【課題を解決するための手段】
【0009】
本発明は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層とを有する積層体と、前記対向電極上を覆って前記積層体を封止する封止材とを有する太陽電池であって、前記光電変換層は、一般式R−M−X
3(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含み、前記封止材は、脂環式骨格を有する樹脂を含む太陽電池である。
以下、本発明を詳述する。
【0010】
本発明者は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層とを有する積層体が、封止材で封止されている太陽電池において、光電変換層に特定の有機無機ペロブスカイト化合物を用いることを検討した。有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率の向上が期待できる。
本発明者は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層とを有する積層体において、光電変換層に特定の有機無機ペロブスカイト化合物を用いることを検討した。有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率の向上が期待できる。
しかしながら、有機無機ペロブスカイト化合物を用いた光電変換層を含む積層体を、従来の封止材で封止したところ、封止時に光電変換効率が低下してしまうことがわかった(初期劣化)。
そこで本発明者らは、有機無機ペロブスカイト化合物を用いた光電変換層を含む積層体を、封止材により封止したときの劣化の原因について詳しく検討した。その結果、封止時に、有機無機ペロブスカイト化合物中の有機成分が封止材に溶け込んでしまい、有機無機ペロブスカイト化合物が劣化してしまうことが原因であることを見出した。
本発明者らは、鋭意検討の結果、封止材として脂環式骨格を有する樹脂を用いることにより、封止時に有機無機ペロブスカイト化合物中の有機成分が溶出してしまうのを抑制できることを見出した。
更に、屋外での使用を考慮すると過酷な環境下でも耐えうる太陽電池が求められることから、本発明者は、更に高いレベルの高湿耐久性のために、封止材上を無機層で覆うことを検討した。その結果、本発明者は、脂環式骨格を有する樹脂を含む封止材は、スパッタリング法等により無機層を形成する際に要求されるスパッタリング耐性にも優れることを見出し、本発明を完成させるに至った。
【0011】
本発明の太陽電池は、電極と、対向電極と、上記電極と上記対向電極との間に配置された光電変換層とを有する積層体と、上記対向電極上を覆って上記積層体を封止する封止材とを有する。
なお、本明細書中、層とは、明確な境界を有する層だけではなく、含有元素が徐々に変化する濃度勾配のある層をも意味する。なお、層の元素分析は、例えば、太陽電池の断面のFE−TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。また、本明細書中、層とは、平坦な薄膜状の層だけではなく、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。
【0012】
上記電極及び上記対向電極の材料は特に限定されず、従来公知の材料を用いることができる。なお、上記対向電極は、パターニングされた電極であることが多い。
上記電極及び上記対向電極の材料として、例えば、FTO(フッ素ドープ酸化スズ)、ナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金、Al/Al
2O
3混合物、Al/LiF混合物、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO
2、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記電極及び上記対向電極は、それぞれ陰極になっても、陽極になってもよい。
【0013】
上記光電変換層は、一般式R−M−X
3(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含む。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率を向上させることができる。
【0014】
上記Rは有機分子であり、C
lN
mH
n(l、m、nはいずれも正の整数)で示されることが好ましい。
上記Rは、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、グアニジン、ホルムアミジン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CH
3NH
3)等)、及び、フェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、ホルムアミジン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオン、及び、フェネチルアンモニウムが好ましく、メチルアミン、ホルムアミジン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。
【0015】
上記Mは金属原子であり、例えば、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。
【0016】
上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。
【0017】
上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。
図1は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造である、有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上すると推定される。
【0018】
上記有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。上記有機無機ペロブスカイト化合物が結晶性半導体であることにより、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。
【0019】
また、結晶化の指標として結晶化度を評価することもできる。結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の結晶化度の好ましい下限は30%である。結晶化度が30%以上であると、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
また、上記有機無機ペロブスカイト化合物の結晶化度を上げる方法として、例えば、熱アニール、レーザー等の強度の強い光の照射、プラズマ照射等が挙げられる。
【0020】
上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、後述する電子輸送層又はホール輸送層としての役割を果たしてもよい。
上記有機半導体として、例えば、ポリ(3−アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物、及び、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
【0021】
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、Cu
2O、CuI、MoO
3、V
2O
5、WO
3、MoS
2、MoSe
2、Cu
2S等が挙げられる。
【0022】
上記光電変換層は、上記有機半導体又は上記無機半導体を含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層構造体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体であってもよい。製法が簡便である点では積層構造体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合構造体が好ましい。
【0023】
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
【0024】
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体である場合、上記複合構造体の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。
【0025】
上記積層体においては、上記電極と上記光電変換層との間に、電子輸送層が配置されていてもよい。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
【0026】
上記電子輸送層は、薄膜状の電子輸送層のみからなっていてもよいが、多孔質状の電子輸送層を含むことが好ましい。特に、上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合構造体である場合、より複雑な複合構造体(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合構造体が成膜されていることが好ましい。
【0027】
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
【0028】
上記積層体においては、上記対向電極と上記光電変換層との間に、ホール輸送層が配置されていてもよい。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物、表面修飾されていてもよいカーボンナノチューブ、グラフェン等のカーボン含有材料等が挙げられる。
【0029】
上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
【0030】
上記積層体は、更に、基板等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。
【0031】
本発明の太陽電池は、上記積層体が、封止材で封止されたものである。上記積層体を、上記封止材で封止することにより、太陽電池の耐久性を向上させることができる。これは、上記封止材で封止を行うことにより、水分が内部に浸透することを抑制できるためと考えられる。ここで、上記封止材は、その端部を閉じるようにして上記積層体全体を覆うことが好ましい。これにより、水分が内部に浸透することを確実に防止することができる。
なお、上記積層体が封止材で封止されていれば、上記積層体の電極側又は対向電極側のいずれが封止材で覆われていてもよい。
【0032】
上記封止材は、脂環式骨格を有する樹脂を含む。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いた場合、封止時に上記有機無機ペロブスカイト化合物中の有機成分が上記封止材に溶け込んでしまい、上記有機無機ペロブスカイト化合物が劣化する(初期劣化)。これに対して、本発明の太陽電池においては、上記封止材に脂環式骨格を有する樹脂を用いることにより、上記光電変換層に上記有機無機ペロブスカイト化合物を用いていても、封止時に上記有機無機ペロブスカイト化合物中の有機成分の溶出を抑えて、光電変換層が劣化してしまうのを防止することができる。
更に、上記脂環式骨格を有する樹脂は、例えばシリコーン樹脂等のその他の樹脂と比較して水蒸気バリア性が高いため、上記封止材に脂環式骨格を有する樹脂を用いることにより、太陽電池の高湿耐久性をも向上させることができる。更に、上記封止材に脂環式骨格を有する樹脂を用いることにより、経時での分子拡散を抑えることができるため、太陽電池の耐熱耐久性を向上させることができる。更に、上記脂環式骨格を有する樹脂はスパッタリング耐性が高いため、上記封止材上に無機層を直接成膜した際に、白化等の変質が少なく無機層の水蒸気バリア性を高く保持することができる。
【0033】
上記脂環式骨格は特に限定されず、例えば、ノルボルネン、イソボルネン、アダマンタン、シクロヘキサン、ジシクロペンタジエン、ジシクロヘキサン、シクロペンタン、ジシクロペンテン等の骨格が挙げられる。これらの骨格は単独で用いられてもよく、2種以上が併用されてもよい。
【0034】
上記脂環式骨格を有する樹脂は、脂環式骨格を有していれば特に限定されず、熱可塑性であってもよいし、熱硬化性であってもよい。これらの脂環式骨格を有する樹脂は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記脂環式骨格を有する樹脂は、反応性官能基を有する化合物を製膜した後、上記反応性官能基を架橋剤により架橋反応させた樹脂であってもよい。上記反応性官能基として、例えば、エポキシ基、水酸基、カルボキシル基、アルケニル基、アルコキシ基、イソシアネート基等が挙げられる。これらの反応性官能基は、触媒等を用いて上記反応性官能基の架橋反応を開始させることができる。また、この場合、上記反応性官能基の数を調整することにより、架橋反応に伴う硬化収縮による太陽電池の封止時の劣化(初期劣化)を抑制することができる。
【0035】
また、上記脂環式骨格を有する樹脂は、脂環式骨格を有するモノマーと、脂環式骨格を有さないモノマーとの共重合体であってもよい。上記脂環式骨格を有さないモノマーは特に限定されず、例えば、エチルヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルアルキル(メタ)アクリレート等が挙げられる。上記脂環式骨格を有するモノマーと、脂環式骨格を有さないモノマーとの共重合体は特に限定されないが、好ましくはイソボルニルアクリレートとエチルヘキシルアクリレートとの共重合体である。
なお、上記脂環式骨格を有する樹脂が脂環式骨格を有するモノマーと脂環式骨格を有さないモノマーとの共重合体である場合、上記共重合体中の脂環式骨格を有するモノマーに由来する成分の含有量は30重量%以上であることが好ましい。上記共重合体中の脂環式骨格を有するモノマーに由来する成分の含有量は30重量%以上とすることにより、太陽電池の封止時の劣化(初期劣化)を充分に抑制することができる。上記共重合体中の脂環式骨格を有するモノマーに由来する成分の含有量は50重量%以上であることがより好ましく、70重量%以上であることが更に好ましい。
なお、上記共重合体中の脂環式骨格を有するモノマーに由来する成分の含有量の算出方法としては、原料モノマーの添加重量から計算する方法や、GC−MS等による組成分析結果から算出する方法等がある。
【0036】
上記脂環式骨格を有する樹脂は、具体的には例えば、ノルボルネン樹脂、アダマンタン骨格を有する樹脂、イソボルニル骨格を有する樹脂、ジシクロペンタジエン骨格を有する樹脂、シクロヘキサン骨格を有する樹脂等が挙げられる。
【0037】
上記脂環式骨格を有する樹脂の市販品として、例えば、TOPAS6013(Polyplastics社製、ノルボルネン骨格を有する)、ライトエステルIB−X(共栄社化学社製、イソボルネン骨格を有する)の重合物、MA−DM(三菱ガス化学社製、アダマンタン骨格を有する)の重合物等が挙げられる。
【0038】
上記脂環式骨格を有する樹脂は、溶解パラメータ(SP値)の好ましい下限が7.0、好ましい上限が10である。上記脂環式骨格を有する樹脂の溶解パラメータ(SP値)が7以上であれば、樹脂の選択肢が広がり、成型が容易となる。上記脂環式骨格を有する樹脂の溶解パラメータ(SP値)が10以下であれば、封止時の上記有機無機ペロブスカイト化合物中の有機成分の溶出をより抑えて、光電変換層が劣化してしまうのをより抑制することができる。上記脂環式骨格を有する樹脂の溶解パラメータ(SP値)のより好ましい下限は7.5、更に好ましい下限は8.0である。太陽電池の高温耐久性を高める観点からは、上記封止樹脂の溶解パラメータ(SP値)のより好ましい上限は9.5、更に好ましい上限は9.0である。
【0039】
なお、SP値は溶解性パラメータ(Solubility Parameter)と呼ばれ、溶解のしやすさを表すことのできる指標である。本明細書においてSP値の算出にはFedorsにより提案された方法(R.F.Fedors, Polym. Eng. Sci.,14(2),147−154(1974))を用い、繰り返し単位内の各原子団に対する蒸発エネルギー(Δecoh)(cal/mol)及びモル体積(Δv)(cm
3/mol)から下記式(1)に従って計算することができる。式(1)中、δがSP値(cal/mol)
1/2を表す。
【0040】
【数1】
【0041】
Δecoh及びΔvとしては、J.Brandrup ら、「Polymer Handbook, Fourth Edition」,volume2に記載の値を用いることができる。
また、Tg≧25℃の場合、主鎖骨格原子数をnとして、n≧3の時は2n、n<3の時は4nをΔvに加えて計算する。
【0042】
共重合体のSP値は、共重合体中のそれぞれの繰り返し単位単独でのSP値を算出し、その体積分率を使って下記式(2)により計算することができる。式(2)中、δcopは共重合体のSP値を表し、φ1、φ2は繰り返し単位1、2の体積分率を表し、δ1、δ2は繰り返し単位1、2単独のSP値を表す。
【0043】
【数2】
【0044】
上記封止材中に含まれる上記脂環式骨格を有する樹脂の含有量は特に限定されないが、上記封止材全体に占める脂環式骨格の重量が30重量%以上であることが好ましい。上記脂環式骨格の重量が30重量%以上であれば、太陽電池の封止時の劣化(初期劣化)を充分に抑制することができる。
なお、上記封止材は、上記脂環式骨格を有する樹脂を含んでいればよく、更に、脂環式骨格を有さない樹脂を含んでいてもよい。
【0045】
上記封止材の厚みは、好ましい下限が100nm、好ましい上限が100000nmである。上記厚みのより好ましい下限は500nm、より好ましい上限は50000nmであり、更に好ましい下限は1000nm、更に好ましい上限は20000nmである。
【0046】
本発明の太陽電池においては、更に、封止材上に無機層を有することが好ましい。これにより、上記無機層が水蒸気バリア性を有し、水分が内部に浸透することを抑制できるため、太陽電池の高湿耐久性をより向上させることができる。なお、上記脂環式骨格を有する樹脂を含む封止材は、例えばポリイソブチレン樹脂又はアクリル樹脂等のその他の樹脂を含む封止材と比較して、スパッタリング法等により上記無機層を形成する際に要求されるスパッタリング耐性にも優れたものである。
【0047】
また、本発明の太陽電池においては、上記積層体と上記封止材との間に無機層を有することも好ましい。この場合にも、上記無機層が水蒸気バリア性を有し、水分が内部に浸透することを抑制できるため、太陽電池の高湿耐久性をより向上させることができる。
【0048】
上記無機層は、金属酸化物、金属窒化物又は金属酸窒化物を含むことが好ましい。
上記金属酸化物、金属窒化物又は金属酸窒化物は、水蒸気バリア性を有するものであれば特に限定されないが、例えば、Si、Al、Zn、Sn、In、Ti、Mg、Zr、Ni、Ta、W、Cu若しくはこれらを2種以上含む合金の酸化物、窒化物又は酸窒化物が挙げられる。なかでも、Si、Al、Zn又はSnの酸化物、窒化物又は酸窒化物が好ましく、Zn又はSnの酸化物、窒化物又は酸窒化物がより好ましく、上記無機層に特に高い水蒸気バリア性及び柔軟性を付与できることから、Zn及びSnの両金属元素を含む金属元素の酸化物、窒化物又は酸窒化物が更に好ましい。
【0049】
なかでも、上記金属酸化物、金属窒化物又は金属酸窒化物は、一般式Zn
aSn
bO
cで表される金属酸化物であることが特に好ましい。ここで、a、b、cは正の整数を表す。
上記無機層に上記一般式Zn
aSn
bO
cで表される金属酸化物を用いることにより、上記金属酸化物がスズ(Sn)原子を含むため、上記無機層に適度な可撓性を付与することができ、上記無機層の厚みが増した場合であっても応力が小さくなるため、上記無機層、電極、半導体層等の剥離を抑えることができる。これにより、上記無機層の水蒸気バリア性を高め、太陽電池の耐久性をより向上させることができる。一方、上記金属酸化物が亜鉛(Zn)原子を含むため、上記無機層は特に高いバリア性を発揮することができる。
【0050】
上記一般式Zn
aSn
bO
cで表される金属酸化物においては、ZnとSnとの総和に対するSnの比Xs(重量%)が70>Xs>0を満たすことが好ましい。また、Y=c/(a+2b)で表される値Yが、1.5>Y>0.5を満たすことが好ましい。
なお、上記無機層中の上記一般式Zn
aSn
bO
cで表される金属酸化物に含まれる亜鉛(Zn)、スズ(Sn)及び酸素(O)の元素比率は、X線光電子分光(XPS)表面分析装置(例えば、VGサイエンティフィックス社製のESCALAB−200R等)を用いて測定することができる。
【0051】
上記無機層は、上記一般式Zn
aSn
bO
cで表される金属酸化物を含む場合、更に、ケイ素(Si)及び/又はアルミニウム(Al)を含むことが好ましい。
上記無機層にケイ素(Si)及び/又はアルミニウム(Al)を添加することにより、上記無機層の透明性を高め、太陽電池の光電変換効率を向上させることができる。
【0052】
上記無機層の厚みは、好ましい下限が30nm、好ましい上限が3000nmである。上記厚みが30nm以上であれば、上記無機層が充分な水蒸気バリア性を有することができ、太陽電池の耐久性が向上する。上記厚みが3000nm以下であれば、上記無機層の厚みが増した場合であっても、発生する応力が小さいため、上記無機層、電極、半導体層等の剥離を抑制することができる。上記厚みのより好ましい下限は50nm、より好ましい上限は1000nmであり、更に好ましい下限は100nm、更に好ましい上限は500nmである。
なお、上記無機層の厚みは、光学干渉式膜厚測定装置(例えば、大塚電子社製のFE−3000等)を用いて測定することができる。
【0053】
また、本発明の太陽電池においては、更に、上記封止材上を、例えばガラス板、樹脂フィルム、無機材料を被覆した樹脂フィルム、アルミニウム等の金属箔等のその他の材料が覆っていてもよい。即ち、本発明の太陽電池は、上記積層体と上記その他の材料との間を、上記封止材によって封止、充填又は接着している構成であってもよい。これにより、仮に上記封止材にピンホールがあった場合にも充分に水蒸気をブロックすることができ、太陽電池の高湿耐久性をより向上させることができる。なかでも、無機材料を被覆した樹脂フィルムを配置することがより好ましい。
【0054】
図2は、本発明の太陽電池の一例を模式的に示す断面図である。
図2に示す太陽電池1においては、基板6上に電極2と、対向電極3と、この電極2と対向電極3との間に配置された光電変換層4とを有する積層体が、対向電極3上を覆う封止材5で封止されている。ここで封止材5の端部は、基板6に密着することにより閉じている。なお、
図2に示す太陽電池1において、対向電極3はパターニングされた電極である。図示はしないが、積層体と封止材5の間、又は、封止材5上に無機層が配置されていてもよい。
【0055】
本発明の太陽電池を製造する方法は特に限定されず、例えば、上記基板上に上記電極、上記光電変換層、上記対向電極をこの順で形成して積層体を作製した後、上記封止材で上記積層体を封止し、更に、上記封止材上を無機層で覆う方法等が挙げられる。
【0056】
上記光電変換層を形成する方法は特に限定されず、真空蒸着法、スパッタリング法、気相反応法(CVD)、電気化学沈積法、印刷法等が挙げられる。なかでも、印刷法を採用することで、高い光電変換効率を発揮できる太陽電池を大面積で簡易に形成することができる。印刷法として、例えば、スピンコート法、キャスト法等が挙げられ、印刷法を用いた方法としてロールtoロール法等が挙げられる。
【0057】
上記封止材で上記積層体を封止する方法は特に限定されず、例えば、シート状の封止材を用いて上記積層体をシールする方法、封止材を有機溶媒に溶解させた封止材溶液を上記積層体に塗布する方法、封止材となる反応性官能基を有する化合物を上記積層体に塗布した後、熱又はUV等で反応性官能基を有する化合物を架橋又は重合させる方法、封止材に熱をかけて融解させた後に冷却する方法等が挙げられる。
【0058】
上記封止材上を上記無機層で覆う方法として、真空蒸着法、スパッタリング法、気相反応法(CVD)、イオンプレーティング法が好ましい。なかでも、緻密な層を形成するためにはスパッタリング法が好ましく、スパッタリング法のなかでもDCマグネトロンスパッタリング法がより好ましい。なお、上記脂環式骨格を有する樹脂を含む封止材は、例えばポリイソブチレン樹脂又はアクリル樹脂等のその他の樹脂を含む封止材と比較して、スパッタリング法等により上記無機層を形成する際に要求されるスパッタリング耐性にも優れたものである。
上記スパッタリング法においては、金属ターゲット、及び、酸素ガス又は窒素ガスを原料とし、上記封止材上に原料を堆積して製膜することにより、無機層を形成することができる。