(58)【調査した分野】(Int.Cl.,DB名)
柱と梁とを含み、前記梁は、前記柱間を水平に継ぐ複数の大梁と、前記大梁で囲まれた水平架構面をさらに区分する複数の小梁とを含む建築物の架構体を、コンピュータを用いて設計するための方法であって、
前記水平架構面は、前記建築物の構造に基づいて前記小梁が必要とされる小梁の配置予定位置を含み、
前記コンピュータに、前記配置予定位置を含む設計制約条件を入力する条件入力工程と、
前記コンピュータが、前記設計制約条件に基づいて、前記小梁の配置を特定するための数値情報である染色体情報の複数種類からなる集団を生成する集団生成工程と、
前記コンピュータが、前記集団を用いて、前記小梁の配置の最適解を、遺伝的アルゴリズムに基づいて計算する最適化計算工程とを含み、
前記条件入力工程は、前記配置予定位置を通る第1小梁を配置するための第1小梁配置情報を含む小梁配置リストが入力され、
前記集団生成工程は、前記小梁配置リストから選択された前記第1小梁配置情報に基づいて、前記第1小梁が必ず含まれるように前記染色体情報を生成することを特徴とする架構体の設計方法。
【発明を実施するための形態】
【0023】
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態の架構体の設計方法(以下、単に「設計方法」ということがある)は、例えば、工業化住宅等の建築物の架構体を、コンピュータを用いて設計するための方法である。
【0024】
図1は、本実施形態の設計方法を実行するコンピュータの斜視図である。コンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dを含んでいる。この本体1aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置及びディスクドライブ装置1a1、1a2が設けられている。
【0025】
また、記憶装置には、本実施形態の設計方法の処理手順(プログラム)が予め記憶されている。この処理手順は、コンピュータ1の演算処理装置によって実行される。従って、コンピュータ1は、本発明の設計方法を実施するための設計装置1Aとして構成される。
【0026】
図2は、建築物の架構体を示す斜視図、
図3は、
図2の架構体の平面図である。建築物Bの架構体2は、例えば、柱3及び梁4を含む構造部材を有している。梁4は、柱3、3間を水平に継ぐ複数の大梁7と、大梁7で囲まれた水平架構面9をさらに区分する小梁8とを含んでいる。これらの大梁7及び小梁8は、2階以上の床(図示省略)を支持するための床梁、又は、屋根10を支持するための屋根梁として構成される。また、大梁7及び小梁8は、例えば、略横H字状の形鋼等から構成されている。
【0027】
さらに、建築物Bには、各水平架構面9に、階段や吹き抜け等の開口部11、及び、水平架構面9で支持される小屋束12を有している。開口部11は、大梁7又は小梁8によって形成される。本実施形態の開口部11は、例えば、
図3の左下の水平架構面9において、第1辺11a、第2辺11b、第3辺11c及び第4辺11dから構成され、略矩形状に形成されている。また、小屋束12は、
図3の左下の水平架構面9において、一つ配置された第1小屋束12aから構成されている。このような小屋束12は、その下端に、大梁7又は小梁8が配置されることにより、水平架構面9で支持される。
【0028】
図4(a)及び
図4(b)は、水平架構面の平面図である。
図4(a)に示されるように、水平架構面9には、一本目の小梁8aが配置されている。これにより、水平架構面9は、二個の小架構面13に区分される。
図4(b)に示されるように、水平架構面9は、二本目の小梁8bが、二個の小架構面13、13の何れかに配置されることにより、三個の小架構面13に区分される。このように、水平架構面9は、小梁8が配置されることにより、複数個の小架構面13に区分される。
【0029】
本実施形態では、
図4(a)において、二個の小架構面13に区分された場合、水平架構面9の左下側の頂点である基準点15aに最も近い小架構面13を第1小架構面13aとし、他方の小架構面13を第2小架構面13bとして区別している。さらに、本実施形態では、
図4(b)において、第2小架構面13b(
図4(a)に示す)がさらに2個の小架構面13に区分された場合、第2小架構面13bの左下側の頂点である基準点15bに最も近い小架構面13を第2小架構面13bとし、他方の小架構面13を第3小架構面13cとして区別している。
【0030】
図5は、本実施形態の設計方法の処理手順の一例を示すフローチャートである。この設計方法では、小梁8(
図4に示す)の配置の最適解が計算され、その最適解に基づいて、架構体2及び建築物Bが製造される。
【0031】
本実施形態の設計方法では、先ず、コンピュータ1に、建築物Bの基本情報が入力される(基本情報入力工程S1)。
図6は、本実施形態の基本情報入力工程の処理手順の一例を示すフローチャートである。
【0032】
本実施形態の基本情報入力工程S1では、先ず、建築物Bの形状が、コンピュータ1に入力される(工程S11)。
図7は、建築物の架構体の斜視図である。この工程S11では、例えば、
図2及び
図3に示した建築物Bの柱3、大梁7、水平架構面9及び屋根10(
図3に示す)の形状や配置位置が、コンピュータ1に入力される。なお、この工程S11では、最適解が計算される小梁8(
図2及び
図3に示す)は入力されていない。
【0033】
図7に示されるように、柱3及び大梁7は、予め定められた水平モジュール又は垂直モジュールを基準として、その配置や長さ等が設定されている。また、柱3及び大梁7は、例えば、ボルトがモデル化されたピン16によって固定される。これにより、小梁8(
図2に示す)を除いた架構体2及び水平架構面9が設定される。さらに、本実施形態の大梁7は、その長手方向がX軸方向、又は、Y軸方向に沿って配置されている。
【0034】
また、柱3及び大梁7には、例えば、それらの断面形状や、断面2次モーメント等の構造計算に必要なパラメータが設定されている。このような柱3及び大梁7の配置等やパラメータは、いずれも数値データとして、コンピュータ1に記憶される。
【0035】
本実施形態の水平架構面9は、屋根10(
図3に示す)を支持する第1水平架構面9a〜第4水平架構面9dと、二階の床を支持する第5水平架構面9e〜第8水平架構面9hとを含んでいる。
【0036】
図8(a)は、小梁8を省いた第1水平架構面9aの平面図、
図8(b)は、小梁8が配置された第1水平架構面9aの平面図である。
図8(a)に第1水平架構面9aが代表して示されるように、各水平架構面9a〜9hには、水平モジュールに準じて、等間隔に配された複数の節点17が定義されている。このような各水平架構面9a〜9hは、コンピュータ1に記憶される。
【0037】
屋根10(
図3に示す)は、柱3及び梁4と同様に、水平モジュール又は垂直モジュールを基準として、その配置や形状が設定されている。このような屋根10の配置等は、数値データとして、コンピュータ1に記憶される。
【0038】
次に、本実施形態では、建築物B(
図2に示す)の荷重条件が、コンピュータ1に入力される(工程S12)。荷重条件は、建築物Bに作用する外力に関する情報である。荷重条件は、建築物Bの各種仕様、例えば、外壁仕様、床仕様、屋根葺材、耐火仕様、耐震等級又は耐風等級などに基づいて入力される。このような荷重条件も数値データであり、コンピュータ1に記憶される。
【0039】
建築物基本情報は、一般的なCADや一貫構造計算システム等のソフトウェアを用いて設定することができる。本実施形態では、二階建ての建築物Bが一例として示されたが、例えば、一階建てや、三階建て以上のものでも良い。
【0040】
次に、コンピュータ1に、小梁8を架構体2に配置するための設計制約条件が入力される(条件入力工程S2)。本実施形態の設計制約条件としては、各水平架構面9a〜9hにおいて、小梁8の向き及び固定可能位置が含まれる。
【0041】
図8(b)に示されるように、本実施形態の小梁8の向きとしては、その長手方向を基準として定義される。この長手方向は、図において、X軸方向、又は、Y軸方向に限定される。なお、長手方向は、このような態様に限定されるわけではなく、例えば、X軸方向の成分と、Y軸方向の成分とを含む任意の方向に限定されてもよい。
【0042】
本実施形態の小梁8の固定可能位置としては、水平モジュールに準じて定義された節点17を基準に配置される。小梁8の両端8t、8tは、大梁7又は小梁8に定義される節点17に当接するように配置される。なお、大梁7又は小梁8の勝ち負けは、図において、「●」が勝ちを示し、「○」が負けを示している。
【0043】
さらに、設計制約条件には、各水平架構面9a〜9hに配置される小梁8の本数の上限値が含まれている。この上限値は、各水平架構面9a〜9hに配置可能な小梁8の最大本数以下に設定される。また、上限値は、架構体2に必要な強度や、コスト等の諸条件に応じて、任意に設定することができる。本実施形態の上限値には、例えば「7」が設定される。
【0044】
図8(a)に示されるように、設計制約条件には、小梁8の配置予定位置21が含まれている。配置予定位置21は、各水平架構面9a〜9hにおいて、小梁8が必要とされる位置である。このような配置予定位置21は、建築物B(
図2に示す)の構造に基づいて設定される。また、配置予定位置21を通る小梁8(以下、単に「第1小梁29」ということがある)は、各配置予定位置21の全域に亘って配置される小梁8である。なお、第1小梁29は、例えば、配置予定位置21からはみ出して配置されてもよい。
【0045】
配置予定位置21は、各水平架構面9a〜9hの各節点17を基準に設定される。本実施形態の配置予定位置21は、各水平架構面9a〜9hに定義される配置予定直線21aと、配置予定点21bとが含まれる。
【0046】
配置予定直線21aは、各水平架構面9a〜9hにおいて、少なくとも2つの座標値(本実施形態では、2つの座標値)で特定される。この座標値は、配置予定直線21aの両端が配置される節点17、17の座標値である。このような配置予定直線21aは、例えば、開口部11(
図3に示す)の周囲や手摺(図示省略)の配置位置に設定される。本実施形態の配置予定直線21aは、開口部11の周囲の少なくとも一部に設定され、開口予定位置22として定義されている。この開口予定位置22は、水平架構面9a〜9h毎に設定される。
【0047】
開口予定位置22は、例えば、第1水平架構面9aにおいて、開口部11の第1辺11a(
図3に示す)の位置を定義する第1開口予定位置22a、第2辺11b(
図3に示す)の位置を定義する第2開口予定位置22b、第3辺11c(
図3に示す)の位置を定義する第3開口予定位置22c、及び、第4辺11d(
図3に示す)の位置を定義する第4開口予定位置22dが含まれる。
【0048】
配置予定点21bは、各水平架構面9a〜9hにおいて、1つの節点17の座標値で特定される。このような配置予定点21bは、例えば、小屋束12を支える位置や、太陽光パネル設置用架台の支柱位置(フラット屋根の場合)等に設定される。本実施形態の配置予定点21bは、小屋束12を支える位置に設定され、小屋束予定位置23として定義される。この小屋束予定位置23は、水平架構面9a〜9h毎に設定される。
【0049】
小屋束予定位置23は、例えば、第1水平架構面9aにおいて、
図3に示した第1小屋束12aの配置位置を定義する第1小屋束予定位置23aが含まれる。これらの設計制約条件は、コンピュータ1に記憶される。
【0050】
このような配置予定位置21により、
図8(b)に示されるように、第1小梁29は、例えば、第1水平架構面9aにおいて、第1開口予定位置22a(
図8(a)に示す)を通る第1開口小梁29aと、第2開口予定位置22b(
図8(a)に示す)を通る第2開口小梁29bと、第3開口予定位置22c(
図8(a)に示す)を通る第3開口小梁29cと、第4開口予定位置22d(
図8(a)に示す)を通る第4開口小梁29dとが含まれる。さらに、第1小梁29は、第1小屋束予定位置23aを通る第1小屋束小梁29eが含まれる。
【0051】
本実施形態の条件入力工程S2では、
図8(a)に示した配置予定位置21に基づいて、水平架構面9a〜9h毎に小梁配置リストが入力される。本実施形態の小梁配置リストは、
図8(b)に示した各第1小梁29を配置するための第1小梁配置情報を含むものである。
図9は、本実施形態の第1水平架構面9aの小梁配置リストの概念図である。
【0052】
小梁配置リスト25は、例えば、第1水平架構面9aにおいて、
図8(b)に示した第1開口小梁29a、第2開口小梁29b、第3開口小梁29c、第4開口小梁29d及び第1小屋束小梁29eを配置するための各第1小梁配置情報36aが定義される。これらの第1小梁配置情報36aは、各小梁29a〜29eを区別する区分情報と、各小梁29a〜29eの位置が指定された位置情報とが含まれる。
【0053】
区分情報としては、各水平架構面9a〜9h(
図7に示す)において、第1小梁29毎に割り当てられた数値範囲が設定される。例えば、第1水平架構面9aにおいて、各小梁29a〜29e(
図8(b)に示す)の区分情報は、0.00〜1.00の数値範囲を、小梁29a〜29e毎に等分(5等分)した数値範囲からなる。本実施形態の区分情報の詳細は、次のとおりである。
第1開口小梁29aの区分情報:0.00以上かつ0.20以下
第2開口小梁29bの区分情報:0.21以上かつ0.40以下
第3開口小梁29cの区分情報:0.41以上かつ0.60以下
第4開口小梁29dの区分情報:0.61以上かつ0.80以下
第1小屋束小梁29eの区分情報:0.81以上かつ1.00以下
【0054】
なお、本実施形態の区分情報は、0〜1の数値範囲を、第1小梁29毎に等分するものが示されたが、これに限定されるわけではない。例えば、特定の第1小梁29の区分情報を、他の第1小梁29の区分情報よりも大きな数値範囲に設定してもよい。
【0055】
位置情報は、各第1小梁29の配置予定位置21(
図8(a)に示す)に基づいて定義される。例えば、第1水平架構面9aにおいて、第1開口小梁29a〜第4開口小梁29dの位置情報としては、第1開口予定位置22a〜第4開口予定位置22dの両端の節点17、17(
図8(a)に示す)の座標値が設定される。また、第1小屋束小梁29eの位置情報としては、第1小屋束予定位置23aの一つの節点17の座標値が設定される。このような位置情報により、各小梁29a〜29eが配置される位置が指定される。本実施形態の位置情報の詳細は、次のとおりである。なお、これらの設計制約条件は、コンピュータ1に記憶される。
A:第1開口予定位置の両端の節点の座標値
B:第2開口予定位置の両端の節点の座標値
C:第3開口予定位置の両端の節点の座標値
D:第4開口予定位置の両端の節点の座標値
E:第1小屋束予定位置の節点の座標値
【0056】
次に、コンピュータ1が、設計制約条件に基づいて、染色体情報の複数種類からなる集団を生成する(集団生成工程S3)。染色体情報は、小梁8(
図8(b)に示す)の配置を特定するための数値情報である。
図10は、染色体情報の複数種類からなる集団の概念図、
図11は、第1水平架構面9aの第1情報部分、及び、第2情報部分の一例を示す概念図である。また、
図12は、本実施形態の集団生成工程S3の処理手順の一例を示すフローチャートである。
【0057】
本実施形態の集団生成工程S3では、先ず、コンピュータ1に、小梁8(
図8(b)に示す)が定義される(工程S31)。小梁8は、断面形状や、断面2次モーメント等が定義された数値データである。このような数値データは、コンピュータ1に記憶される。
【0058】
次に、コンピュータ1に、染色体情報が定義される(工程S32)。
図10に示されるように、各染色体情報26は、
図7に示した水平架構面9a〜9h毎に、前記第1小梁29(
図8(b)に示す)を定義するための第1情報部分27と、配置予定位置21とは無関係に定義される第2小梁30(
図8(b)に示す)を定義するための第2情報部分28とを含んでいる。このような染色体情報26が複数種類設定されることによって、集団31が生成される。
【0059】
第1情報部分27には、各第1小梁29(
図8(b)に示す)のそれぞれについて、第1小梁29の配置を定義する第1小梁遺伝子が格納可能な第1小梁遺伝子座33が設定される。第1小梁遺伝子座33は、各水平架構面9a〜9hにおいて、第1小梁29毎に割り当てられる。従って、
図11に示されるように、第1水平架構面9aの第1情報部分27では、5個の第1小梁遺伝子座33(33A〜33E)が定義される。本実施形態では、第1小梁遺伝子座33に格納される第1小梁遺伝子に基づいて、図において最も左に配置される第1小梁遺伝子座33から順番に、該第1小梁29の配置が定義される。
【0060】
本実施形態の第1小梁遺伝子は、小梁配置リスト25(
図9に示す)の第1小梁配置情報36aを特定するための区分情報と、第1小梁29(
図8(b)に示す)の向きを示す方向情報とが含まれている。従って、各第1小梁遺伝子座33は、区分情報を格納可能な区分遺伝子座33aと、方向情報を格納可能な方向遺伝子座33bとが設定される。このような第1情報部分27は、コンピュータ1に記憶される。
【0061】
第2情報部分28は、1本の第2小梁30(
図8(b)に示す)毎に、第2小梁遺伝子が設定される。従って、第2情報部分28には、第2小梁遺伝子が格納される少なくとも一つの第2小梁遺伝子座34が設定される。
【0062】
第2小梁遺伝子座34は、各水平架構面9a〜9h(
図7に示す)において、設計制約条件で設定された小梁8の本数の上限値(本実施形態では、7個)と、第1情報部分27の第1小梁遺伝子座33の個数(本実施形態では5個)との差と同一の個数分(本実施形態では、2個)のみ作成される。これにより、染色体情報26は、各水平架構面9a〜9hにおいて、第1小梁遺伝子座33と、第2小梁遺伝子座34とを合わせて、設計制約条件で設定された小梁8の上限値分の遺伝子座を設定することができる。本実施形態の第2情報部分28では、第2小梁遺伝子座34に格納される第2小梁遺伝子に基づいて、図において最も左に配置される第2小梁遺伝子座34から順番に、第2小梁30の配置が定義される。
【0063】
本実施形態の第2小梁遺伝子は、第2小梁30(
図8(b)に示す)が配置される水平架構面9又は小架構面13(
図4に示す)を特定する架構面情報と、第2小梁30の向きを示す方向情報と、第2小梁30の位置を特定する配置情報とが含まれる。このため、第2小梁遺伝子座34は、架構面情報を格納可能な架構面遺伝子座34aと、方向情報を格納可能な方向遺伝子座34bと、配置情報を格納可能な配置遺伝子座34cとが含まれる。このような第2情報部分28は、コンピュータ1に記憶される。
【0064】
次に、コンピュータ1が、染色体情報26の第1情報部分27に、第1小梁遺伝子を格納する(工程S33)。この工程S33では、区分遺伝子座33aに格納される区分情報、及び、方向遺伝子座33bに格納される方向情報が設定される。
【0065】
本実施形態の区分情報は、小梁配置リスト25から第1小梁配置情報36a(
図9に示す)を特定するための情報である。このため、区分遺伝子座33aに格納される区分情報は、小梁配置リスト25の区分情報が取りうる「0.00〜1.00」の数値範囲から、乱数関数に従ってランダムに決定される。
【0066】
図13は、最も左側の第1小梁遺伝子座33Aで定義される第1小梁29の配置を説明する平面図、
図14は、左から2番目の第1小梁遺伝子座33Bの第1小梁29の配置を説明する平面図である。
図13に示されるように、最も左側の第1小梁遺伝子座33Aは、区分遺伝子座33aの区分情報が「0.41」である。この区分情報は、小梁配置リスト25において、第3開口小梁29cの区分情報(0.41以上かつ0.60以下)の範囲内にある。これにより、第3開口小梁29cの第1小梁配置情報36aが選択され、その位置情報「C」に基づいて、第3開口小梁29cの配置が定義される。なお、第3開口小梁29cは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。
【0067】
また、本実施形態では、選択された第3開口小梁29cの第1小梁配置情報36aが、小梁配置リスト25から削除される。そして、小梁配置リスト25が、第1開口小梁29a、第2開口小梁29b、第4開口小梁29d及び第1小屋束小梁29eの各第1小梁配置情報36aに基づいて再構築される。これにより、
図14に示されるように、小梁配置リスト25は、第1開口小梁29a、第2開口小梁29b、第4開口小梁29d、及び、第1小屋束小梁29eを含む第1小梁配置情報36aから構成される。
【0068】
左から2番目の第1小梁遺伝子座33Bは、区分遺伝子座33aの区分情報が「0.28」である。この区分情報は、小梁配置リスト25において、第2開口小梁29bの区分情報(0.26以上かつ0.50以下)の範囲内にある。これにより、第2開口小梁29bの第1小梁配置情報36aが選択され、位置情報「B」に基づいて、第2開口小梁29bの配置が定義される。なお、第2開口小梁29bは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。また、選択された第2開口小梁29bの第1小梁配置情報36aは、小梁配置リスト25から削除され、小梁配置リスト25が再構築される。
【0069】
このように、第1情報部分27は、区分遺伝子座33aの区分情報に基づいて、再構築される小梁配置リスト25から小梁29a〜29eの位置情報を取得することができるため、各小梁29a〜29eを特定する情報を別途保持する必要がない。このため、第1情報部分27は、その染色体情報26の構造を簡略化しつつ、各第1小梁29a〜29eが重複して配置されるのを防ぐことができる。
【0070】
しかも、区分遺伝子座33aの区分情報は、乱数関数に従ってランダムに決定されるため、各小梁29a〜29eの配置順が異なる様々なバリエーションの配置を設定することができる。なお、各小梁29a〜29eの配置を定義する度に、小梁配置リスト25が再構築されるが、初期の小梁配置リスト25(
図9に示す)は、コンピュータ1に常に保持されている。従って、コンピュータ1は、染色体情報26が再定義されても、初期の小梁配置リスト25を用いて、各小梁29a〜29eの配置を適宜認識することができる。
【0071】
方向情報は、上述のとおり、第1小梁29の向きを示すものである。本実施形態の方向情報は、第1小梁29の長手方向の向きが定義される。また、方向情報は、少なくとも一桁の文字又は数値、本実施形態では少なくとも一桁の数値で定義される。本実施形態の方向情報がとり得る各数値は1又は2であり、詳細は次のとおりである。
1:X軸方向と平行
2:Y軸方向と平行
【0072】
方向情報は、乱数関数に従ってランダムに決定される。このような方向情報により、第第1小屋束小梁29eの向きが決定される。一方、第1開口小梁29a〜第4開口小梁29dの向きついては、区分遺伝子座33aの区分情報(小梁配置リスト25に格納されている位置情報)に基づいて一意に定められる。このため、第1開口小梁29a〜第4開口小梁29dの方向情報は、実質的に意味をなしていない。このように、本実施形態では、第1小屋束小梁29eの方向情報とともに、第1開口小梁29a〜第4開口小梁29dの方向情報についても同様に決定する処理を実施することにより、処理手順を簡略化することができる。
【0073】
次に、コンピュータ1が、染色体情報26の第2情報部分28に、第2小梁遺伝子を格納する(工程S34)。この工程S34では、
図11に示されるように、架構面遺伝子座34aに格納される架構面情報、方向遺伝子座34bに格納される方向情報、及び、配置遺伝子座34cに格納される配置情報が設定される。
【0074】
架構面情報は、
図7に示した各水平架構面9a〜9hにおいて、第2小梁30(
図8(b)に示す)が配置される水平架構面9又は小架構面13(
図4(a)、(b)に示す)を特定するものである。本実施形態の架構面情報は、最後の小梁8(7本目の小梁8)が配置された後に形成される小架構面13(本実施形態では第8小架構面(図示省略))を除いて定義される。本実施形態の架構面情報は、例えば次のとおりである。
0:第2小梁の配置なし
1:水平架構面又は第1小架構面
2:第2小架構面
3:第3小架構面
4:第4小架構面
5:第5小架構面
6:第6小架構面
7:第7小架構面
【0075】
図15は、小梁8が配置される前の水平架構面9を示す平面図である。例えば、架構面遺伝子座34aの架構面情報が「1」の場合、第2小梁30は、水平架構面9に配置される。一方、架構面情報が「0」の場合、第2小梁30は、水平架構面9に配置されない。
【0076】
図16(a)、(b)は、小梁8が一本配置された水平架構面9の平面図である。この第1水平架構面9aには、第1小架構面13a及び第2小架構面13bが形成されている。
図16(a)に示されるように、架構面遺伝子座34aの架構面情報が「1」の場合、第2小梁30は、第1小架構面13aに配置される。
図16(b)に示されるように、架構面情報が「2」の場合、第2小梁30は、第2小架構面13bに配置される。
【0077】
本実施形態では、架構面情報が、該当する小架構面13が存在しない「3」以上の場合、例えば、水平架構面9に区分されている小架構面13のうち、最後に区分された小架構面13(本実施形態では、第2小架構面13b)に、第2小梁30が配置される。なお、このような態様に限定されるわけではなく、例えば、架構面情報の数値に基づいて、第1小架構面13aから最後の小架構面13(本実施形態では、第2小架構面13b)までの間で巡回させて、第2小梁30が配置される小架構面13が決定されてもよい。例えば、架構面情報が「3」の場合は、1番目の第1小架構面13a、及び、2番目の第2小架構面13bを経て、3番目の第1小架構面13aに第2小梁30が配置される。
【0078】
このように、架構面情報は、第2小梁30が配置される水平架構面9又は小架構面13を特定することができる。本実施形態の架構面情報は、上記の架構面情報0〜7から、乱数関数に従ってランダムに決定される。
【0079】
方向情報は、第2小梁30の向きを示すものである。本実施形態の方向情報は、第1小梁遺伝子の方向情報と同様に、第2小梁30の長手方向の向きが定義される。本実施形態の方向情報がとり得る各数値は1又は2であり、詳細は次のとおりである。なお、方向情報は、乱数関数に従ってランダムに決定される。
1:X軸方向と平行
2:Y軸方向と平行
【0080】
配置情報は、第2小梁30の位置を特定するものである。
図15に示されるように、本実施形態の第2小梁30の位置は、一対の端部8t、8tのうち、水平架構面9又は小架構面13(
図16(a)、(b)に示す)の基準点15a、15bに最も近い端部(以下、単に「基準端部」ということがある)18に基づいて設定される。
【0081】
配置情報は、第2小梁30が配置される水平架構面9又は小架構面13(
図16(a)、(b)に示す)において、基準端部18が当接する辺35の長さL2と、基準点15a、15bと第2小梁30の基準端部18との距離L1との比(L1/L2)で定義される。従って、配置情報がとりうる数値は、0.00〜1.00である。なお、配置情報は、乱数関数に従って、ランダムに決定される。
【0082】
図15には、架構面遺伝子座34aの架構面情報が「1」、方向遺伝子座34bの方向情報が「2」、及び、配置遺伝子座34cの配置情報が「0.35」の場合が例示される。この場合、第2小梁30の基準端部18の位置は、基準端部18が当接する水平架構面9の辺35(X軸方向)の長さL2に対して、水平架構面9の基準点15aからの距離L1(X軸方向)が0.35近傍の節点17で定義される。
【0083】
図16(b)には、例えば、架構面遺伝子座34aの架構面情報が「2」、方向遺伝子座34bの方向情報が「1」、及び、配置遺伝子座34cの配置情報が「0.65」の場合が例示される。この場合、第2小梁30の基準端部18の位置は、基準端部18が当接する第2小架構面13bの辺35(Y軸方向)の長さL2に対して、第2小架構面13bの左下側の頂点である基準点15bからの距離L1(Y軸方向)が0.65近傍の節点17で定義される。
【0084】
このように、本実施形態の配置情報は、第2小梁30の基準端部18の固定位置を定義することができる。従って、第2小梁30の配置は、架構面情報、方向情報及び配置情報によって定義される。
【0085】
また、架構面遺伝子座34aの架構面情報が「0」の場合、当該第2小梁30が配置されないため、配置遺伝子座34cの配置情報には、例えば、他の位置情報と区別する記号(例えば、「*」等)が入力されてもよい。
【0086】
なお、本実施形態の配置情報は、第2小梁30が、開口部11(
図8(b)に示す)の内部を横切って配置されない値が設定されるまで、生成が繰り返されるのが望ましい。これにより、開口部11の内部を横切る第2小梁30が設定されるのを防ぐことができる。
【0087】
このような工程S33及び工程S34を経て、
図11に示される染色体情報26が生成される。次に、染色体情報26によって定義される小梁8の配置について、第1水平架構面9aを代表して説明する。
【0088】
本実施形態の染色体情報26では、各水平架構面9a〜9h(
図7に示す)において、第2情報部分28で定義される第2小梁30の配置に先立ち、第1情報部分27で定義される第1小梁29の配置から定義される。
【0089】
第1情報部分27では、上述したように、各水平架構面9a〜9h(
図7に示す)において、最も左に配置される第1小梁遺伝子座33から順番に、1本目の第1小梁29〜5本目の第1小梁29の配置が定義される。最も左側の第1小梁遺伝子座33Aは、区分遺伝子座33aの区分情報が「0.41」、及び、方向遺伝子座33bの方向情報が「2」である。
【0090】
図17は、1本目の第1小梁29の配置を説明する平面図である。最も左に配置される第1小梁遺伝子座33Aの区分情報「0.41」は、小梁配置リスト25において、第3開口小梁29cの区分情報(0.41以上かつ0.60以下)の範囲内にある。これにより、第3開口小梁29cの第1小梁配置情報36aが選択され、1本目の第1小梁29として、第3開口小梁29cが定義される。なお、第3開口小梁29cは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。
【0091】
また、第3開口小梁29cの両端29t、29tは、第3開口予定位置22cのY軸方向の延長線上に配置される大梁7、7に当接するように、第3開口予定位置22cからY軸方向にはみ出して配置される。これにより、第3開口小梁29cの配置が定義される。また、選択された第3開口小梁29cの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。再構築された小梁配置リスト25は、
図18に示される。
【0092】
次に、
図11に示されるように、左から2番目の第1小梁遺伝子座33Bで定義される2本目の第1小梁29が配置される。左から2番目の第1小梁遺伝子座33Bは、区分遺伝子座33aの区分情報が「0.28」、及び、方向遺伝子座33bの方向情報が「1」である。
【0093】
図18は、2本目の第1小梁29の配置を説明する平面図である。左から2番目の第1小梁遺伝子座33Bの区分情報「0.28」は、小梁配置リスト25において、第2開口小梁29bの区分情報(0.26以上かつ0.50以下)の範囲内にある。これにより、第2開口小梁29bの第1小梁配置情報36aが選択され、2本目の第1小梁29として、第2開口小梁29bが定義される。なお、第2開口小梁29bは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。
【0094】
また、第2開口小梁29bの両端29t、29tは、第2開口予定位置22bのX軸方向の延長線上に配置される第3開口小梁29c及び大梁7に当接するように、第2開口予定位置22bからX軸方向にはみ出して配置される。これにより、第2開口小梁29bの配置が定義される。また、選択された第2開口小梁29bの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。再構築された小梁配置リスト25は、
図19に示される。
【0095】
次に、
図11に示されるように、左から3番目の第1小梁遺伝子座33Cで定義される3本目の第1小梁29が配置される。左から3番目の第1小梁遺伝子座33Cは、区分遺伝子座33aの区分情報が「0.55」、及び、方向遺伝子座33bの方向情報が「2」である。
【0096】
図19は、3本目の第1小梁29の配置を説明する平面図である。左から3番目の第1小梁遺伝子座33Cの区分情報「0.55」は、小梁配置リスト25において、第4開口小梁29dの区分情報(0.34以上かつ0.66以下)の範囲内にある。これにより、第4開口小梁29dの第1小梁配置情報36aが選択され、3本目の第1小梁29として、第4開口小梁29dが定義される。なお、第4開口小梁29dは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。
【0097】
また、第4開口小梁29dの両端29t、29tは、第4開口予定位置22dのY軸方向の延長線上に配置される第2開口小梁29b及び大梁7に当接するように、第4開口予定位置22dからY軸方向にはみ出して配置される。これにより、第4開口小梁29dの配置が定義される。また、選択された第4開口小梁29dの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。再構築された小梁配置リスト25は、
図20に示される。
【0098】
次に、
図11に示されるように、左から4番目の第1小梁遺伝子座33Dで定義される4本目の第1小梁29が配置される。左から4番目の第1小梁遺伝子座33Dは、区分遺伝子座33aの区分情報が「0.30」、及び、方向遺伝子座33bの方向情報が「1
」である。
【0099】
図20は、4本目の第1小梁29の配置を説明する平面図である。左から4番目の第1小梁遺伝子座33Dの区分情報「0.30」は、小梁配置リスト25において、第1開口小梁29aの区分情報(0.00以上かつ0.50以下)の範囲内にある。これにより、第1開口小梁29aの第1小梁配置情報36aが選択され、4本目の第1小梁29として、第1開口小梁29aが定義される。なお、第1開口小梁29aは、その向きが一意に定められるため、方向遺伝子座33bの方向情報については無視される。
【0100】
また、第1開口小梁29aの両端は、第1開口予定位置22aのX軸方向の両端に配置される第3開口小梁29c及び第4開口小梁29dに当接する。これにより、第1開口小梁29aの配置が定義される。また、選択された第1開口小梁29aの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。再構築された小梁配置リスト25は、
図21に示される。
【0101】
次に、
図11に示されるように、左から5番目の第1小梁遺伝子座33Eで定義される5本目の第1小梁29が配置される。左から5番目の第1小梁遺伝子座33Eは、区分遺伝子座33aの区分情報が「0.75」、及び、方向遺伝子座33bの方向情報が「1」である。
【0102】
図21は、5本目の第1小梁29の配置を説明する平面図である。左から5番目の第1小梁遺伝子座33Eの区分情報「0.75」は、小梁配置リスト25において、第1小屋束小梁29eの区分情報(0.00以上かつ1.00以下)の範囲内にある。これにより、第1小屋束小梁29eの第1小梁配置情報36aが選択され、5本目の第1小梁29として、第1小屋束小梁29eが定義される。また、方向遺伝子座33bの方向情報が「1」であるため、第1小屋束小梁29eは、その長手方向がX軸と平行に配置される。
【0103】
また、第1小屋束小梁29eの両端29t、29tは、第1小屋束予定位置23aのX軸方向の延長線上に配置される第3開口小梁29c及び大梁7に当接する。これにより、第1小屋束小梁29eの配置が定義される。選択された第1小屋束小梁29eの第1小梁配置情報36aは、小梁配置リスト25から削除される。これにより、小梁配置リスト25は、第1小梁29を定義した第1小梁配置情報36aの個数が0となる。従って、第1水平架構面9aでは、全ての第1小梁29の配置が定義される。
【0104】
次に、
図11に示されるように、第2情報部分28で定義される第2小梁30の配置が定義される。第2情報部分28では、上述したように、各水平架構面9a〜9h(
図7に示す)において、最も左に配置される第2小梁遺伝子座34Aから順番に、1本目の第2小梁30、及び、2本目の第2小梁30の配置が定義される。
【0105】
図22は、1本目の第2小梁30の配置を説明する平面図である。最も左に配置される第2小梁遺伝子座33Bは、架構面遺伝子座34aの架構面情報が「6」、及び、方向遺伝子座34bの方向情報が「1」である。このため、1本目の第2小梁30は、第6小架構面13fにおいて、その長手方向がX軸と平行に配置される。
【0106】
また、配置遺伝子座34cの配置情報は、「0.6」である。このため、1本目の第2小梁30の基準端部18の位置は、基準端部18が当接する第6小架構面13fの辺35(Y軸方向)の長さL2に対して、第6小架構面13fの基準点15bからの距離L1(Y軸方向)が0.6の位置に配される節点17で定義される。また、1本目の第2小梁30の他端30tは、基準端部18のX軸方向の延長線上に配置される第3開口小梁29cに当接する。これにより、1本目の第2小梁30の配置が定義される。
【0107】
次に、
図11に示されるように、左から2番目の第2小梁遺伝子座34Bで定義される2本目の第2小梁30が配置される。
図23は、2本目の第2小梁30の配置を説明する平面図である。左から2番目の第2小梁遺伝子座34Bは、架構面遺伝子座34aの架構面情報が「2」、及び、方向遺伝子座34bの方向情報が「1」である。このため、2本目の第2小梁30は、第2小架構面13bにおいて、その長手方向がX軸と平行に配置される。
【0108】
また、配置遺伝子座34cの配置情報は、「0.7」である。このため、2本目の第2小梁30の基準端部18の位置は、基準端部18が当接する第2小架構面13bの辺35(Y軸方向)の長さL2に対して、第2小架構面13bの基準点15bからの距離L1(Y軸方向)が0.7近傍の位置に配される節点17で定義される。また、2本目の第2小梁30の他端30tは、基準端部18のX軸方向の延長線上に配置される第4開口小梁29dに当接する。これにより、2本目の第2小梁30の配置が定義される。
【0109】
このように、
図11に示した第1水平架構面9aの第1情報部分27及び第2情報部分28は、第1水平架構面9aの小梁8の配置(
図8(b)に示す)を定義することができる。なお、このようなデコード処理は、次の最適化計算工程S4の計算工程S41において実施される。
【0110】
工程S33及び工程S34では、第1水平架構面9aと同様に、各水平架構面9b〜9hにおいて、第1情報部分27及び第2情報部分28が設定される。これにより、各染色体情報26は、各水平架構面9a〜9hにおいて、小梁8がそれぞれ配置された一つの架構体2(設計サンプル)を特定することができる。集団生成工程S3では、このような染色体情報26が複数種類形成される。これにより、複数種類の染色体情報26からなる集団31が生成される。
【0111】
また、本実施形態の工程S33及び工程S34では、第1情報部分27及び第2情報部分28において、区分情報、架構面情報、方向情報、及び、配置情報が、コンピュータ1によってランダムに設定される。このため、集団生成工程S3では、様々なバリエーションの染色体情報26を容易に設定することができる。このような染色体情報26からなる集団31は、数値データとして、コンピュータ1に記憶される。
【0112】
なお、本実施形態では、第1小梁29又は第2小梁30が重複しない場合が例示されたが、例えば、第1小梁29又は第2小梁30が重複する場合、後に配置される第1小梁29又は第2小梁30の配置が無視される。これにより、第1小梁29又は第2小梁30が重複する配置が排除される。
【0113】
さらに、本実施形態の集団生成工程S3では、小梁配置リスト25から選択された第1小梁配置情報36aに基づいて、第1小梁29が必ず含まれるように染色体情報26が生成される。これにより、本発明の設計方法では、配置予定位置21に小梁8が配置されていない望ましくない配置パターンを定義した染色体情報26を防ぐことができる。このような望ましくない配置パターンは、小梁8の配置の最適解から除外されるものである。従って、本発明の設計方法では、次の最適化計算工程S4において、計算効率の低下を防ぐことができ、小梁8の配置の最適解を、短時間で求めることができる。
【0114】
次に、コンピュータ1が、集団31を用いて、小梁8(
図8(b)に示す)の配置の最適解を、遺伝的アルゴリズム(GA)に基づいて計算する(最適化計算工程S4)。
【0115】
遺伝的アルゴリズムは、生物が環境に適応して進化していく過程を、工学的に模倣した学習的アルゴリズムである。この遺伝的アルゴリズムでは、遺伝子で表現した複数の染色体情報に対して、交叉、又は突然変異等の遺伝子操作を繰り返す。これにより、遺伝的アルゴリズムでは、少ないサンプルから、染色体情報を時系列的に進化させて、最適解を短時間で得ることができる。
図24は、本実施形態の最適化計算工程S4の処理手順の一例を示すフローチャートである。
【0116】
本実施形態の最適化計算工程S4では、先ず、集団31の各染色体情報26に基づいて、架構体2の第1目標変数及び第2目標変数が計算される(計算工程S41)。
【0117】
図25は、第1目標変数及び第2目標変数の計算結果を示す線図である。本実施形態の第1目標変数は、架構体2の概算のコストである。このコストは、例えば、染色体情報26に設定される小梁8(
図4に示す)の重量に、該小梁8の単位重量当たりの単価を乗じて合算する方法や、小梁8毎に、データベース化された部材価格に基づいて合算する方法等により計算される。
【0118】
また、第1目標変数は、数値が小さいほど良好である。さらに、第1目標変数の許容範囲は、例えば、目標コストの1.10倍以下である。目標コストは、例えば、建築物Bの予算等に基づいて、適宜設定される。このような第1目標変数は、染色体情報26毎に計算され、コンピュータ1に記憶される。
【0119】
第2目標変数は、染色体情報で定義される架構体2の設計制約条件への適応度である。この適応度は、例えば、架構体2の強度等の設計制約条件への違反数や、違反度合いに基づいて計算される。なお、第2目標変数と、第1目標変数とは、互いに独立した変数である。
【0120】
架構体の強度は、例えば、建築基準法で指定されている保有水平耐力計算(所謂ルート3計算)等によって求められる。この第2目標変数は、数値が高い程良好であり、1.0以上であれば、架構体2に求められる条件を満足する。このような第2目標変数は、染色体情報26(
図11に示す)毎に計算され、コンピュータ1に記憶される。なお、適応度が1.0未満である場合は、架構体2のコストである第1目標変数に、ペナルティとして数値を加算しても良い。
【0121】
次に、コンピュータ1が、第1目標変数及び第2目標変数をともに満足する少なくとも一つの染色体情報26(以下、単に「最適解」ということがある)が存在するか否かを判断する(判断工程S42)。本実施形態の判断工程S42では、集団31を構成する全ての染色体情報26のうち、最適解が存在すると判断された場合、次の製造工程S5が実行される。
【0122】
一方、最適解が存在しないと判断された場合は、コンピュータ1が、少なくとも一部の染色体情報26に対して、交叉及び突然変異等の遺伝子操作を行い、染色体情報26を再構成する(遺伝子操作工程S43)。そして、再構成した染色体情報26に基づいて、計算工程S41及び判断工程S42が再度実行される。これにより、最適化計算工程S4では、最適解を確実に得ることができる。
【0123】
本実施形態の判断工程S42では、最適解が存在するか否かのみが判断されたが、これに限定されるわけではない。例えば、判断工程S42では、上記の条件に加え、第1目標変数で表される架構体2のコストが最も低い染色体情報26が、複数回(例えば、5〜15回)更新されない場合にのみ、次の製造工程S5が実行されるものでもよい。
【0124】
図26は、本実施形態の遺伝子操作工程S43の処理手順の一例を示すフローチャートである。本実施形態の遺伝子操作工程S43では、先ず、
図25に示されるように、コンピュータ1が、集団31に属する複数の染色体情報26を、第1目標変数で表される架構体2のコストが低い順に順位付けする(工程S431)。
【0125】
次に、コンピュータ1が、各染色体情報26を、エリート群41と、非エリート群42とに分類する(工程S432)。エリート群41は、集団31に属する全ての染色体情報26のうち、最適化度が相対的に高い染色体情報26から構成される。一方、非エリート群42は、エリート群41の染色体情報26よりも最適化度が低い染色体情報26から構成される。エリート群41の割合は、適宜設定することができるが、例えば、集団31(
図10に示す)を構成する全ての染色体情報26の5〜20%程度のものと定めてもよい。
【0126】
次に、コンピュータ1が、次の計算工程S41で用いる染色体情報26の新たな集団31を生成する(次世代集団生成工程S433)。
図27は、本実施形態の次世代集団生成工程S433の処理手順の一例を示すフローチャートである。
【0127】
次世代集団生成工程S433では、先ず、コンピュータ1が、エリート群41の染色体情報26を、交叉又は突然変異させることなく、新たな集団31に含める(工程S71)。これにより、計算工程S41では、エリート群41の染色体情報26が含まれるため、最適解から遠ざかるのを防ぐことができる。このエリート群41の染色体情報26は、新たな集団31を構成する染色体情報26として、コンピュータ1に記憶される。
【0128】
次に、コンピュータ1が、
図10に示した集団31を構成する一部の染色体情報26を対象に交叉を実施する(交叉工程S72)。
図28(a)は、交叉前の染色体情報を示す概念図、
図28(b)は交叉後の染色体情報を示す概念図である。
【0129】
本実施形態の交叉工程S72では、例えば、一対の染色体情報26a、26b間において、二つの交叉点43、43で挟まれた第1小梁遺伝子座33又は第2小梁遺伝子座34(図示省略)に格納されている第1小梁遺伝子又は第2小梁遺伝子が入れ替えられる。このような交叉は、一対の染色体情報26a、26b間において、同一の小梁8(例えば、第2小梁30)を定義する第1小梁遺伝子又は第2小梁遺伝子同士を入れ替えることができる。従って、交叉は、第1小梁遺伝子及び第2小梁遺伝子を改めて設定することなく、染色体情報26を容易に再構成することができる。この再構成された染色体情報26は、新たな集団31を構成する染色体情報26として、コンピュータ1に記憶される。なお、交叉点43、43は、コンピュータ1によってランダムに設定されるのが望ましい。
【0130】
本実施形態において、交叉は、二つの交叉点43、43で挟まれた第1小梁遺伝子又は第2小梁遺伝子を入れ換える二点交叉である場合が例示されたが、これに限定されるわけではない。交叉としては、例えば、一点交叉、多点交叉、又は、一様交叉などでもよく、これらを組み合わせて実施されるものでもよい。
【0131】
次に、コンピュータ1が、
図10に示した集団31を構成する一部の染色体情報26を対象に突然変異を実施する(突然変異工程S73)。本実施形態の工程S73では、第1小梁遺伝子座33の第1小梁遺伝子、又は、第2小梁遺伝子座34の第2小梁遺伝子を対象に突然変異が実施される。
【0132】
図29(a)は、第1小梁遺伝子の突然変異を説明する概念図である。本実施形態の第1小梁遺伝子の突然変異では、先ず、各染色体情報26において、第1小梁遺伝子座33の区分遺伝子座33a、又は、方向遺伝子座33bがランダムに選択される。次に、選択された区分遺伝子座33aに格納された区分情報、又は、方向遺伝子座33bに格納された方向情報が、それらが取りうる全ての数値からランダムに選択された数値に置換される。なお、区分遺伝子座33aの区分情報が置換されても、第1小梁29の配置は、上述したように、小梁配置リスト25(
図9に示す)から選択された第1小梁配置情報36aに基づいて定義されるため、第1小梁29が配置されていない望ましくない配置パターンが生成されることはない。
【0133】
図29(b)は、第2小梁遺伝子の突然変異を説明する概念図である。本実施形態の第2小梁遺伝子の突然変異では、第1小梁遺伝子の突然変異と同様に、先ず、第2小梁遺伝子座34の架構面遺伝子座34a、方向遺伝子座34b、又は、配置遺伝子座34cがランダムに選択される。次に、選択された架構面遺伝子座34a、方向遺伝子座34b、又は、配置遺伝子座34cに格納された架構面情報、方向情報、又は、配置情報が、それらが取りうる全ての数値からランダムに選択された数値に置換される。
【0134】
このような突然変異は、交叉とは異なり、集団31を構成する各染色体情報26に定義されている区分情報、架構面情報、方向情報、又は、配置情報に限定されることなく、新たな区分情報、架構面情報、方向情報、又は、配置情報を用いて、染色体情報26を再構成することができる。従って、突然変異は、局所的な最適解に陥ることを防ぎうる。この再構成された染色体情報26は、新たな集団31を構成する染色体情報26として、コンピュータ1に記憶される。
【0135】
このように、本実施形態の最適化計算工程S4では、
図25に示されるように、第1目標変数及び第2目標変数の最適化度が高いエリート群41の染色体情報26を残しつつ、染色体情報26を再構成し、新たな進化を試みることができる。これにより、本発明の設計方法では、少ないサンプルで、小梁8(
図8(b)に示す)の配置を進化させることができる。従って、本発明の設計方法は、最適解を短時間で求めることができる。
【0136】
突然変異させる染色体情報26の割合は、適宜設定することができるが、例えば、集団31を構成する全ての染色体情報26の10〜40%程度のものと定めてもよい。突然変異させる染色体情報26の割合が10%未満の場合、遺伝子情報を十分に進化させることができないおそれがある。逆に、突然変異される染色体情報26の割合が、40%を超える場合、設計制約条件に違反する遺伝子情報が大幅に増加し、最適解を短時間で求めることができないおそれがある。
【0137】
また、第1目標変数で表される架構体2のコストが許容範囲に収まり、かつ、第2目標変数で表される適応度を満足する染色体情報26が現れてからは、概ね最適解近傍を探索できていると判断することができる。このため、次世代集団生成工程S433では、比較的良好な染色体情報26同士の交叉による進化を優先させるのが望ましい。これにより、最適化計算工程S4では、最適解を短時間で求めることができる。この場合、突然変異の割合は、集団31を構成する全ての染色体情報26の5〜10%程度に設定されてもよい。
【0138】
また、集団31に属する染色体情報26の個数は、15〜50個が望ましい。なお、染色体情報26の個数が15個未満であると、遺伝子情報を十分に進化させることができないおそれがある。逆に、染色体情報26の個数が50個を超えると、多くの計算時間を要するおそれがある。
【0139】
さらに、集団31に属する染色体情報26の個数は、例えば、建築物Bの階数及び延べ床面積によっても決定されるのが望ましい。例えば、本実施形態のような二階建ての建築物Bの場合には、下記の延べ床面積毎に設定された個数に従って、染色体情報26が設定されるのが望ましい。また、三階建ての建築物(図示省略)の場合には、下記の個数に5個プラスした個数分の染色体情報26が設定されるのが望ましい。さらに、一階建ての建築物(図示省略)の場合には、下記個数に5個マイナスした個数分の染色体情報26が設定されるのが望ましい。
100m
2未満:20個
100〜120m
2:25個
120〜140m
2:30個
140〜160m
2:35個
160〜180m
2:40個
180〜200m
2:45個
200m
2以上:50個
【0140】
次に、最終世代の集団31において、最適化度が最も高い染色体情報26に基づいて、
図2に示した架構体2及び建築物Bが製造される(製造工程S5)。これにより、本実施形態の設計方法では、架構体2のコストを所定の範囲に抑えつつ、配置予定位置21に小梁8が通る適応度が最も高い架構体2及び建築物Bを、容易かつ確実に製造することができる。
【0141】
なお、最適化度が最も高い染色体情報26とは、例えば、第2目標変数が1以上である全ての染色体情報26のうち、第1目標変数が、最も低い第1目標変数の1.10倍以下であり、かつ、第2目標変数の計算に用いられる架構体2の適応度が最も高い染色体情報26と定めることができる。
【0142】
本実施形態の第1小梁遺伝子は、区分情報及び方向情報からなるものが例示されたが、これに限定されるわけではない。例えば、第1小梁遺伝子には、第1小梁29(
図8(b)に示す)が水平架構面9に配置される順番を示す順番情報が含まれてもよい。さらに、第2小梁遺伝子にも、第2小梁30(
図8(b)に示す)が水平架構面9に配置される順番を示す順番情報が含まれてもよい。これにより、第1小梁遺伝子座33及び第2小梁遺伝子座34には、順番情報を格納可能な順番遺伝子座33c、34dが設定される。
図30は、他の実施形態の染色体情報26を示す概念図である。
【0143】
各順番遺伝子座33c、34dに格納される順番情報は、各水平架構面9a〜9hにおいて、第1情報部分27で定義される第1小梁29、及び、第2情報部分28で定義される第2小梁30(
図8(b)に示す)を含めた順番が定義される。本実施形態では、設計制約条件で定義された小梁8の本数の上限値が「7」であるため、順番情報は、1〜7の整数で定義される。なお、順番情報の数値が小さい順から、第1小梁29又は第2小梁30が配置される。
【0144】
集団生成工程S3の第1小梁遺伝子を格納する工程S33では、第1情報部分27の順番遺伝子座33cに、乱数関数に従ってランダムに決定された順番(順番情報)が格納されるのが望ましい。また、第2小梁遺伝子を格納する工程S34では、第1情報部分27で使用されている第1小梁29の順番を除いて割り当てられるのが望ましい。これにより、第1小梁29の順番と、第2小梁30の順番とが重複するのを防ぐことができる。なお、第2小梁30の順番情報は、第2小梁30が複数存在する場合、乱数関数に従ってランダムに決定されるのが望ましい。
【0145】
このような順番情報は、第1小梁29及び第2小梁30が配置される順番を入れ替えて配置することができるため、より多くのバリエーションの染色体情報26を設定することができる。
【0146】
また、次世代集団生成工程S433の突然変異工程S73では、例えば、巡回セールスマン問題( Traveling Salesman Problem : TSP )等において代表的に適用される Grefenstette らによる手法に基づいて、突然変異が実施されるのが望ましい。これにより、重複や欠落等の整合性がない順番情報が格納されるのを防ぎつつ、第1小梁遺伝子座33及び第2小梁遺伝子座34間で、順番情報をランダムに設定することができる。なお、 Grefenstette らによる手法の具体的な手順については、例えば、文献( システム制御情報学会編、「遺伝アルゴリズムと最適化」、第4刷、株式会社朝倉書店、2004年、P37−P39)の記載に基づいて実施することができる。
【0147】
また、本実施形態の小梁配置リスト25は、第1小梁29を配置するための第1小梁配置情報36aのみを含むものが例示されたが、これに限定されるわけではない。例えば、小梁配置リスト25には、第1小梁配置情報36aに加えて、第2小梁30を配置するための第2小梁配置情報36bが含まれてもよい。なお、この実施形態では、
図31(a)に示される小梁8を省いた第1水平架構面9aの平面図、及び、
図31(b)に示される小梁8が配置された第1水平架構面9aの平面図に基づいて説明する。
【0148】
この実施形態の第1水平架構面9aでは、前実施形態とは異なり、小屋束予定位置23として、第2小屋束予定位置23bが新たに含まれる。これにより、この実施形態の第1水平架構面9aには、第1小梁29は、第1開口小梁29a、第2開口小梁29b、第3開口小梁29c、第4開口小梁29d、第1小屋束小梁29e、及び、第2小屋束予定位置23bを通る第2小屋束小梁29fが含まれる。また、第1水平架構面9aには、2本の第2小梁30が含まれる。また、この実施形態の設計制約条件として、小梁8の本数の上限値に「8」が設定されている。
図32は、この実施形態の第1水平架構面9aの小梁配置リスト25の概念図である。
【0149】
小梁配置リスト25は、例えば、第1水平架構面9aにおいて、
図31(b)に示した第1開口小梁29a、第2開口小梁29b、第3開口小梁29c、第4開口小梁29d、第1小屋束小梁29e及び第2小屋束小梁29f(図示省略)を定義する6つの第1小梁配置情報36a、並びに、2本の第2小梁30、30を定義する2つの第2小梁配置情報36bが含まれる。また、第1小梁配置情報36a及び第2小梁配置情報36bは、前実施形態の第1小梁配置情報36aと同様に、区分情報と、位置情報とが含まれる。
【0150】
区分情報は、第1水平架構面9aにおいて、0.000〜1.000の数値範囲を、各第1小梁29a〜29f、及び、第2小梁30、30毎に等分(8等分)した数値範囲からなる。この実施形態の区分情報は、次のとおりである。
第1開口小梁29aの区分情報:0.000以上かつ0.125以下
第2開口小梁29bの区分情報:0.126以上かつ0.250以下
第3開口小梁29cの区分情報:0.251以上かつ0.375以下
第4開口小梁29dの区分情報:0.376以上かつ0.500以下
第1小屋束小梁29eの区分情報:0.501以上かつ0.625以下
第2小屋束小梁29fの区分情報:0.626以上かつ0.750以下
第2小梁の区分情報:0.751以上かつ0.875以下
第2小梁の区分情報:0.876以上かつ1.000以下
【0151】
位置情報は、各第1小梁29の配置予定位置21(
図31(a)に示す)に基づいて定義される。第1水平架構面9aにおいて、第1開口小梁29a〜第4開口小梁29dの位置情報としては、前実施形態と同様に、第1開口予定位置22a〜第4開口予定位置22dの両端の節点17、17(
図31(a)に示す)の座標値が設定される。また、第1小屋束小梁29e及び第2小屋束小梁29fの位置情報としては、前実施形態と同様に、各第1小屋束予定位置23a及び第2小屋束予定位置23bの一つの節点17の座標値が設定される。このような位置情報により、各小梁29a〜29fが配置される位置が指定される。なお、第2小梁30については、配置予定位置21とは無関係に定義されるため、位置情報は設定されない。従って、第2小梁配置情報36bの位置情報は、例えば、第1小梁配置情報36aの位置情報と区別する記号(例えば、「*」等)が設定される。本実施形態の位置情報は、次のとおりである。
A:第1開口予定位置の両端の節点の座標値
B:第2開口予定位置の両端の節点の座標値
C:第3開口予定位置の両端の節点の座標値
D:第4開口予定位置の両端の節点の座標値
E:第1小屋束予定位置の節点の座標値
F:第2小屋束予定位置の節点の座標値
【0152】
また、この実施形態では、第2小梁30が配置される水平架構面9又は小架構面13を特定するための架構面情報を含む架構面リストが入力される。
図33は、この実施形態の第1水平架構面9aの架構面リスト38の概念図である。
【0153】
架構面情報39は、水平架構面9又は小架構面13を区別する区分情報と、水平架構面9又は小架構面13の位置が特定される位置情報とが含まれる。
【0154】
区分情報は、各水平架構面9a〜9h(
図7に示す)において、水平架構面9又は小架構面13に割り当てられた数値範囲が設定される。さらに、区分情報には、第2小梁30が配置されない(以下、単に「無配置」ということがある。)ことを示す区分情報が含まれる。
【0155】
図31(b)に示した第1水平架構面9aには、第1小架構面13a〜第8小架構面13hが形成されている。このため、区分情報は、0.000〜1.000の数値範囲を、9等分(第1小架構面13a〜第8小架構面13h、及び、無配置)した数値範囲から設定される。本実施形態の区分情報は、例えば、次のとおりである。
無配置の区分情報:0.000以上かつ0.111以下
第1小架構面(又は、水平架構面)の区分情報:0.112以上かつ0.222以下
第2小架構面の区分情報:0.223以上かつ0.333以下
第3小架構面の区分情報:0.334以上かつ0.444以下
第4小架構面の区分情報:0.445以上かつ0.555以下
第5小架構面の区分情報:0.556以上かつ0.666以下
第6小架構面の区分情報:0.667以上かつ0.777以下
第7小架構面の区分情報:0.778以上かつ0.888以下
第8小架構面の区分情報:0.889以上かつ1.000以下
【0156】
位置情報は、例えば、水平架構面9又は小架構面13を示す座標値(例えば、四方に配置される4つの節点17の座標値)が設定される。なお、無配置の位置情報は、例えば、他の位置情報と区別する記号(例えば、「*」等)が設定される。本実施形態の位置情報は、次のとおりである。
A:第1小架構面(又は、水平架構面)の座標値
B:第2小架構面の座標値
C:第3小架構面の座標値
D:第4小架構面の座標値
E:第5小架構面の座標値
F:第6小架構面の座標値
G:第7小架構面の座標値
H:第8小架構面の座標値
【0157】
なお、水平架構面9に小梁8が配置される前は、小架構面13が形成されていない。このため、水平架構面9に小梁8の配置が計算される前段階では、「無配置」及び「水平架構面」のみの架構面情報39からなる架構面リスト38(
図36に示す)が用いられる。この架構面リスト38は、小梁8の配置が計算される毎に、逐次更新される。
【0158】
図34は、この実施形態の集団生成工程S3の処理手順の一例を示すフローチャートである。この実施形態の集団生成工程S3では、前実施形態と同様に、小梁8(
図31(b)に示す)が定義された後に(工程S31)、染色体情報26が定義される(工程S32)。
図35は、染色体情報26の第1水平架構面9aの小梁遺伝子の一例を示す概念図である。
【0159】
この実施形態の染色体情報26は、第1小梁29の配置及び第2小梁30の配置が定義される小梁遺伝子が設定される。この染色体情報26には、小梁遺伝子が格納可能な小梁遺伝子座45が定義されている。小梁遺伝子座45は、各水平架構面9a〜9hにおいて、第1小梁29及び第2小梁30(
図31(b)に示す)毎に割り当てられる。また、染色体情報26は、設計制約条件の小梁8の本数の上限値「8」に基づいて、各水平架構面9a〜9hに、8個の小梁遺伝子座45(45A〜45H)が定義される。この実施形態では、小梁遺伝子座45に格納される小梁遺伝子に基づいて、図において最も左に配置される小梁遺伝子座45から順番に、第1小梁29及び第2小梁30の配置が定義される。
【0160】
本実施形態の小梁遺伝子は、小梁配置リスト25(
図32に示す)の第1小梁配置情報36a及び第2小梁配置情報36bを特定するための区分情報、架構面リスト38(
図33に示す)の架構面情報39を特定するための架構面区分情報、小梁8(
図31(b)に示す)の向きを示す方向情報、及び、第2小梁30の位置を特定する配置情報が含まれる。従って、各小梁遺伝子座45は、区分情報を格納可能な区分遺伝子座45aと、架構面情報39を格納可能な架構面遺伝子座45bと、方向情報を格納可能な方向遺伝子座45cと、配置情報が格納可能な配置遺伝子座45dとが設定される。このような染色体情報26は、コンピュータ1に記憶される。
【0161】
次に、コンピュータ1が、染色体情報26の小梁遺伝子座45に、小梁遺伝子を格納する(工程S33)。この工程S33では、区分情報、架構面区分情報、方向情報、及び、配置情報が、区分遺伝子座45a、架構面遺伝子座45b、方向遺伝子座45c及び配置遺伝子座45dに格納される。
【0162】
区分情報は、小梁配置リスト25(
図32に示す)の区分情報から、第1小梁配置情報36a又は第2小梁配置情報36bを特定するためのものである。本実施形態の区分情報は、小梁配置リスト25の区分情報が取りうる「0.000〜1.000」の数値範囲から、乱数関数に従ってランダムに決定される。
【0163】
架構面区分情報は、架構面リスト38(
図33に示す)の区分情報から、各架構面情報39を特定するためのものである。本実施形態の架構面区分情報は、架構面リスト38の区分情報が取りうる「0.000〜1.000」の数値範囲から、乱数関数に従ってランダムに決定される。
【0164】
方向情報は、上述のとおり、第1小梁29及び第2小梁30の向きを示すものである。本実施形態の方向情報は、第1小梁29及び第2小梁30の長手方向の向きが定義される。また、本実施形態の方向情報がとり得る各数値は1又は2であり、詳細は次のとおりである。
1:X軸方向と平行
2:Y軸方向と平行
【0165】
方向情報は、乱数関数に従ってランダムに決定される。このような方向情報により、第1小屋束小梁29e、第2小屋束小梁29f、及び第2小梁30の向きが決定される。一方、第1開口小梁29a〜第4開口小梁29dの向きついては、前実施形態と同様に、区分遺伝子座33aの区分情報(小梁配置リスト25に格納されている位置情報)に基づいて一意に定められる。このため、第1開口小梁29a〜第4開口小梁29dの方向情報は、実質的に意味をなさない。
【0166】
配置情報は、第2小梁30の位置を特定するものである。本実施形態の第2小梁30の位置は、前実施形態と同様に、基準端部18に基づいて設定される。従って、配置情報は、前実施形態と同様に、0.00〜1.00の数値範囲から、乱数関数に従って、ランダムに決定される。なお、第1開口小梁29a〜第4開口小梁29d、第1小屋束小梁29e、及び、第2小屋束小梁29fの位置については、区分遺伝子座33aの区分情報(小梁配置リスト25に格納されている位置情報)に基づいて一意に定められる。このため、第1開口小梁29a〜第4開口小梁29d、第1小屋束小梁29e、及び、第2小屋束小梁29fの配置情報は、実質的に意味をなさない。
【0167】
このような工程S33を経て、
図35に示される染色体情報26が生成される。次に、染色体情報26によって定義される小梁8の配置について、第1水平架構面9aを代表して説明する。
【0168】
本実施形態の染色体情報26では、上述したように、最も左に配置される小梁遺伝子座45から順番に、第1小梁29及び第2小梁30の配置が定義される。最も左側の小梁遺伝子座45Aは、区分遺伝子座45aの区分情報が「0.41」、架構面遺伝子座45bの架構面区分情報が「0.81」、方向遺伝子座45cの方向情報が「1」、及び、配置遺伝子座45dの配置情報が「0.50」である。
【0169】
図36は、この実施形態の1本目の小梁の配置を説明する平面図である。最も左に配置される小梁遺伝子座45Aの区分情報「0.41」は、小梁配置リスト25において、第4開口小梁29dの区分情報(0.376以上かつ0.500以下)の範囲内にある。これにより、1本目の小梁8として、第4開口小梁29dが配置される。また、第4開口小梁29dの両端29t、29tは、第4開口予定位置22dのY軸方向の延長線上に配置される大梁7、7に当接するように、第4開口予定位置22dからY軸方向にはみ出して配置される。これにより、第4開口小梁29dの配置が定義される。
【0170】
なお、第4開口小梁29dは、配置される架構面、向き、及び、基準端部が一意に定められるため、架構面遺伝子座45bに格納される架構面区分情報、方向遺伝子座45cに格納される方向情報、及び、配置遺伝子座45dに格納される配置情報が無視される。
【0171】
また、選択された第4開口小梁29dの第1小梁配置情報36aは、小梁配置リスト25から削除される。なお、第4開口小梁29dは、第2小屋束予定位置23bに配置されているため、第2小屋束小梁29fを第1水平架構面9aに配置することができない。このため、第2小屋束小梁29fの第1小梁配置情報36aも、小梁配置リスト25から削除される。そして、小梁配置リスト25が再構築される。
【0172】
さらに、第1水平架構面9aは、第4開口小梁29dが配置されることにより、第1小架構面13a及び第2小架構面13b(
図37に示す)に区分される。このため、架構面リスト38は、第2小架構面13bの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図37に示される。
【0173】
次に、
図35に示されるように、左から2番目の小梁遺伝子座45Bで定義される2本目の小梁8が配置される。左から2番目の小梁遺伝子座45Bは、区分遺伝子座45aの区分情報が「0.85」、架構面遺伝子座45bの架構面区分情報が「0.61」、方向遺伝子座45cの方向情報が「1」、及び、配置遺伝子座45dの配置情報が「0.35」である。
【0174】
図37は、この実施形態の2本目の小梁の配置を説明する平面図である。左から2番目の小梁遺伝子座45Bにおいて、区分情報「0.85」は、小梁配置リスト25において、第2小梁30の区分情報(0.833以上かつ1.000以下)の範囲内にある。これにより、2本目の小梁8として、第2小梁30が配置される。また、架構面区分情報「0.61」は、架構面リスト38において、第1小架構面(0.334〜0.666)である。これにより、第2小梁30は、第1小架構面13aに配置される。
【0175】
また、左から2番目の小梁遺伝子座45Bにおいて、方向情報が「1」であるため、第2小梁30の長手方向が、X軸方向に平行に配置される。さらに、配置情報は、「0.35」である。このため、第2小梁30の基準端部18の位置は、基準端部18が当接する第1小架構面13aの辺35(Y軸方向)の長さL2に対して、第1小架構面13aの基準点15bからの距離L1(Y軸方向)が0.35近傍に配される節点17で定義される。また、第2小梁30の他端30tは、基準端部18のX軸方向の延長線上に配置される第4開口小梁29dに当接する。これにより、第2小梁30の配置が定義される。
【0176】
また、選択された第2小梁30の第2小梁配置情報36bは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。さらに、第1水平架構面9aは、第2小梁30が配置されることにより、第3小架構面13c(
図38に示す)が新たに区分される。このため、架構面リスト38は、第3小架構面13cの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図38に示される。
【0177】
次に、
図35に示されるように、左から3番目の小梁遺伝子座45Cで定義される3本目の小梁8が配置される。左から3番目の小梁遺伝子座45Cは、区分遺伝子座45aの区分情報が「0.75」、架構面遺伝子座45bの架構面区分情報が「0.13」、方向遺伝子座45cの方向情報が「2」、及び、配置遺伝子座45dの配置情報が「0.87」である。
【0178】
図38は、この実施形態の3本目の小梁の配置を説明する平面図である。左から3番目の小梁遺伝子座45Cの区分情報「0.75」は、小梁配置リスト25において、第1小屋束小梁29eの区分情報(0.601以上かつ0.800以下)の範囲内である。これにより、3本目の小梁8として、第1小屋束小梁29eが配置される。また、方向情報が「2」であるため、第1小屋束小梁29eの長手方向が、Y軸方向に平行に配置される。また、第1小屋束小梁29eの両端29t、29tは、第2小屋束予定位置23bのY軸方向の延長線上に配置される大梁7及び第2小梁30に当接するように、第2小屋束予定位置23bからY軸方向にはみ出して配置される。これにより、第1小屋束小梁29eの配置が定義される。
【0179】
なお、第1小屋束小梁29eは、配置される架構面、及び、基準端部が一意に定められるため、架構面遺伝子座45bの架構面区分情報、及び、配置遺伝子座45dの配置情報が無視される。また、選択された第1小屋束小梁29eの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。さらに、第1水平架構面9aは、第1小屋束小梁29eが配置されることにより、第4小架構面13d(
図39に示す)が新たに区分される。このため、架構面リスト38は、第4小架構面13dの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図39に示される。
【0180】
次に、
図35に示されるように、左から4番目の小梁遺伝子座45Dで定義される4本目の小梁8が配置される。左から4番目の小梁遺伝子座45Dは、区分遺伝子座45aの区分情報が「0.55」、架構面遺伝子座45bの架構面区分情報が「0.98」、方向遺伝子座45cの方向情報が「1」、及び、配置遺伝子座45dの配置情報が「0.41」である。
【0181】
図39は、この実施形態の4本目の小梁の配置を説明する平面図である。左から4番目の小梁遺伝子座45Dの区分情報「0.55」は、小梁配置リスト25において、第3開口小梁29cの区分情報(0.501以上かつ0.750以下)の範囲内である。これにより、4本目の小梁8として、第3開口小梁29cが配置される。また、第3開口小梁29cの両端29t、29tは、第3開口予定位置22cのY軸方向の延長線上に配置される大梁7、及び、第2小梁30に当接するように、第3開口予定位置22cからY軸方向にはみ出して配置される。これにより、第3開口小梁29cの配置が定義される。
【0182】
なお、第3開口小梁29cは、配置される架構面、向き、及び基準端部が一意に定められるため、架構面遺伝子座45bの架構面区分情報、方向遺伝子座45cの方向情報、及び、配置遺伝子座45dの配置情報が無視される。また、選択された第3開口小梁29cの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。さらに、第1水平架構面9aは、第3開口小梁29cが配置されることにより、第5小架構面13e(
図40に示す)が新たに区分される。このため、架構面リスト38は、第5小架構面13eの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図40に示される。
【0183】
次に、
図35に示されるように、左から5番目の小梁遺伝子座45Eで定義される5本目の小梁8が配置される。左から5番目の小梁遺伝子座45Eは、区分遺伝子座45aの区分情報が「0.33」、架構面遺伝子座45bの架構面区分情報が「0.76」、方向遺伝子座45cの方向情報が「2」、及び、配置遺伝子座45dの配置情報が「0.36」である。
【0184】
図40は、この実施形態の5本目の小梁の配置を説明する平面図である。左から5番目の小梁遺伝子座45Eの区分情報「0.33」は、小梁配置リスト25において、第1開口小梁29aの区分情報(0.000以上かつ0.333以下)の範囲内である。これにより、5本目の小梁8として、第1開口小梁29aが配置される。また、第1開口小梁29aの両端29t、29tは、第1開口予定位置22aのX軸方向の両端に配置される第3開口小梁29c、及び、第4開口小梁29dに当接するように、第1開口予定位置22aに配置される。これにより、第1開口小梁29aの配置が定義される。
【0185】
なお、第1開口小梁29aは、配置される架構面、向き、及び基準端部が一意に定められるため、架構面遺伝子座45bの架構面区分情報、方向遺伝子座45cの方向情報、及び、配置遺伝子座45dの配置情報が無視される。また、選択された第1開口小梁29aの第1小梁配置情報36aは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。さらに、第1水平架構面9aは、第1開口小梁29aが配置されることにより、第6小架構面13f(
図41に示す)が新たに区分される。このため、架構面リスト38は、第6小架構面13fの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図41に示される。
【0186】
次に、
図35に示されるように、左から6番目の小梁遺伝子座45Fで定義される6本目の小梁8が配置される。左から6番目の小梁遺伝子座45Fは、区分遺伝子座45aの区分情報が「0.61」、架構面遺伝子座45bの架構面区分情報が「0.48」、方向遺伝子座45cの方向情報が「1」、及び、配置遺伝子座45dの配置情報が「0.75」である。
【0187】
図41は、この実施形態の6本目の小梁の配置を説明する平面図である。左から6番目の小梁遺伝子座45Fにおいて、区分情報「0.61」は、小梁配置リスト25において、第2小梁30の区分情報(0.501以上かつ1.000以下)の範囲内にある。これにより、6本目の小梁8として、第2小梁30が配置される。また、架構面区分情報「0.48」は、架構面リスト38において、第3小架構面(0.430〜0.572)である。これにより、第2小梁30は、第3小架構面13cに配置される。
【0188】
また、左から6番目の小梁遺伝子座45Fにおいて、方向情報が「1」であるため、第2小梁30の長手方向が、X軸方向に平行に配置される。さらに、配置情報は、「0.75」である。このため、第2小梁30の基準端部18の位置は、基準端部18が当接する第3小架構面13cの辺35(Y軸方向)の長さL2に対して、第3小架構面13cの基準点15bからの距離L1(Y軸方向)が0.75の位置に配される節点17で定義される。また、第2小梁30の他端30tは、基準端部18のX軸方向の延長線上に配置される第3開口小梁29cに当接する。これにより、第2小梁30の配置が定義される。
【0189】
また、選択された第2小梁30の第2小梁配置情報36bは、小梁配置リスト25から削除され、該小梁配置リスト25が再構築される。さらに、第1水平架構面9aは、第2小梁30が配置されることにより、第7小架構面13g(
図42に示す)が新たに区分される。このため、架構面リスト38は、第7小架構面13gの架構面情報39が追加されて再構築される。再構築された小梁配置リスト25及び架構面リスト38は、
図42に示される。
【0190】
次に、
図35に示されるように、左から7番目の小梁遺伝子座45Gで定義される7本目の小梁8が配置される。左から7番目の小梁遺伝子座45Gは、区分遺伝子座45aの区分情報が「0.27」、架構面遺伝子座45bの架構面区分情報が「0.36」、方向遺伝子座45cの方向情報が「2」、及び、配置遺伝子座45dの配置情報が「0.79」である。
【0191】
図42は、この実施形態の7本目の小梁の配置を説明する平面図である。左から7番目の小梁遺伝子座45Gの区分情報「0.27」は、小梁配置リスト25において、第2開口小梁29bの区分情報(0.000以上かつ1.000以下)の範囲内である。これにより、7本目の小梁8として、第2開口小梁29bが配置される。また、第2開口小梁29bの両端29t、29tは、第1開口予定位置22aの両端に配置される第3開口小梁29c、及び、第4開口小梁29dに当接するように、第2開口予定位置22bに配置される。これにより、第2開口小梁29bの配置が定義される。
【0192】
なお、第2開口小梁29bは、配置される架構面、向き、及び基準端部が一意に定められるため、架構面遺伝子座45bの架構面区分情報、方向遺伝子座45cの方向情報、及び、配置遺伝子座45dの配置情報が無視される。また、選択された第2開口小梁29bの第1小梁配置情報36aは、小梁配置リスト25から削除される。これにより、小梁配置リスト25では、第1小梁配置情報36a及び第2小梁配置情報36bの個数が0となる。さらに、第1水平架構面9aは、第2開口小梁29bが配置されることにより、第7小架構面13h(
図31(b)に示す)が新たに区分される。このため、架構面リスト38は、第7小架構面13gの架構面情報39が追加されて再構築される。
【0193】
図35に示されるように、左から8番目の小梁遺伝子座45Hは、区分遺伝子座45aの区分情報、架構面遺伝子座45bの架構面区分情報、方向遺伝子座45cの方向情報、及び、配置遺伝子座45dの配置情報が、それぞれ設定されている。しかしながら、小梁配置リスト25には、第1小梁配置情報36a及び第2小梁配置情報36bの個数が0であるため、8本目の小梁8の配置は定義されない。
【0194】
以上のように、
図35に示した第1水平架構面9aの小梁遺伝子は、第1水平架構面9aの小梁8の配置(
図31(b)に示す)を定義することができる。なお、工程S33では、第1水平架構面9aと同様に、各水平架構面9b〜9hにおいて、小梁遺伝子が設定される。これにより、各染色体情報26は、各水平架構面9a〜9hにおいて、小梁8がそれぞれ配置された一つの架構体2(設計サンプル)を特定することができる。集団生成工程S3では、このような染色体情報26が複数種類形成される。これにより、複数種類の染色体情報26からなる集団31が生成される。
【0195】
また、この実施形態では、第1小梁配置情報36a、及び、第2小梁配置情報36bが含まれる小梁配置リスト25に基づいて、第1小梁29及び第2小梁30の配置が定義されるため、例えば、順番情報を用いることなく、第1小梁29及び第2小梁30が配置される順番を入れ替えて配置することができる。
【0196】
さらに、この実施形態では、染色体情報26において、第1小梁29及び第2小梁30の小梁遺伝子座45の構造、及び、第1小梁29及び第2小梁30の小梁遺伝子を共通化することができるため、処理手順を簡略化することができる。
【0197】
また、次世代集団生成工程S433の突然変異工程S73では、染色体情報26において、区分遺伝子座45aの区分情報、架構面遺伝子座45bの架構面区分情報、方向遺伝子座45cの方向情報、及び、配置遺伝子座45dの配置情報を対象に、それらが取りうる全ての数値からランダムに選択された数値に置換されるのが望ましい。
【0198】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。