【実施例】
【0045】
実施例1
サンプル石膏スラリー配合物
石膏スラリー配合物が以下の表1に示されている。表1中のすべての値は、乾燥スタッコの重量に基づく重量パーセントとして表記されている。括弧中の値は、ポンドでの乾燥重量(lb/MSF)である。
【0046】
【表1】
【0047】
実施例2
ウォールボードの調製
サンプル石膏ウォールボードを、本明細書において参照により援用される、Yuらへの米国特許第6,342,284号明細書およびYuらへの6,632,550号明細書に準拠して調製した。これらの特許の実施例5に記載されている、個別の泡の発生および他の処方成分のすべてスラリーへの泡の導入が含まれる。
【0048】
実施例1の配合物AおよびBを用いて形成した石膏ウォールボード、ならびに、通常の対照ボードに対するテスト結果が以下の表2に示されている。この実施例および以下の他の実施例のとおり、釘引抜き耐性、コア硬度、および曲げ強さテストをASTM C−473に準拠して実施した。追加的に、典型的な石膏ウォールボードはおよそ1/2インチ厚であり、約1600〜1800ポンド/1,000平方フィートの材料またはlb/MSFの重量を有することに注目されたい。(「MSF」は、1000平方フィートについての技術分野における標準的な略記であり;箱、波型の媒体およびウォールボードについての面積計測値である。)
【0049】
【表2】
【0050】
表2に示されているとおり、配合物AおよびBスラリーを用いて調製した石膏ウォールボードは、対照ボードと比して重量の顕著な低減を有する。表1を再度参照すると、配合物Aボード対配合物Bボードの比較が最も顕著である。水/スタッコ(w/s)比は配合物Aおよび配合物Bにおいて類似している。顕著に高いレベルのナフタレンスルホン酸分散剤もまた配合物Bにおいて用いられている。また、配合物Bにおいては、配合物Aの100%超の増加である約6重量%もの実質的により多量のアルファ化デンプンを用いたところ、これは、著しい強度の増加を伴った。そうであっても、必要とされる流動性をもたらすための水要求量は、配合物Bスラリーにおいては少ないままであり、配合物Aと比してその差は約10%である。両方の配合物における低い水要求量は、実質的により高いレベルのアルファ化デンプンの存在下においても石膏スラリーの流動度を高める、石膏スラリー中のナフタレンスルホン酸分散剤とトリメタリン酸ナトリウムとの組み合わせの相乗的効果による。
【0051】
表2に示されているとおり、配合物Bスラリーを用いて調製したウォールボードは、配合物Aスラリーを用いて調製したウォールボードと比して実質的に高い強度を有する。多量のナフタレンスルホン酸分散剤およびトリメタリン酸ナトリウムと組み合わせた多量のアルファ化デンプンの組み込みにより、配合物Bボードにおける釘引抜き耐性は、配合物Aボードより45%向上した。曲げ強さにおける相当の増加もまた配合物Aボードに比して配合物Bボードにおいて観察された。
【0052】
実施例3
1/2インチ石膏ウォールボード重量軽減試験
スラリー配合物およびテスト結果を含むさらなる石膏ウォールボード実施例(ボードC、DおよびE)が以下の表3に示されている。表3のスラリー配合物は、スラリーの主構成成分を含む。括弧中の値は、乾燥スタッコの重量に基づく重量パーセントとして表記されている。
【0053】
【表3】
【0054】
表3に示されているとおり、ボードC、D、およびEを、対照ボードと比して、実質的に多量のデンプン、DILOFLO分散剤、およびトリメタリン酸ナトリウム(パーセンテージ基準で、デンプンおよび分散剤については約2倍の増加、ならびに、トリメタリン酸塩については2〜3倍の増加)を有するスラリーから、w/s比を一定に維持しながら形成した。それにもかかわらず、ボード重量は、顕著に低減され、かつ、釘引抜き耐性により計測される強度は劇的に影響されていなかった。従って、本発明の実施形態のこの実施例においては、新規の配合(例えば、ボードDなど)は、同一のw/s比および適切な強度を維持しながら、有用で流動性のスラリー中に多量のデンプンを配合させることが可能である。
【0055】
実施例4
湿潤石膏キューブ強度テスト
Chicago,IllinoisのUnited States Gypsum Corp.製のSouthard CKSボードスタッコおよび実験室における水道水を用いて湿潤キューブ強度テストを行って、これらの湿潤圧縮強度を測定した。以下の実験室テスト手法を用いた。
【0056】
スタッコ(1000g)、CSA(2g)、および約70°Fの水道水(1200cc)を、各湿潤石膏キューブキャストのために用いた。アルファ化コーンデンプン(20g、スタッコ重量基準で2.0%)およびCSA(2g、スタッコ重量基準で0.2%)を、ナフタレンスルホン酸分散剤およびトリメタリン酸ナトリウムの両方を含有する水道水溶液との混合に先立って、先ず、プラスチックバッグ中でスタッコと完全に乾燥混合した。用いた分散剤はDILOFLO分散剤であった(表4に示されているとおり1.0〜2.0%)。様々な量のトリメタリン酸ナトリウムもまた表4に示されているとおり用いた。
【0057】
乾燥処方成分および水溶液を、最初に、実験用Warningブレンダー中で組み合わせ、生成した混合物を10秒かけて飽和させ、次いで、この混合物を、スラリーを形成するために10秒間低速で混合した。このように形成したスラリーを、3つの2インチ×2インチ×2インチキューブ金型にキャストした。次いで、キャストキューブを金型から外し、計量し、およびプラスチックバッグ中にシールして、圧縮強度テストを実施する前の水分の損失を防止した。湿潤キューブの圧縮強度は、ATSマシーンを用いて計測すると共に、平方インチ当たりのポンド(psi)での平均として記録した。得られた結果は以下のとおりであった。
【0058】
【表4-1】
【0059】
【表4-2】
【0060】
表4に示されているとおり、本発明の約0.12〜0.4%範囲にトリメタリン酸ナトリウムレベルを有するサンプル4〜5、10〜11、および17は、一般に、この範囲外でトリメタリン酸ナトリウムを有するサンプルと比して優れた湿潤キューブ圧縮強度を提供する。
【0061】
実施例5
1/2インチ軽量石膏ウォールボードプラント製造試験
さらなる試験を実施し(試験ボード1および2)、スラリー配合を含むテスト結果が以下の表5に示されている。表5のスラリー配合は、スラリーの主構成成分を含む。括弧中の値は、乾燥スタッコの重量に基づく重量パーセントとして表記されている。
【0062】
【表5】
【0063】
表5に示されているとおり、試験ボード1および2を、対照ボードと比して、わずかにw/s比を低減させながら、実質的に多量のデンプン、DILOFLO分散剤、およびトリメタリン酸ナトリウムを有するスラリーから形成した。それにもかかわらず、釘引抜き耐性および曲げ試験により計測した強度は維持されたかまたは向上されたと共に、ボード重量は顕著に低減した。従って、本発明の実施形態のこの実施例においては、新たな配合(例えば、試験ボード1および2など)は、実質的に同一のw/s比および適切な強度を維持しながら、有用で流動性のスラリー中に多量のトリメタリン酸塩およびデンプンを配合させることが可能である。
【0064】
実施例6
1/2インチ超軽量石膏ウォールボードプラント製造試験
さらなる試験(試験ボード3および4)を、配合物B(実施例1)を用いて、アルファ化コーンデンプンを10%濃度(湿潤デンプン調製)に水で調製すると共に、HYONIC 25 ASおよびPFM 33石鹸(Lafayette,IndianaのGEO Specialty Chemicals製)のブレンドを用いたこと以外は、実施例2のとおり実施した。例えば、試験ボード3を、65〜70重量%の範囲のHYONIC 25 ASでのHYONIC 25 ASおよびPFM 33のブレンドと、残量のPFM 33とで調製した。例えば、試験ボード4は、HYONIC 25AS/HYONIC PFM 33の70/30重量/重量ブレンドで調製した。試験結果が以下の表6に示されている。
【0065】
【表6】
【0066】
2006年11月2日出願の親米国特許出願第11/592,481号明細書に見られるこの実施例に記載の配合物は、強化高密度化表面を有する著しく厚い壁を備える大型の気泡を有する以下の実施例7〜9に記載の石膏ウォールボードをもたらすことに注目されたい。表6に示されているとおり、釘引抜きおよびコア硬度により計測した強度特質はASTM規格を超えていた。曲げ強さもまたASTM規格を超えて計測された。また、本発明の実施形態のこの実施例においては、新たな配合物(例えば、試験ボード3および4など)は、適切な強度を維持しながら、有用で流動性のスラリー中に多量のトリメタリン酸塩およびデンプンを配合させることが可能である。
【0067】
実施例7
ボード重量および鋸での切断結果の関数としての1/2インチ厚石膏ウォールボードコアにおける気泡容積割合計算
さらなる試験を、気泡容積および密度(試験ボードNo.5〜13)を測定するために、配合物B(実施例1)を用いて、アルファ化コーンデンプンを10%濃度(湿潤デンプン調製)に水で調製し、0.5%ガラス繊維を用い、およびナフタレンスルホン酸(DILOFLO)を45%水溶液として1.2重量%のレベルで用いたこと以外は実施例2のとおり実施した。石鹸の泡発生機を用いて石鹸泡を形成し、所望の密度をもたらすために効果的な量で石膏スラリー中に導入した。本実施例において、石鹸は、0.25lb/MSF〜0.45lb/MSFのレベルで用いた。すなわち、石鹸の泡の使用量は適切に増減した。各サンプルにおいて、ウォールボード厚は1/2インチであると共にコア容積は、39.1ft
3/MSFで均一であると仮定した。気泡容積を、表紙および裏紙を除去した4ft幅のウォールボードサンプルにわたって計測した。表紙および裏紙は、11〜18milの範囲の厚さを有することが可能である(各面)。気泡容積/孔径および孔径分布は、走査電子顕微鏡検査(以下の実施例8を参照のこと)およびX線CTスキャンテクノロジー(XMT)により測定した。
【0068】
【表7】
【0069】
表7に示されているとおり、79.0%〜92.1%の範囲で総コア気泡容積を有する試験ボードサンプルを形成し、これらは、それぞれ、28pcfから10pcf以上の範囲のボードコア密度に対応する。実施例として、81.8%の総コア気泡容積および23pcfのボードコア密度を有する試験ボード10の鋸での切断では、対照ボードよりも約30%少ない粉塵が発生した。追加の実施例として、約75〜80%の総コア気泡容積よりも顕著に少ない、バインダ(分散剤を伴う、または伴わないデンプンとして)が少ない従来の配合でのウォールボードを形成した場合、切断、鋸引き、ルータ加工、スナッピング、釘打あるいはねじ込み、またはドリリングの際には、顕著に激しい粉塵発生が予期されることとなる。例えば、従来のウォールボードは、鋸での切断で、約20〜30ミクロンの平均直径、および約1ミクロンの最小直径を有する粉塵破片を発生させる可能性がある。対照的に、本発明の石膏ウォールボードは、鋸での切断で、約30〜50ミクロンの平均直径、および約2ミクロンの最小直径を有する粉塵破片を発生させ;けがき/スナッピングではさらに大きな破片を生じさせるであろう。
【0070】
石膏含有スラリーを形成するために用いられる数々の重要な構成成分、すなわち:スタッコ、ナフタレンスルホン酸分散剤、アルファ化コーンデンプン、トリメタリン酸ナトリウム、ならびに、ガラス繊維および/または紙繊維の組み合わせは、十分なおよび効果的な量の石鹸の泡と組み合わされて、ナイフでの切断、鋸での切断、けがき/スナッピング、ドリリング、および通常のボードの取り扱いの最中での石膏粉塵の形成をも劇的に低減する、有用な低密度石膏ウォールボードの製造において相乗的な効果を有することが可能であることが示された。
【0071】
実施例8
試験ボードNo.10におけるエアバブル気泡サイズおよび水泡サイズの測定、ならびに、石膏結晶形態学
試験ボードNo.10を調製するためのプラント試験からのキャスト石膏キューブ(2インチ×2インチ×2インチ)を走査電子顕微鏡検査(SEM)により分析した。エアバブル気泡および蒸発性水泡、ならびに、石膏結晶サイズおよび形状を観察すると共に計測した。
【0072】
3つのサンプルキューブを形成し、それぞれに、11:08、11:30、および11:50とラベルを付した。
図1〜3は、エアバブル気泡サイズおよび各サンプルについての分布を15×倍率で示す。
図4〜6は、エアバブル気泡サイズおよび各サンプルについての分布を50×倍率で示す。
【0073】
より高倍率で、サンプルキューブ11:50について
図7〜10に示されているとおり、10,000×倍率以下で、例えば、一般に実質的により大きなエアバブル気泡壁中の水泡を観察した。ほとんどすべての石膏結晶が針であり;プレート状のものはほとんど観察されなかった。針の密度および充填は、エアバブル気泡の表面上で様々であった。石膏針は、エアバブル気泡壁中の水泡においても観察された。
【0074】
SEM結果は、本発明に基づいて形成された石膏含有製品において、気泡および水泡は、一般に、固化石膏コア全体に均一に分布されていることを実証している。観察した気泡サイズおよび気泡分布もまた、生成された石膏粉塵の相当の量が、通常のボードの取り扱いの際、ならびに、切断、鋸引き、ルータ加工、スナッピング、釘打あるいはねじ込み、
またはドリリングの最中に曝された周囲の気泡中に捕捉されることとなると共に、風媒性とならないよう、気泡および水泡(総コア気泡容積)として十分な自由空間が形成されていることを実証する。
【0075】
実施例9
低粉塵石膏ウォールボードにおける粉塵捕捉
実施例7のとおり本発明の教示に基づいてウォールボードを調製した場合、ウォールボードの加工で生じる石膏粉塵は、少なくとも50重量%が直径約10ミクロンより大きい石膏破片を含むであろうことが予期される。切断、鋸引き、ルータ加工、けがき/スナッピング、釘打あるいはねじ込み、およびドリリングによるウォールボードの加工によって発生した粉塵の合計の少なくとも約30%以上が捕捉されるであろう。
【0076】
実施例10
追加の1/2インチ軽量石膏ウォールボードプラント製造試験配合物
実施例7〜9は、大きい気泡容積を有する軽量ウォールボードをもたらす。残りの実施例は、実施例7〜9のものに類似するが、ウォールボード微小構造の増大された壁厚および強化された高密度化気泡壁表面をもハイライトしている。これに関連して、実施例8の
図5および6の顕微鏡写真は、本発明による大型の気泡および増大された厚さの壁の両方を含む微小構造を示すことに注目すべきである。
【0077】
それ故、以下の表8に示されているとおり、さらなるスラリー配合物(試験14)を調製した。表8のスラリー配合は、スラリーの主構成成分を含む。括弧中の値は、乾燥スタッコの重量に基づく重量パーセントとして表記されている。
【0078】
【表8】
【0079】
実施例11
追加の1/2インチ軽量石膏ウォールボードプラント製造試験
プラント試験配合物14および実施例10の対照配合物Aを用いて形成した石膏ウォールボード、ならびに、2種の従来の競合するボードについてのテスト結果が以下の表9に示されている。70°F/50%相対湿度で24時間のコンディショニングの後、ウォールボードサンプルを、釘引抜き耐性、エッジ/コア硬度、曲げ強さ、および16時間加湿接合についてテストした。釘引抜き耐性、エッジ/コア硬度、加湿たわみ、および曲げ強さテストをASTM C−473に準拠して実施した。不燃性をASTM E−136に準拠して実施した。表面燃焼特質テストをASTM E−84に準拠して実施して、延焼指数(Flame Spread Index)(FSI)を測定した。ボードサンプルを、走査電子顕微鏡検査(以下の実施例12を参照のこと)およびエネルギー分散分光法(EDS)により分析した。ボードサンプルはまた、X線CTスキャンテクノロジー(XMT)により分析されることが可能である。
【0080】
鋸での切断およびドリリングテストによる粉塵発生計測値。ドリリングによる粉塵発生を測定するために、ボール盤を用いて仕上ウォールボードサンプルに50個の孔をドリルして、得られた石膏粉塵を回収した。手鋸引きによる粉塵発生を測定するために、仕上ウォールボードの5つの1フィート長の切片を切り出して、得られた石膏粉塵を回収した。
冠鋸引きによる粉塵発生を測定するために、4インチ径の5つの円を仕上ウォールボードサンプルに切り出して、得られた石膏粉塵を回収した。
【0081】
【表9】
【0082】
表9に示されているとおり、釘引抜き耐性、曲げ強さ、およびエッジ/コア硬度により計測した試験ボード14強度特質は、従来の競合するボードに対して優れていると共にASTM規格を超えていた。加湿たわみ(たるみ)は、従来の競合するボードに対して優れていると共にASTM規格を超えていた。加湿接合:優れた紙対コア接合(無破壊)に追加して、試験ボードNo.14は、表9に示されているとおり、接合強度について最良の結果を有していた。最後に、ASTM規格での不燃性テストへの合格に追加して、試験ボードNo.14は、ASTM規格下でクラス−A材料として判定された。
【0083】
加えて、試験ボードNo.14サンプルを、外観、シートの摺れ、曲げテスト、肩に載せた運搬、曲がり角での回転、エッジドラッグ、エッジドロップ、けがきおよびスナップ、やすりがけ(rasping)、孔の切断、スクリューでの取り付け、釘での取り付け、および10フィート半径について評価することにより、取り扱い、ステージング、および設置順序について査定した。評価の結論は、試験ボードNo.14の取り扱い特性は、
対照ボードAおよび表9の他の従来の競合性石膏ボードと同等であるかまたはこれらを超えていた。
【0084】
実施例12
試験ボードNo.14におけるエアバブル表面特徴の測定、および石膏結晶形態学
実施例8と同様に、試験ボードNo.14を調製するためのプラント試験からのキャスト石膏キューブ(2インチ×2インチ×2インチ)を走査電子顕微鏡検査(SEM)により分析した。エアバブル気泡および蒸発性水泡、ならびに、石膏結晶サイズおよび形状を観察すると共に計測した。
【0085】
SEM結果は、再度、本発明に基づいて形成された石膏含有製品において、気泡および水泡は、一般に、固化石膏コア全体に均一に分布されていることを実証している。観察した気泡サイズおよび気泡分布もまた、生成された石膏粉塵の相当の量が、通常のボードの取り扱いの際、ならびに、切断、鋸引き、ルータ加工、スナッピング、釘打あるいはねじ込み、またはドリリングの最中に曝された周囲の気泡中に捕捉されることとなると共に、
風媒性とならないよう、気泡および水泡(総コア気泡容積)として十分な自由空間が形成されていることを実証する。
【0086】
図11〜19のSEM結果は、実施例8のSEM顕微鏡写真に対応する高倍率で壁厚を示す。これらのSEM結果は、
図13および14に示されているとおり、試験ボードNo.14および対照ボードAをそれぞれ比較して、以下の2つの向上点を実証する:1)試験ボード中のエアバブル気泡は対照ボード中のものよりも実質的に大きく、および2)試験ボード中の気泡間の平均壁厚は対照ボード中の気泡間の平均壁厚よりもかなり大きかった。一般に、試験ボードNo.14における気泡間の平均壁厚は、少なくとも約50ミクロン以下〜約200ミクロンであった。対照的に、対照ボードAにおける気泡間の平均壁厚は一般に約20〜30ミクロンであった。追加的に、
図15の500×顕微鏡写真は、
気泡の壁に沿って顕微鏡写真の右方向に延びている強化高密度化表面「A」を示す。
【0087】
上述のとおり、より大きな気泡間の平均壁厚は、仕上ウォールボードに対してより高い強度、すなわち、より良好な釘引抜き耐性、より良好なコア/エッジ硬度、ならびに、例えばドリリング、切断および鋸引きの際の粉塵低減といったより良好な取り扱い特質を提供する。
【0088】
実施例13
平均気泡サイズ、壁厚および高密度化強化壁表面の存在の測定
コアサンプルは、テストされるべきウォールボードサンプルをけがくことにより調製されればよく、コアをスナッピングして適切なサイズのサンプルに分けた。次いで、例えば、けがきがなされた領域にわたって強制空気流を向けることにより、ゆるいデブリが除去される。次いで、コアサンプルが、従来の走査型電子顕微鏡写真技術を用いて取り付けられると共にコートされる。
【0089】
平均気泡サイズ
コアサンプルにおける無作為な位置で撮影した50×倍率での10枚の顕微鏡写真を準備する。これらの10枚の顕微鏡写真における気泡の各々にまたがる最大の断面距離を計測する。計測した距離を加算すると共に、平均最大断面距離を算出する。これが、サンプルの平均気泡サイズとなる。
【0090】
平均壁厚さ
コアサンプルにおける無作為な位置で撮影した50×倍率での10枚の顕微鏡写真を準備する。顕微鏡写真の水平縁部および垂直縁部が交差する気泡の各々間の距離を縁部に沿って計測する。すべての計測した距離を加算すると共に、平均距離を算出する。これがサンプルの平均壁厚である。
【0091】
高密度化強化壁表面
コアサンプルにおける無作為な位置で撮影した10枚の500×顕微鏡写真を準備する。これらの顕微鏡写真中に見られる拡大された気泡を、
図15において特徴Aと識別されているもののような、気泡の縁に沿った太い白色のラインについて調べる。これらの太い白色のラインの存在が、サンプルにおける高密度化強化気泡壁表面の存在を示す。
【0092】
本発明を説明する文脈における(特に以下の特許請求の範囲の文脈における)「a」および「an」および「the」という用語、ならびに、同様の指示対象の使用は、本明細書において他に示されていない限りにおいて、または、文脈により明らかに矛盾しない限りにおいて、単数形および複数形の両方をカバーすると理解される。本明細書における値の範囲の言及は、本明細書において他に示されていない限りにおいて、単に、その範囲内に属する個別の値の各々への個別の参照の省略的な方法のためと意図されており、および、各個別の値は、本明細書において個別に言及されたかのように、本明細書に組み込まれる。本明細書に記載のすべての方法は、本明細書において他に示されていない限りにおいて、または文脈により明らかに矛盾しない限りにおいて、いかなる好適な順番で実施されることも可能である。本明細書におけるいかなるおよびすべての例、または例示的な言い回し(例えば、「などの(such as)」)の使用は、単に、本発明をよりよく明らかにすることだけを意図し、特許請求されていない限りにおいて、本発明の範囲を限定するものではない。本明細書におけるいかなる言い回しも、特許請求されていないいずれかの構成要素を本発明の実施に必須として示すと解釈されるべきではない。
【0093】
本発明の好ましい実施形態は、本明細書において、本発明を実施するための本発明者らに公知である最良の形態を含んで記載されている。例示の実施形態は単に例示であり、本発明の範囲を限定するとすべきではないことが理解されるべきである。
[付記1]
2枚の実質的に平行なカバーシートの間に形成された固化石膏コアを含み、固化石膏コアは固化石膏コア全体にわたって分散された気泡を有し、前記気泡は約30〜約200ミクロンの平均厚を有する壁を有する石膏ウォールボード。
[付記2]
前記気泡の壁が約50〜約200ミクロンの平均厚を有する、付記1に記載の石膏ウォールボード。
[付記3]
前記気泡の壁が強化高密度化表面を有する、付記1に記載の石膏ウォールボード。
[付記4]
前記固化石膏コアが:
水、スタッコ、スタッコの重量に基づいて約0.5重量%〜約10重量%の量で存在するアルファ化デンプン、スタッコの重量に基づいて約0.2重量%〜約2重量%の量で存在するナフタレンスルホン酸分散剤、スタッコの重量に基づいて約0.1重量%〜約0.4重量%の量で存在するトリメタリン酸ナトリウム、およびスタッコの重量に基づいて0〜約0.2重量%の量で存在するガラス繊維を含む石膏含有スラリーから形成されている、付記3に記載の石膏ウォールボード。
[付記5]
前記アルファ化デンプンが、スタッコの重量に基づいて約0.5重量%〜約4重量%の量で存在している、付記4に記載の石膏ウォールボード。
[付記6]
水/スタッコ比が約0.7〜約1.3である、付記4に記載の石膏ウォールボード。
[付記7]
前記カバーシートが紙を含む、付記1に記載の石膏ウォールボード。
[付記8]
少なくとも1枚のカバーシートが高張力紙である、付記7に記載の石膏ウォールボード。
[付記9]
少なくとも1枚のカバーシートが、繊維状マット、不織ガラス繊維マット、織ガラスマットおよび非セルロース系布からなる群から選択される、付記3に記載の石膏ウォールボード。
[付記10]
2枚の実質的に平行なカバーシートの間に形成された固化石膏コアを含み、前記固化石膏コアは固化石膏コア全体にわたって分散された気泡を有し、前記気泡は強化高密度化表面および約30〜約200ミクロンの平均厚を有する壁を有し、ならびに、前記固化石膏コアは約27pcf〜約30pcfの密度を有する、軽量石膏ウォールボード。
[付記11]
前記固化石膏コアが:
水、スタッコ、スタッコの重量に基づいて約0.5重量%〜約10重量%の量で存在するアルファ化デンプン、スタッコの重量に基づいて約0.2重量%〜約2重量%の量で存在するナフタレンスルホン酸分散剤、スタッコの重量に基づいて約0.1重量%〜約0.4重量%の量で存在するトリメタリン酸ナトリウムおよびスタッコの重量に基づいて0〜約0.2重量%の量で存在するガラス繊維を含む石膏含有スラリーから形成されている、
付記10に記載の軽量石膏ウォールボード。
[付記12]
前記アルファ化デンプンが、スタッコの重量に基づいて約0.5重量%〜約4重量%の量で存在している、付記11に記載の石膏ウォールボード。
[付記13]
少なくとも1枚のカバーシートが高張力紙である、付記10に記載の軽量石膏ウォールボード。
[付記14]
少なくとも1枚のカバーシートが、繊維状マット、不織ガラス繊維マット、織ガラスマットおよび非セルロース系布からなる群から選択される、付記10に記載の軽量石膏ウォールボード。
[付記15]
2枚の実質的に平行な紙カバーシートの間に形成された固化石膏コアを含み、前記固化石膏コアは固化石膏コア全体にわたって分散された気泡を有し、前記気泡は約70〜約120ミクロンの平均厚を有する壁を有し、前記固化石膏コアは:
水、スタッコ、スタッコの重量に基づいて約3重量%の量で存在するアルファ化デンプン、スタッコの重量に基づいて約1.5重量%の量で存在するナフタレンスルホン酸分散剤の45重量%水溶液、スタッコの重量に基づいて約0.3重量%の量で存在するトリメタリン酸ナトリウムおよびスタッコの重量に基づいて0〜約0.2重量%の量で存在するガラス繊維、ならびに、石鹸の泡を含む石膏含有スラリーから形成されており、
少なくとも1枚のカバーシートが高張力紙であり、
前記固化石膏コアが約29pcfの密度を有し、
ならびに、1/2インチ厚ボードについて約1200lb/MSFの乾燥重量、少なくとも約77lb/MSFの釘引抜き耐性、および少なくとも約11lb/MSFのコア硬度を有する軽量石膏ウォールボード。