末400、担当病院500、ネットワーク700などを備えて構成されている。
【0016】
モダリティ100は、被検体を撮影するための装置(撮影装置)を分類するときに使用される医用システム名である。例えば、モダリティ100として、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置(磁気共鳴診断装置)、超音波診断装置、核医学診断装置などがある。なお、X線CT装置は、放射線などを利用して物体を走査しコンピュータを用いて処理する撮影装置である。MRI装置は、磁場と電波を用いて被検体の体内などの画像を撮影する装置である。超音波診断装置は、超音波を被検体に当てて、その反響を映像化する画像診断装置である。核医学診断装置は、被検体に投入された特定の病巣に集積する試薬を、放射性同位体(ラジオアイソトープ:radioisotope)で標識し、その試薬から放射されるγ線をシンチレーションカメラなどの検出器により検出して病巣を含む人体の断層像を抽出する画像診断装置である。本実施の形態では、患者の死亡直後にいずれかの撮影装置をモダリティ100として遺体の検査を行うようになっている。
【0017】
Aiセンター端末200は、死因推定装置を構成するものであり、モダリティ100を用いた遺体の検査結果から死亡原因を推定する端末のことである。また、Aiとは、死亡時画像病理診断のことをいい、例えば、患者が死亡した死亡直後に、X線CT検査やMRI検査を行うことにより、死因を診断する診断方法である。
【0018】
なお、本実施形態に係るAiセンター端末200は、遺体の直接死因とその原因を推定する機能を有しており、Aiによる検査結果(画像診断)が登録されると、遺体の直接死因とその原因を推定した後、死亡診断書テンプレートを作成する機能を有している。また、Aiセンター端末200とモダリティ100とを有する医療機関を、Aiセンター(図示せず)と位置づける。なお、Aiセンター端末200の詳細な構成については、後述する。
【0019】
また、遺体の直接死因とは、直接の死亡の原因となった傷病名などをいう。また、その原因とは、直接死因の原因となる傷病名などのことをいう。
【0020】
病院Aの端末300は、病院Aに通院履歴がある患者の患者情報が登録されている患者情報端末とする。なお、患者情報とは、患者の住所や氏名などの基本情報や傷病履歴のわかる診療記録(診療録、手術記録、検査データ、診断画像データなど)などが該当する。
【0021】
病院Bの端末400は、病院Bに通院履歴がある患者の患者情報が登録されている患者情報端末とする。
【0022】
担当病院500は、本実施形態では、患者の死亡を確認した医療機関のことを指す。ここで、担当病院500の患者として長期間同じ傷病名で入院による治療を続けた場合は、その転帰として死亡した場合であれば死因が明確である。この場合、担当病院の担当医は、死亡時刻を確認するとともに、患者の電子カルテを参照し、死亡診断書テンプレートに必要な情報を入力して、死亡診断書を作成する。
【0023】
しかしながら、治療中の医療事故が疑われた場合や、複数の病気を併発していた場合、病院外で倒れ緊急搬送されて来た場合、または自然災害や事故、事件に巻き込まれて死亡した場合には、医師による体表からの目視のみで死因を特定することは困難である。この場合、担当病院500は、遺体をAiセンターに搬送して、死因の調査依頼を行う。そこで、もし、担当病院500に遺体に関する画像データが存在する場合には、遺体に関する画像データとカルテ情報を、Aiセンター端末200に送信する。
【0024】
遺体安置場600は、担当病院500において死亡が確認された遺体を安置するための安置場である。なお、遺体安置場600は、任意の構成要素であって、担当病院500と一体である必要はなく、遺体が安置される場所であればよい。
【0025】
ネットワーク700は、死亡診断書作成支援システム800に接続されている各端末や装置を、相互に接続するためのネットワークである。
【0026】
図2は、本実施形態に係るAiセンター端末200を備える死亡診断書作成支援システム800の全体の概略動作を示したシーケンス図である。
図2において、Sに数字を付した符号は、シーケンス図の各ステップを示している。
【0027】
担当病院500において死亡が確認された遺体は、遺体安置場600に安置される。遺体には、遺体の取り違え防止のため担当病院500の識別ID(Identification)や遺体の氏名、カルテ情報などが付されたリストバンドまたは遺体袋が装着される。そして、遺体は、遺体安置場600からAiセンター端末200のあるAiセンターへ搬送される(ステップS001)。
【0028】
また、担当病院500は、Aiセンターに搬送した遺体に関するカルテ情報やAiセンターへの紹介状を、Aiセンター端末200に送付する(ステップS003)。
【0029】
Aiセンター端末200は、遺体とカルテ情報を取得すると、Aiセンターのモダリティ100による撮影依頼を行う(ステップS005)。なお、本実施形態では、X線CT検査でもMRI検査であってもよく、検査方法に限定されるものではない。
【0030】
モダリティ100は、遺体の撮影が終了すると、その撮影結果と読影結果を、Aiセンター端末200に送付する(ステップS007)。なお、モダリティ100は、遺体を撮影した撮影画像と読影結果を同時に送付する必要はなく、Aiセンター端末200に撮影画像を先行して送付し、Aiセンターが有するCAD(診断支援システム)などを含む読影装置(図示せず)を用いて、読影結果をAiセンター端末200に送付するようにしてもよい。
【0031】
本実施形態では、死因に関連する過去の手術の有無を死亡診断書に追加したり、死に至った過程の情報を収集して疫学データベースに反映させる必要があるため、死亡した患者の健康保険証番号や「マイナンバー」などのID番号から他の医療機関や検査機関で作成された診療録や生前の診断画像、その他の医療情報(すなわち診療記録)を取得して、各医療機関からの傷病履歴をつなぎ合わせるようになっている。
【0032】
具体的には、Aiセンター端末200は、病院Aの端末300や病院Bの端末400などに、死亡した患者の電子カルテ、診断画像、健康診断の記録などの情報提供を依頼する(ステップS009)。
【0033】
病院Aの端末300や病院Bの端末400は、死亡した患者の電子カルテ、診断画像、健康診断などの記録があった場合には、Aiセンター端末200にそれらの情報提供の応答を行う(ステップS011)。具体的には、病院Aの端末300に腹部CT画像や内視鏡の検査結果がある場合には、それらの情報をAiセンター端末200に送信する。なお、各画像データは、電子データとして送信してもよく、また、画像データの一部を抽出して、Aiセンター端末200に送信するようにしてもよい。
【0034】
また、病院Aの端末300や病院Bの端末400が傷病履歴や電子カルテを送信する際に、例えば、担当者による手入力で傷病履歴を入力する形態であってもよく、また、公知技術であるオントロジー技術を用いて電子カルテの意味内容から傷病履歴を抽出し、送信する形態であってもよい。
【0035】
Aiセンター端末200は、モダリティ100における読影結果と、病院Aの端末300や病院Bの端末400から取得した傷病履歴とに基づいて、死因に結びつく情報から死因の究明や死亡診断書の作成に必要な情報を抽出し、死因推定処理を行う(ステップS013)。
【0036】
Aiセンター端末200は、死因推定処理の結果に基づいて、死亡診断書テンプレートを生成し、その死亡診断書テンプレートを依頼のあった担当病院500に送付する(ステップS015)。
【0037】
次に、本実施形態に係るAiセンター端末200の詳細な機能について説明する。
【0038】
図3は、本実施形態に係るAiセンター端末200の機能を示す機能ブロック図である。
【0039】
図3に示すように、Aiセンター端末200は、遺体画像取得部210、診断情報取得部220、傷病履歴要求部230、傷病履歴取得部240、死因候補検索部250、死因推定部260、死亡診断書テンプレート送信部265、遺体画像データベース270、診断情報データベース280、傷病データベース290などを備えて構成されている。
【0040】
遺体画像取得部210は、モダリティ100で撮影された遺体(死亡した患者)の画像データを取得するようになっている。遺体画像取得部210は、取得した画像データを、遺体画像データベース270に格納するようになっている。
【0041】
診断情報取得部220は、遺体の画像データに基づいた診断情報(例えば、取得した遺体の画像データに基づいた死因に関連する診断情報)を取得するようになっている。具体的には、診断情報取得部220は、遺体の画像データの読影結果をモダリティ100から取得して、診断情報データベース280に格納するようになっている。なお、本実施形態はこれに限定されるものではなく、診断情報取得部220は、遺体画像取得部210で取得した画像データに基づいて、その画像データを読影医師に読影させ、その画像データに基づいた死因に関連する診断情報を取得して、診断情報データベース280に格納するようにしてもよい。
【0042】
傷病履歴要求部230は、遺体(死亡した患者)に関連する生前の通院履歴に基づいて、病院ごとに登録されている傷病履歴を要求するようになっている。例えば、病院Aの端末300や病院Bの端末400にネットワーク700を介して問い合わせを行い、遺体に関連する生前の傷病履歴を要求するようになっている。
【0043】
傷病履歴取得部240は、要求した傷病履歴が登録されている病院から、その遺体に関連する生前の診療履歴を取得するようになっている。例えば、病院Aの端末300や病院Bの端末400に通院履歴に基づく傷病履歴が登録されていた場合には、病院Aの端末300や病院Bの端末400から、その傷病履歴を生前の診療履歴として取得するようになっている。
【0044】
また、傷病履歴取得部240は、病院Aの端末300や病院Bの端末400から、電子カルテに関する情報を取得した場合には、オントロジー技術(単語の抽出と分析)とテキストマイニングを用いてその電子カルテに記載されている傷病名、病歴、検査名または所見などを傷病履歴として抽出するようになっている。なお、テキストマイニングとは、文字列を対象としたデータマイニングのことであり、例えば、電子カルテにおけるデータを単語や文節で区切り、それらの出現頻度、相関関係または出現傾向などを解析して有益な情報を抽出する。また、電子カルテの単語に傷病名などの識別タグが予め付けられている場合には、それを利用することも可能である。
【0045】
死因候補検索部250は、取得した傷病履歴と、診断情報取得部220で取得した遺体の死因に関連する診断情報とに基づいて、傷病が登録されている傷病データベース290を検索し、重篤度に応じて死因に関連のある死因候補を検索するようになっている。この場合、例えば、死因候補検索部250は、取得した傷病履歴と診断情報とに基づいて、傷病の進行具合を示した関連傷病を傷病データベース290から抽出し、その関連傷病に基づいて、死因に関連のある死因候補を検索することができる。この場合の検索例について、図面を用いて説明する。
【0046】
図4は、本実施形態に係る傷病データベース290に格納されている関連傷病関係リストの一例を示した説明図である。
【0047】
図4に示すように、関連傷病関係リストには、「傷病名」、「重篤度ランク」、「進行した場合の関連傷病」、「原因傷病」、「記載不要」の欄を有している。
【0048】
関連傷病関係リストの「傷病名」の欄には、現在、知られているすべての傷病名が登録されており、例えば、「肝がん」、「肝不全」、「出血性ショック」、「肝硬変」、「慢性肝炎」、「C型肝炎」、「尿毒症」などが記載されている。
【0049】
「重篤度ランク」の欄には、各傷病名に対応する重篤度が、重篤度ランクとして付されている。具体的には、現在の医療水準に基づいて決定される重篤度ランクとして、最も重篤度の高いランクにSランクを割り当て、ランクの高い順に、Sランク、Aランク、Bランク、Cランク、Dランク、Eランクが各傷病名に割り当てられている。
【0050】
図4の例では、肝がんは、Sランクであり、肝不全も、Sランクが割り当てられている。また、肝硬変は、Aランクが割り当てられており、C型肝炎も、Aランクが割り当てられている。また、腹水は、Cランクが割り当てられている。なお、本実施形態では、命に別条が無いランクとして、DランクとEランクが割り当てられている。DランクとEランクに相当する傷病は、命に別状が無いとの判断から、死亡の直接的な原因としては推定されないようになっている。
【0051】
「進行した場合の関連傷病」の欄には、現在の医療水準に基づいて知られている、傷病名に記載されている傷病が進行した場合の傷病名が記載されている。例えば、「肝がん」が進行した場合、「転移性肝がん」になることが記載されており、「肝硬変」が進行した場合には、「出血性ショック」、「肝不全」または「肝がん」になることが記載されている。また、「慢性肝炎」が進行した場合には、「肝硬変」になることが記載されている。
【0052】
「原因傷病」の欄には、傷病を引き起こす原因となる傷病名が記載されている。例えば、「出血性ショック」の場合には、この出血性ショックを引き起こす原因として「静脈瘤破裂」が記載されている。また、「腹水(滲出性)」には、この腹水(滲出性)を引き起こす原因として「癌性腹膜炎」、「結核性腹膜炎」、「悪性腫瘍」などが記載されている。
【0053】
「記載不要」の欄は、死因候補検索部250が検索した関連傷病の記載を不要とすることを意味する欄であり、この欄に○印がある場合には、関連傷病の記載を行わないようになっている。
【0054】
この関連傷病関係リストでは、傷病が進行した場合の関連傷病を検索することができるので、死因候補検索部250は、傷病名に基づいて関連傷病を検索するとともに、重篤度ランクに基づいて、死因候補を検索することができる。また、死因候補検索部250は、この関連傷病関係リストに基づいて、後述する樹形図による関連図(グループ)を生成することもできる。
【0055】
死因推定部260は、取得した診療情報と診療履歴とに基づいて、遺体の直接死因とその原因とを推定するようになっている。例えば、死因推定部260は、検索した死因候補が示す因果関係に基づき、遺体の直接死因とその原因を推定する。具体的には、死因推定部260は、検索した死因候補を時系列に並び替え、その時系列に並び替えられた死因候補から遺体の直接死因とその原因を推定する。
【0056】
死亡診断書テンプレート送信部265は、死因推定部260で推定した遺体の直接死因とその原因が、遺体の死亡診断書を生成する死亡診断書テンプレートに記入され、記入されたその死亡診断書テンプレートを外部に送信するようになっている。
【0057】
なお、死亡診断書テンプレート送信部265は、死亡診断書テンプレートを、本来、担当病院500に送信するようになっているが、本実施形態はこれに限定されるものではない。例えば、死亡診断書テンプレートを、死因統計を行う厚生労働省に送付してもよく、警察や病院Aまたは病院B、あるいは地方自治体などに送信するようにしてもよい。
【0058】
次に、本実施形態に係るAiセンター端末200のハードウエアの構成について説明する。
【0059】
図5は、本実施の形態に係るAiセンター端末200の構成を示すハードウエアブロック図である。
【0060】
図5に示すように、Aiセンター端末200は、CPU(Central Processing Unit)291、ROM(Read Only Memory)292、RAM(Random Access Memory)293、ネットワークインターフェース部294、操作部295、表示部296、記憶部297などを備えて構成されている。
【0061】
CPU291は、ROM292に格納されている各種プログラムをRAM293にロードして、そのプログラムを展開することにより、各種プログラムの機能を実現することできるようになっている。RAM293は、ワークエリア(作業用メモリ)として利用されるようになっている。ROM292は、各種プログラムを格納するようになっている。ROM292に格納されている各種プログラムには、
図3で示したAiセンター端末200の各機能を実現するためのプログラムが含まれる。
【0062】
ネットワークインターフェース部294は、ネットワーク700を介して、Aiセンター端末200から病院Aの端末300や病院Bの端末400へ情報提供依頼を送信したり、担当病院500からカルテ情報を取得するためのインターフェース部である。
【0063】
操作部295は、Aiセンター端末200の各データベースに格納されている傷病履歴や診断情報の表示操作を行ったり、プログラムの入力、編集、登録などを行う入力装置などにより構成されている。具体的には、操作部295は、キーボードやマウスなどにより構成されている。
【0064】
表示部296は、モダリティ100において読影された読影結果を表示したり、担当病院500から送付されたカルテ情報を表示する表示部として構成されている。この表示部296は、液晶ディスプレイやモニタなどにより構成されている。
【0065】
記憶部297は、記憶メモリを構成する記憶部であり、RAMやハードディスクなどによって構成されている。本実施の形態では、記憶部297は、例えば、遺体の画像データを格納する遺体画像データベース270やその画像データの診断情報を格納する診断情報データベース280、あるいは傷病データベース290を構成するようになっている。
【0066】
このように、本実施の形態では、記憶部297は、遺体画像データベース270、診断情報データベース280、傷病データベース290を構成し、また、ROM292に格納されているプログラムを実行することにより、
図3に示したAiセンター端末200の各機能を実現することができるようになっている。
【0067】
(死因推定処理)
次に、本実施の形態に係るAiセンター端末200を備える死亡診断書作成支援システム800の死因推定処理の動作について説明する。
【0068】
図6は、本実施形態に係るAiセンター端末200を備える死亡診断書作成支援システム800において、Aiセンター端末200が死因推定を行う死因推定処理を示したフローチャートである。
図6において、Sに数字を付した符号は、フローチャートの各ステップを示している。
【0069】
まず、ステップS101では、遺体画像取得部210(
図3)が、モダリティ100で撮影された遺体の画像データを取得する。そして、遺体画像取得部210は、取得した画像データを、遺体画像データベース270に格納する。
【0070】
ステップS103では、診断情報取得部220(
図3)が、取得した遺体の画像データに基づいた死因に関連する診断情報を取得する。この場合、診断情報取得部220は、遺体の画像データの読影結果をモダリティ100から取得して、診断情報データベース280に格納する。なお、診断情報取得部220は、遺体画像取得部210で取得した画像データに基づいて、その画像データを読影医師に読影させ、その画像データに基づいた死因に関連する診断情報を取得して、診断情報データベース280に格納するようにしてもよい。ここで、取得する診断情報について、図面を用いて説明する。
【0071】
図7は、本実施形態に係るAiセンター端末200の診断情報取得部220(
図3)が、画像データに基づいた死因に関連する診断情報を取得したときのその診断情報を示した説明図である。
【0072】
図7に示すように、この診断情報には、Aiセンターの読影医師による遺体の読影結果として、傷病名を示す「肝がん」、所見を示す「腹水」、傷病名を示す「前立腺肥大症」が記載されている。そして、これらの読影結果が診断情報として、診断情報データベース280に格納される。
【0073】
ステップS105では、傷病履歴要求部230(
図3)が、遺体に関連する生前の通院履歴に基づいて、病院ごとに登録されている傷病履歴を要求する。例えば、傷病履歴要求部230は、ネットワーク700を介して病院Aの端末300や病院Bの端末400に問い合わせを行うことにより、遺体に関連する生前の傷病履歴や電子カルテを要求する。
【0074】
ステップS107では、傷病履歴取得部240(
図3)が、要求した傷病履歴や電子カルテが登録されている病院から、その傷病履歴や電子カルテを取得する。例えば、病院Aや病院Bの通院履歴に基づく傷病履歴が登録されている場合には、病院Aの端末300や病院Bの端末400からその傷病履歴を取得する。
【0075】
ここで、傷病履歴取得部240(
図3)は、病院Aの端末300や病院Bの端末400から傷病履歴が送付された場合は、傷病履歴を直接取得する。また、病院Aの端末300や病院Bの端末400から電子カルテに関する情報が送付された場合は、傷病履歴取得部240(
図3)は、送付された電子カルテに関する情報に対してテキストマイニングを実行し、その電子カルテに関する情報から、傷病名、病歴、検査名または所見などを傷病履歴として抽出する。
【0076】
図8は、本実施形態に係るAiセンター端末200の傷病履歴取得部240(
図3)が、病院Aの端末300から電子カルテに関する情報を取得した場合の電子カルテの一例を示した説明図である。
【0077】
図8に示すように、この電子カルテには、項目名として、傷病名、既往歴[過去の傷病名]、現病歴[主訴・病歴]、身体所見、検査名・検査所見、処方薬名及び処置名、手術名の欄が設けられている。例えば、傷病名の欄には、4年前に腸炎に罹患した旨と、5年前にC型肝炎に罹患した旨と、5年前に細菌性結膜炎に罹患した旨が記載されている。
【0078】
また、既往歴[過去の傷病名]の欄には、病院Xにおいて9年前の日付にて細菌性結膜炎が完治した旨が記載されている。現病歴[主訴・病歴]には、4年前に腹痛を患った旨と、5年前に身体のだるさを呈した旨と、5年前に目のかゆみがあった旨が記載されている。
【0079】
また、身体所見の欄には、5年前に腹水を呈した旨と、5年前に左目が充血した旨が記載されている。また、検査名・検査所見の欄には、腹痛のため、4年前に下部消化管内視鏡検査(小腸内視鏡検査)を受けた旨が記載されており、腸炎と診断された旨が記載されている。また、5年前に血液検査を実施した旨が記載されており、C型肝炎のウイルスに感染したことを示すHCV抗体が陽性である旨が記載されている。
【0080】
また、処方薬名及び処置名の欄には、5年前にC型肝炎治療薬であるP治療薬が処方された旨が記載され、また、同じく5年前に結膜炎治療薬であるQ治療薬が処方された旨が記載されている。また、手術名の欄には、手術を受けていないため、その旨が記載されている。
【0081】
図9は、本実施形態に係る傷病履歴取得部240(
図3)が、病院Bの端末400から電子カルテに関する情報を取得した場合の電子カルテの一例を示した説明図である。
【0082】
図9には、
図8と同様な項目名が記載されている。また、傷病名の欄には、7年前に前立腺肥大症に罹患した旨と、9年前に細菌性結膜炎に罹患した旨が記載されている。
【0083】
また、既往歴[過去の傷病名]の欄には、10年前の日付にて病院Yにおいて指骨骨折が完治した旨が記載されている。現病歴[主訴・病歴]には、7年前に排泄障害と頻尿を呈した旨と、9年前に目のかゆみがあった旨が記載されている。
【0084】
また、身体所見の欄には、7年前にむくみがあった旨と、9年前に左目が充血した旨が記載されている。また、検査名・検査所見の欄には、7年前にPSA(Prostate Specific Antigen)検査を受け、前立腺肥大症の疑いがある旨と、7年前に直腸診を行い、前立腺肥大症の疑いがある旨が記載されている。
【0085】
また、処方薬名及び処置名の欄には、7年前に前立腺肥大症の治療薬が処方された旨と、7年前に排泄障害治療薬が処方された旨と、9年前に結膜炎治療薬であるQ治療薬が処方された旨が記載されている。また、手術名の欄には、手術を受けていないため、その旨が記載されている。
【0086】
傷病履歴取得部240は、病院Aの端末300から取得した電子カルテに対してテキストマイニングを行うとともに、病院Bの端末400から取得した電子カルテに対してテキストマイニングを行うことにより、各病院に対応する電子カルテからそれぞれ傷病履歴を抽出することができる。
【0087】
次に、病院Aの端末300における傷病履歴と、病院Bの端末400における傷病履歴とについて、図面を用いて説明する。
【0088】
図10は、本実施形態に係るAiセンター端末200の傷病履歴取得部240(
図3)が、病院Aの端末300から、病院Aに登録されていた傷病履歴を取得したときの、その傷病履歴を示した説明図である。
【0089】
図10に示す傷病履歴には、病院Aにおいて、「C型肝炎(5年前)」、「細菌性結膜炎(5年前)」、「小腸内視鏡検査(4年前)」という履歴が記録されている。これにより、傷病履歴取得部240は、これらの傷病履歴を取得する。
【0090】
図11は、本実施形態に係るAiセンター端末200の傷病履歴取得部240(
図3)が、病院Bの端末400から、病院Bに登録されていた傷病履歴を取得したときの、その傷病履歴を示した説明図である。
【0091】
図11に示す傷病履歴には、病院Bにおいて、「前立腺肥大症(7年前)」、「指骨骨折(10年前)」、「細菌性結膜炎(9年前)」という履歴が記録されている。これにより、傷病履歴取得部240は、これらの傷病履歴を取得する。
【0092】
ステップS109では、死因候補検索部250が、病院Aの端末300および病院Bの端末400から取得した傷病履歴と、診断情報取得部220で取得した診断情報とに基づいて、傷病が登録されている傷病データベース290を検索して、重篤度に応じて死因に関連のある死因候補を検索する。
【0093】
具体的には、死因候補検索部250は、診断情報データベース280に格納されている診断情報(
図7)に基づいて、傷病データベース290が格納する関連傷病関係リスト(
図4)を検索し、重篤度に応じて死因に関連のある死因候補を検索する。
【0094】
例えば、死因候補検索部250は、重篤度ランクがC以上の傷病を検索するものとし、
図7に示した診断情報の「肝がん」、「腹水」および「前立腺肥大症」は、「肝がん」がSランク、「腹水」と「前立腺肥大症」がCランクであるため、全ての傷病が死因候補として抽出される。
【0095】
また、死因候補検索部250は、傷病履歴取得部240で取得した病院Aの端末300の傷病履歴(
図10)に基づいて、傷病データベース290が格納する関連傷病関係リスト(
図4)を検索し、重篤度に応じて死因に関連のある死因候補を検索する。上記と同様に、死因候補検索部250は、重篤度ランクがC以上の傷病を検索するものとし、
図10に示した傷病履歴の「C型肝炎(5年前)」、「細菌性結膜炎(5年前)」および「小腸内視鏡検査(4年前)」は、「C型肝炎(5年前)」がAランク、「細菌性結膜炎(5年前)」がEランク、「小腸内視鏡検査(4年前)」が単なる検査であるため(傷病ではないため)、「C型肝炎(5年前)」が死因候補として抽出される。
【0096】
また、死因候補検索部250は、傷病履歴取得部240で取得した病院Bの端末400の傷病履歴(
図11)に基づいて、傷病データベース290が格納する関連傷病関係リスト(
図4)を検索し、重篤度に応じて死因に関連のある死因候補を検索する。上記と同様に、死因候補検索部250は、重篤度ランクがC以上の傷病を検索するものとし、
図11に示した傷病履歴の「前立腺肥大症(7年前)」、「指骨骨折(10年前)」および「細菌性結膜炎(9年前)」は、「前立腺肥大症(7年前)」がCランク、「指骨骨折(10年前)」と「細菌性結膜炎(9年前)」がEランクであるため、「前立腺肥大症(7年前)」が死因候補として抽出される。
【0097】
なお、「細菌性結膜炎」については、例えば、複数の医療機関である病院Aと病院Bにおいて傷病履歴があった場合に、「免疫不全」ということも考えられるため、死因候補として抽出するようにしてもよい。これは、抽出された傷病名の回数など複数の医療機関の傷病履歴や電子カルテに対してテキストマイニングを行うことで抽出することができる。
【0098】
具体的には、頻出する傷病名の重要度ランクと、頻出する傷病名に推測される別の傷病名(例えば、免疫不全)とを傷病データベースに登録しておくことにより、死因候補として抽出する。また、ある1つの医療機関において傷病履歴として頻出する傷病名もテキストマイニングにより、同様に抽出するようにしてもよい。
【0099】
また、死因候補として関連傷病を抽出する際、例えば、担当病院500から、感染症やガス中毒などの情報が得られる場合には、それらの情報も考慮して、死因候補を抽出するようにしてもよい。この場合、Aiセンターの職員などへの感染や有毒ガスに曝露する事故を防ぐためにも、感染症やガス中毒などの情報は重要である。
【0100】
このように、ステップS109において、死因候補検索部250は、傷病データベース290が格納する関連傷病関係リストに記載された重篤度ランクから、死因候補となる傷病を抽出する。この結果、「肝がん」、「前立腺肥大症(7年前とAi)」、「C型肝炎」、「腹水」が抽出される。
【0101】
図12は、本実施形態に係る死因候補検索部250が、傷病履歴と診断情報とに基づいて、死因に関連のある死因候補を抽出した結果を示す説明図である。
【0102】
図12に示すように、死因候補検索部250は、病院Aの端末300と病院Bの端末400の傷病履歴と、Aiセンター端末200の診断情報とに基づいて、死因候補として、「肝がん」、「前立腺肥大症(7年前とAi)」、「C型肝炎」および「腹水」を抽出したことを示している。なお、死因候補を抽出する際、上述した方法に限定されるものではなく、例えば、公知技術であるオントロジー技術やテキストマイニングを適用して、電子カルテから死因候補を推測してもよく、また、傷病名を特定するための固有なタグを使用して、電子カルテに関する情報から傷病履歴を抽出する形態であってもよい。
【0103】
また、死因候補検索部250は、傷病データベース290に格納されている関連傷病関係リストを参照して、傷病の相互の関係を樹形図で示した関連傷病の関連図を形成する。この関連図は、一般的に知られている傷病の進行経過を樹形図によりグループ分けをしたものである。これにより、死因候補検索部250は、抽出した「肝がん」、「前立腺肥大症(7年前とAi)」、「C型肝炎」および「腹水」の死因候補から、次の関連図のようなグループ分けを行うことができる。
【0104】
図13は、本実施形態に係るAiセンター端末200の死因候補検索部250が、死因に関連のある死因候補から、関連傷病関係リストに基づいて、関連図によるグループ分けを行った説明図である。
【0105】
図13に示すように、死因候補検索部250(
図3)は、「肝がん」、「C型肝炎」および「腹水」を含む関連
図Aからなるグループと、「前立腺肥大症」を含む関連
図Bからなるグループに、死因候補の傷病を分けることができる。
【0106】
図13に示す関連
図Aでは、「C型肝炎」に罹患すると、「慢性肝炎」、「肝硬変」と進行することを示している。また、「肝硬変」の転帰として、「肝不全」、「肝がん」、「出血性ショック」の状態に至ると考えられる。また、「腹水」は、「肝がん」または「肝硬変」の転帰として、症状の進行した状態と位置づけられる。
【0107】
図13に示す関連
図Bでは、「前立腺肥大症」に罹患すると、「尿道狭窄」、「水腎症」、「尿毒症」と進行することを示している。なお、関連
図Aおよび関連
図Bで示した各傷病は、関連傷病関係リストにおける関連傷病に該当する。
【0108】
このように、死因候補検索部250は、病院Aの端末300および病院Bの端末400から取得した傷病履歴と、診断情報取得部220で取得した診断情報とに基づいて、傷病が登録されている傷病データベース290を検索して、重篤度に応じて死因に関連のある死因候補を抽出(検索)する。
【0109】
また、本実施形態に係るAiセンター端末200は、
図13に示した関連傷病の関連図を、表示部296に表示するようにしてもよい。この場合、Aiセンター端末200は、死因候補検索部250が抽出(検索)する関連傷病と、死因に関連のある死因候補とを、表示部296に表示することができる。
【0110】
ステップS111(
図6)では、死因推定部260(
図3)が、抽出(検索)された死因候補が示す因果関係に基づいて、遺体の直接死因とその原因を推定する。具体的には、死因推定部260は、抽出(検索)された死因候補を時系列に並び替え、その時系列に並び替えられた死因候補から遺体の直接死因とその原因を推定する。
【0111】
図14は、本実施形態に係るAiセンター端末200の死因推定部260が、死因候補を時系列に並び替えて、その時系列に並び替えられた死因候補から遺体の直接死因とその原因を推定する説明図である。
【0112】
図14(X)では、死因推定部260は、まず、抽出された全傷病を時系列に並び替える。そして、
図14(Y)、(Z)に示すように、傷病データベース290に格納されている関連傷病関係リストを参照して、
図13と同様な関連図を形成しつつ、時系列に対応した傷病に基づいて、傷病グループを生成する。
【0113】
具体的には、傷病グループGr1は、Aiセンター端末200の診断情報である「腹水(Ai)」と「肝がん(Ai)」、並びに病院Aから取得した傷病履歴である「C型肝炎(5年前)」を含むグループを形成している。また、傷病グループGr2は、病院Aから取得した傷病履歴である「前立腺肥大症(7年前)」と、Aiセンター端末200の診断情報である「前立腺肥大症(Ai)」を含むグループを形成している。
【0114】
特に、傷病グループGr2が示す前立腺肥大症については、7年前に発症して、現在の遺体(死亡した患者)も患っていたことを示している。このように、死因推定部260は、死因候補検索部250によってなされる傷病の因果関係に基づくグループ化に基づいて、傷病を時系列に並び替えることにより、並び替えられた死因候補から遺体の直接死因とその原因を推定する。
【0115】
具体的には、
図14に示す例では、傷病ごとに重篤度ランク(例えば、(S),(A),(C)など)が付されており、死因候補としては、重篤度の一番高いSランクが付された「肝がん」が直接死因と推定され、その直接死因の原因は、5年前の患った「C型肝炎」と推定される。
【0116】
なお、「腹水」は、傷病名ではなく、「腹腔内に液体した貯留した状態」という症状名であり、「出血性ショック」という症状とは異なり死因とは判断され難い。したがって、「腹水」は、死亡診断書に記載するには適当でないため、「記載不要」(
図4)とされている。
【0117】
また、本実施形態では、病院Aの端末300と病院Bの端末400の傷病履歴に手術の記録に関する情報がなかったが、もし肝がんの手術が行われたという情報があった場合には、死因に関係する傷病に関する手術のため、死亡診断書に記載する必要がある。
【0118】
この場合、例えば、病院Aの端末300から肝がんの手術があった履歴を傷病履歴取得部240が取得し、死因候補検索部250が、病院Aの端末300から取得した肝がんの手術の履歴に基づいて、死因に関連のある死因候補として抽出し、死因推定部260が、肝がんの手術が直接死因と推定するようにしてもよい。
【0119】
また、本実施形態に係るAiセンター端末200は、
図14に示した時系列の傷病グループの説明図を、表示部296に表示するようにしてもよい。この場合、Aiセンター端末200は、死因推定部260が時系列に並び替えた死因候補ならびに遺体の直接死因とその原因を、表示部296に表示することができる。
【0120】
ステップS113(
図6)では、死亡診断書テンプレート送信部265(
図3)が、死因推定部260で推定された遺体の直接死因とその原因と、それらの疾患に対する手術の有無を、遺体の死亡診断書を生成する死亡診断書テンプレートに記入し、記入されたその死亡診断書テンプレートを外部に送信するようになっている。
【0121】
なお、死亡診断書テンプレート送信部265は、死亡診断書テンプレートを、担当病院500に送信するようになっているが、本実施形態はこれに限定されるものではない。例えば、死因統計を行う厚生労働省に送付してもよく、また、事件や事故に応じて、警察や病院Aまたは病院Bに送信するようにしてもよい。
【0122】
図15は、本実施形態に係るAiセンター端末200の死亡診断書テンプレート送信部265が、推定された遺体の直接死因とその原因を、遺体の死亡診断書を生成する死亡診断書テンプレートに記入した死亡診断書テンプレートの説明図である。
【0123】
図15に示すように、死亡診断書テンプレート送信部265は、死因推定部260で推定された死因候補とその原因を、死亡診断書テンプレートに記入する。また、関連傷病を時系列に並び替えているため、直接死因またはその原因の発症時期も認識することができ、死亡診断書テンプレートに直接死因またはその原因の時期も記入することができる。
【0124】
具体的には、死亡の直接死因は、「肝がん」であり、その「肝がん」の原因は、「C型肝炎」と記入されている。また、「肝がん」については、例えば、2ヶ月前から治療中であった旨が記入されるとともに、「C型肝炎」の発症は、病院Aの傷病履歴により5年前に罹患していたことが記入されている。
【0125】
なお、死亡診断書テンプレート送信部265は、死因推定部260で推定された死因候補とその原因を死亡診断書テンプレートに記入することのみに限定されず、例えば、遺体の氏名や生年月日、または死亡時の住所などをさらに記入する形態であってもよい。
【0126】
以上説明したように、本実施の形態に係るAiセンター端末200は、Aiセンターの読影医師が行った読影結果(診断情報)と、病院Aや病院Bなどの他の病院の傷病履歴とを取得する。Aiセンター端末200は、診断情報と傷病履歴とに基づいて、傷病データベース290の関連傷病関係リストを検索し、死因候補を推定して、その死因候補に基づいて、死亡診断書テンプレートを作成する。
【0127】
これにより、本実施の形態に係るAiセンター端末200は、正確かつ詳細な死亡原因(直接死因とその原因)を推定して死亡診断書テンプレートを作成することできるので、Aiセンター端末200の読影医師や担当医師がその死亡診断書テンプレートを承認することにより、担当病院500の担当医師に死亡診断書テンプレートを送信したり、厚生労働省の死因統計機関などに送信することができる。
【0128】
また、担当病院500の担当医師らは、Aiセンターにおける診断情報と病院Aや病院Bなどの傷病履歴などに基づいて、より正確な死亡の直接死因やその原因を把握することができるので、高精度に直接死因とその原因の因果関係を認識することができる。
【0129】
なお、本実施形態に係るAiセンター端末200は、
図13および
図14で示した処理を内部のアルゴリズムによって処理するようになっていたが、これに限定されるものではなく、例えば、傷病と関連傷病との関連図や因果関係を、表示部296に適宜表示するようにしてもよい。
【0130】
また、本実施形態に係るAiセンター端末200は、上述した実施形態に限定されるものではなく、例えば、「疫学データベースの構築」や「がんに関する傷病グループの研究」などにおける「死因の推定」の情報収集などにも適用することができる。
【0131】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【0132】
また、本発明の実施形態では、フローチャートの各ステップは、記載された順序に沿って時系列的に行われる処理の例を示したが、必ずしも時系列的に処理されなくとも、並列的あるいは個別実行される処理をも含むものである。