特許第6197461号(P6197461)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

特許6197461炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
<>
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000002
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000003
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000004
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000005
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000006
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000007
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000008
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000009
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000010
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000011
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000012
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000013
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000014
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000015
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000016
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000017
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000018
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000019
  • 特許6197461-炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法 図000020
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6197461
(24)【登録日】2017年9月1日
(45)【発行日】2017年9月20日
(54)【発明の名称】炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
(51)【国際特許分類】
   H01L 21/20 20060101AFI20170911BHJP
   H01L 29/78 20060101ALI20170911BHJP
   H01L 29/12 20060101ALI20170911BHJP
   H01L 29/06 20060101ALI20170911BHJP
   H01L 21/336 20060101ALI20170911BHJP
   H01L 21/205 20060101ALI20170911BHJP
   H01L 21/02 20060101ALI20170911BHJP
   H01L 21/265 20060101ALI20170911BHJP
【FI】
   H01L21/20
   H01L29/78 652Z
   H01L29/78 652T
   H01L29/78 652P
   H01L29/78 658A
   H01L29/78 658Z
   H01L21/205
   H01L21/02 B
   H01L21/265 Z
【請求項の数】10
【全頁数】18
(21)【出願番号】特願2013-163408(P2013-163408)
(22)【出願日】2013年8月6日
(65)【公開番号】特開2015-32789(P2015-32789A)
(43)【公開日】2015年2月16日
【審査請求日】2016年4月22日
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】堀井 拓
(72)【発明者】
【氏名】増田 健良
【審査官】 恩田 和彦
(56)【参考文献】
【文献】 国際公開第2013/021902(WO,A1)
【文献】 国際公開第2012/049792(WO,A1)
【文献】 特開2004−119423(JP,A)
【文献】 特開2010−177353(JP,A)
【文献】 特開2009−218272(JP,A)
【文献】 特開2004−128332(JP,A)
【文献】 特開2011−171551(JP,A)
【文献】 特開2011−222607(JP,A)
【文献】 特開2002−324758(JP,A)
【文献】 特開2013−115385(JP,A)
【文献】 特開2006−303410(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/20
H01L 21/02
H01L 21/205
H01L 21/265
H01L 21/336
H01L 29/06
H01L 29/12
H01L 29/78
(57)【特許請求の範囲】
【請求項1】
外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板と、
前記主面上に形成されたエピタキシャル層とを備え、
前記ベース基板において前記エピタキシャル層が形成された前記主面と反対側に位置する裏面に複数の溝が形成され、
前記裏面の中央部と前記裏面の外周部とで前記溝のピッチが異なっている、炭化珪素半導体基板。
【請求項2】
外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板と、
前記主面上に形成されたエピタキシャル層とを備え、
前記ベース基板において前記エピタキシャル層が形成された前記主面と反対側に位置する裏面に複数の溝が形成され、
前記裏面の中央部と前記裏面の外周部とで前記溝の幅が異なっている、炭化珪素半導体基板。
【請求項3】
記複数の溝の断面形状はV字状の形状を有する、請求項1または請求項2に記載の炭化珪素半導体基板。
【請求項4】
基板温度が室温であるときの反り量は−100μm以上100μm以下であり、基板温度が400℃であるときの反り量は−1.5mm以上1.5mm以下である、請求項1から請求項3のいずれか1項に記載の炭化珪素半導体基板。
【請求項5】
前記溝の平面形状は、ストライプ状、格子状、同心円状、ハニカム状からなる群から選択されるいずれか1つを含む、請求項1から請求項4のいずれか1項に記載の炭化珪素半導体基板。
【請求項6】
外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板を準備する工程と、
前記主面上にエピタキシャル層を形成する工程と、
前記ベース基板において前記エピタキシャル層が形成された前記主面の反対側に位置する裏面に複数の溝を形成する工程とを備え、
前記複数の溝を形成する工程において、前記裏面の中央部と前記裏面の外周部とで前記溝のピッチを異ならせる、炭化珪素半導体基板の製造方法。
【請求項7】
外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板を準備する工程と、
前記主面上にエピタキシャル層を形成する工程と、
前記ベース基板において前記エピタキシャル層が形成された前記主面の反対側に位置する裏面に複数の溝を形成する工程とを備え、
前記複数の溝を形成する工程において、前記裏面の中央部と前記裏面の外周部とで前記溝の幅を異ならせる、炭化珪素半導体基板の製造方法。
【請求項8】
前記複数の溝を形成する工程は、断面形状がV字状である複数の溝を形成する工程を備える、請求項6または請求項7に記載の炭化珪素半導体基板の製造方法。
【請求項9】
前記溝を形成する工程は、前記エピタキシャル層を形成する工程後に前記エピタキシャル層の前記主面が凸状に反るときに前記裏面に前記溝を形成する、請求項6から請求項8のいずれか1項に記載の炭化珪素半導体基板の製造方法。
【請求項10】
請求項1から請求項5のいずれか1項に記載の炭化珪素半導体基板を準備する工程と、
前記炭化珪素半導体基板に不純物イオンを注入する工程とを備える、炭化珪素半導体装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法に関し、特に、高温に加熱処理されても平坦性の高い炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法に関する。
【背景技術】
【0002】
近年、半導体装置の製造に用いられる半導体基板として炭化珪素(SiC)結晶の利用が進められつつある。SiCは、より一般的に用いられているシリコン(Si)に比べて大きなバンドギャップを有する。そのため、SiCを用いた半導体装置は、耐圧が高く、オン抵抗が低く、また高温環境下での特性の低下が小さい、といった利点を有する。
【0003】
さらに、炭化珪素半導体装置を効率的に製造するために、炭化珪素半導体基板の大口径化が進められている。しかし、炭化珪素半導体基板の外径をたとえば6インチ程度とした場合には、炭化珪素半導体基板の平坦性が損なわれる。
【0004】
特開2012−214376号公報には、直径が少なくとも約75ミリメートル(3インチ)であって、歪みが約5μm未満であり、反りが約5mm未満であり、TTVが約2.0μm未満であるSiCウエハが記載されている。具体的には、SiCブールを薄切りにしてウエハ状とし、薄切りにしたウエハを両面ラッパ上においてウエハを折り曲げるのに必要な下方力よりも小さい下方力を用いて、ラッピング・プロセスを開始することにより、歪み、反り及びTTVが低いウエハを生産することができることが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012−214376号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、室温において炭化珪素半導体基板の反りおよびTTVが特開2012−214376号公報に記載されている範囲内にあっても、高温に加熱処理されることにより、平坦性が悪化する炭化珪素半導体基板が確認されている。たとえば、一般に炭化珪素半導体装置の製造方法におけるドーピングは、高温下においてイオン注入により行われるが、平坦性の悪い炭化珪素半導体基板は注入装置の静電チャックステージに吸着させることが困難であり、場合によっては基板が割れるなどの問題が生じることが確認されている。
【0007】
また、平坦性の悪い炭化珪素半導体基板に対してイオン注入を行うと、イオンの注入方向に対して表面が垂直な領域と、イオンの注入方向に対して表面が垂直ではなく傾斜している領域とが生じることになる。この場合、炭化珪素半導体基板において形成される不純物領域の形状にはばらつき生じる。
【0008】
また、このような高温下における平坦性の悪化は、100mm以上の大口径の炭化珪素半導体基板において特に深刻な問題となっている。つまり、効率よく炭化珪素半導体装置を得るために大口径(特に100mm以上)の炭化珪素半導体基板を用いても、上述のような平坦性の悪化により炭化珪素半導体装置を歩留まり良く作製することは困難であった。
【0009】
本発明は上記のような課題を解決するためになされたものである。本発明の主たる目的は、高温下においても平坦性の高い炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法を提供することにある。また、大口径の炭化珪素半導体基板を用いて炭化珪素半導体装置を歩留まり良く作製することができる炭化珪素半導体装置の製造方法を提供することにある。
【課題を解決するための手段】
【0010】
本発明に従った炭化珪素半導体基板は、外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板と、主面上に形成されたエピタキシャル層とを備え、エピタキシャル層においてベース基板と対向する面と反対側に位置する主面、およびベース基板においてエピタキシャル層が形成された主面と反対側に位置する裏面の少なくともいずれかに溝が形成されている。
【0011】
本発明に従った炭化珪素半導体基板の製造方法は、外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板を準備する工程と、主面上にエピタキシャル層を形成する工程と、エピタキシャル層においてベース基板と対向する面と反対側に位置する主面、およびベース基板においてエピタキシャル層が形成された主面の反対側に位置する裏面の少なくともいずれかに溝を形成する工程とを備える。
【0012】
本発明に従った炭化珪素半導体装置の製造方法は、外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板を準備する工程と、主面上にエピタキシャル層を形成する工程と、エピタキシャル層においてベース基板と対向する面と反対側に位置する主面、およびベース基板においてエピタキシャル層が形成された主面の反対側に位置する裏面の少なくともいずれかに溝を形成して、炭化珪素半導体基板を準備する工程と、炭化珪素半導体基板に不純物イオンを注入する工程とを備える。
【発明の効果】
【0013】
本発明によれば、高温下においても平坦性の高い炭化珪素半導体基板を得ることができる。また、炭化珪素半導体装置を歩留まり良く作製することができる炭化珪素半導体装置の製造方法を提供することができる。
【図面の簡単な説明】
【0014】
図1】実施の形態に係る炭化珪素半導体基板の概略図である。
図2】炭化珪素半導体基板の反り量の定義を説明するための模式図である。
図3】炭化珪素半導体基板の反り量の定義を説明するための模式図である。
図4図1に示した炭化珪素半導体基板に形成された溝の平面形状の例を示す模式図である。
図5図1に示した炭化珪素半導体基板に形成された溝の平面形状の例を示す模式図である。
図6図1に示した炭化珪素半導体基板に形成された溝の平面形状の例を示す模式図である。
図7図1に示した炭化珪素半導体基板に形成された溝の平面形状の例を示す模式図である。
図8】実施の形態に係る炭化珪素半導体基板の製造方法のフローチャートである。
図9】実施の形態に係る炭化珪素半導体装置の製造方法を説明するための図である。
図10】実施の形態に係る炭化珪素半導体装置の製造方法を説明するための図である。
図11】実施の形態に係る炭化珪素半導体装置の製造方法を説明するための図である。
図12】実施の形態に係る炭化珪素半導体基板の変形例の概略図である。
図13図12の領域XIIIの拡大平面模式図である。
図14】実施の形態に係る炭化珪素半導体装置の概略図である。
図15】実施の形態に係る炭化珪素半導体装置の製造方法のフローチャートである。
図16】実施の形態に係る炭化珪素半導体装置の製造方法の作用効果を説明するための図である。
図17】実施の形態に係る炭化珪素半導体装置の製造方法の作用効果を説明するための図である。
図18】実施の形態に係る炭化珪素半導体装置の製造方法の作用効果を説明するための参考図である。
図19】実施の形態に係る炭化珪素半導体装置の製造方法の作用効果を説明するための参考図である。
【発明を実施するための形態】
【0015】
以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”−”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
【0016】
[本願発明の実施形態の説明]
はじめに、本発明の実施の形態の概要を列挙する。
【0017】
(1)図1を参照して、本実施の形態に係る炭化珪素半導体基板10は、外径が100mm以上である主面1Aを有し、単結晶炭化珪素からなるベース基板1と、主面1A上に形成されたエピタキシャル層2とを備え、エピタキシャル層2においてベース基板1と対向する面と反対側に位置する主面2A、およびベース基板1においてエピタキシャル層2が形成された主面1Aと反対側に位置する裏面1Bの少なくともいずれかに溝9が形成されている。なお、本実施の形態に係る炭化珪素半導体基板10は、外径が100mm以上の大口径基板であって、好ましくは外径が125mm以上であり、より好ましくは外径が150mm以上である。
【0018】
このようにすれば、本実施の形態に係る炭化珪素半導体基板10は、外径が100mm以上と大口径基板であって、エピタキシャル層2の主面またはベース基板1の裏面1Bに形成された溝9によって炭化珪素半導体基板10の表裏面における内部応力が緩和される。この結果、炭化珪素半導体基板10の変形(たとえば高温処理時における基板の反り)が抑制される。これにより、炭化珪素半導体基板10を用いて炭化珪素半導体装置の製造方法を実施する際に、当該製造プロセス中において炭化珪素半導体基板10に割れ等の異常が発生するリスクを低減することができる。
【0019】
具体的には、たとえば炭化珪素半導体装置の製造方法におけるドーピングが高温下での炭化珪素半導体基板10に対するイオン注入により行われる場合であって、炭化珪素半導体基板10をイオン注入装置の静電チャックステージで吸着する場合を考える。この場合、応力緩和溝として作用する溝9の構成(たとえば幅や配置などの平面形状や、溝9の深さなど)を適切に選択することにより、炭化珪素半導体基板10の高温(たとえば400℃)での反り量は十分に小さくできる。このため、炭化珪素半導体基板10には吸着によって大きな応力が加えられることない。したがって、炭化珪素半導体基板10に割れやクラックなどの異常が発生するリスクを低減することができる。
【0020】
さらに、本実施の形態に係る炭化珪素半導体基板10は外径が100mm以上と大口径基板であって、上述のように優れた平坦性を得られるため、炭化珪素半導体基板10を用いて炭化珪素半導体装置の製造プロセスを進捗させたときに炭化珪素半導体基板10上に特性バラつきの小さい炭化珪素半導体装置を作製することができる。具体的には、たとえば炭化珪素半導体基板10に対するイオン注入など、特定の方向から炭化珪素半導体基板10の主面2Aに対して加工を行う工程を考える。この場合、炭化珪素半導体基板10の主面2Aの平坦性が高いため、主面2Aに対する被加工領域(たとえば注入領域)の配置や形態が主面2A内で局所的に変動するといった問題の発生を抑制できる。この結果、主面2A上における当該加工のバラつきを低減することができる。
【0021】
また、炭化珪素半導体基板10は、高精度の露光を行うために、たとえばLTV(Local Thickness Variation)が1μm以下であることが好ましい。この場合、炭化珪素半導体基板の実際の厚み変動が1μm以下と小さくても、露光装置の真空チャックステージ上に吸着したときに炭化珪素半導体基板の反り量が大きいと、見かけ上のLTVが大きくなってしまう場合がある。これに対し、本実施の形態に係る炭化珪素半導体基板10は反り量を小さくできるため、見かけ上のLTVが大きくなることはなく、高精度の露光を行うことができる。以上より、大口径でかつ平坦性の高い炭化珪素半導体基板10を用いて炭化珪素半導体装置の製造プロセスを進捗させることにより、炭化珪素半導体装置を歩留まり良く作製することができる。
【0022】
(2)本実施の形態に係る炭化珪素半導体基板10において、基板温度が室温であるときの反り量は−100μm以上100μm以下であり、基板温度が400℃であるときの反り量は−1.5mm以上1.5mm以下であることが好ましい。この場合、炭化珪素半導体基板10を用いて炭化珪素半導体装置の製造方法を実施する際に、当該製造プロセス中において炭化珪素半導体基板10に割れ等の異常が発生するリスクを確実に低減することができる。
【0023】
ここで、図2および図3を参照して、炭化珪素半導体基板10の「反り量」とは、炭化珪素半導体基板10を平面S1上に載置したときの、炭化珪素半導体基板10の主面2Aにおいて平面S1に対して最も高い位置と最も低い位置との間の高さの差である。ここで、反り量の正負は、図2を参照して、炭化珪素半導体基板10の主面2Aが下に凸の場合(炭化珪素半導体基板10の中心位置が外周位置よりも平面S1に対して低く位置する場合)をマイナスとし、図3を参照して、上方に凸の場合(炭化珪素半導体基板10の中心位置が外周位置よりも平面S1に対して高く位置する場合)をプラスとする。また、「基板温度」とは、炭化珪素半導体基板10の主面2A側から放射温度計により測定される温度であり、たとえばイオン注入装置などの半導体製造装置において測定される。
【0024】
(3) 本実施の形態に係る炭化珪素半導体基板10において、溝9の平面形状は、ストライプ状、格子状、同心円状、ハニカム状からなる群から選択されるいずれか1つを含んでいてもよい。この場合、上述のように溝9の平面形状を適宜選択することにより、炭化珪素半導体基板10の表面(エピタキシャル層2の主面2Aまたはベース基板1の裏面1B)における応力を緩和して炭化珪素半導体基板10の平坦性を高めることができる。
【0025】
(4) 本実施の形態に係る炭化珪素半導体基板10の製造方法は、外径が100mm以上である主面1Aを有し、単結晶炭化珪素からなるベース基板1を準備する工程(S10)と、主面上にエピタキシャル層2を形成する工程(S20)と、エピタキシャル層2においてベース基板1と対向する面と反対側に位置する主面2A、およびベース基板1においてエピタキシャル層2が形成された主面1Aの反対側に位置する裏面1Bの少なくともいずれかに溝9を形成する工程(S30)とを備える。
【0026】
この場合、エピタキシャル層2を形成する工程(S20)においてベース基板1の裏面1Bにダメージ層3が生じ、当該ダメージ層3の影響によって炭化珪素半導体基板10に反りが発生する場合を考える。このとき、当該反りの状態に応じて、たとえばエピタキシャル層2の主面2A、またはベース基板1の裏面1Bに内部応力を緩和するための溝9を形成することで、炭化珪素半導体基板10全体として表面側と裏面側との応力のバランスを調整することができる。この結果、本実施の形態に係る炭化珪素半導体基板の製造方法によれば外径が100mm以上であっても平坦性の高い炭化珪素半導体基板10を得ることができる。
【0027】
(5) 本実施の形態に係る炭化珪素半導体基板10の製造方法において、溝を形成する工程(S30)は、エピタキシャル層を形成する工程(S20)後にエピタキシャル層2の主面2Aが凹状に反るときには、エピタキシャル層2の主面2Aに溝9を形成してもよく、エピタキシャル層を形成する工程(S20)後にエピタキシャル層2の主面2Aが凸状に反るときには裏面に前記溝を形成してもよい。
【0028】
この場合、特に炭化珪素半導体基板10において反りが発生した場合の、圧縮応力が発生している面(凹状に変形している面)に溝9を形成することにより、当該圧縮応力が発生している領域を溝9によって分割できる。この結果、溝9が形成された面全体として応力を緩和することができるので、炭化珪素半導体基板10の反りを効果的に抑制することができる。
【0029】
(6) 本実施の形態に係る炭化珪素半導体装置の製造方法は、外径が100mm以上である主面を有し、単結晶炭化珪素からなるベース基板1を準備する工程(S10)と、主面上にエピタキシャル層2を形成する工程(S20)と、エピタキシャル層2においてベース基板1と対向する面と反対側に位置する主面2A、およびベース基板1においてエピタキシャル層2が形成された主面1Aの反対側に位置する裏面1Bの少なくともいずれかに溝9を形成して、炭化珪素半導体基板を準備する工程(S30)と、炭化珪素半導体基板に不純物イオンを注入する工程(S40)とを備える。
【0030】
つまり、本実施の形態に係る炭化珪素半導体装置の製造方法は、本実施の形態に係る炭化珪素半導体基板の製造方法により得られた炭化珪素半導体基板10を用い、炭化珪素半導体基板10上に炭化珪素半導体装置を製造する。上述のように、本実施の形態に係る炭化珪素半導体基板の製造方法により得られる炭化珪素半導体基板10は、外径が100mm以上であるとともに、反りが抑制され平坦性に優れた基板である。つまり、炭化珪素半導体基板10に不純物イオンを注入する工程(S40)において、たとえば基板温度が400℃程度にまで加熱されたときにも、炭化珪素半導体基板10の反りを抑制して平坦性を維持することができる。そのため、工程(S40)において炭化珪素半導体基板10の主面2Aに対して不純物の注入方向のなす角度は、炭化珪素半導体基板10の外径が100mm以上であっても炭化珪素半導体基板10の主面2Aの面内位置によらず略一定とすることができる。その結果、主面2Aの面内位置によらずイオンの注入領域の形態(たとえば基板の深さ方向での注入領域の形状やイオンの濃度プロファイルなど)を略一定とすることができる。したがって、本実施の形態に係る炭化珪素半導体装置の製造方法によれば、炭化珪素半導体装置を歩留まり良く作製することができる。
【0031】
[本願発明の実施形態の詳細]
次に、本発明の実施の形態の詳細について説明する。
【0032】
(実施の形態1)
図1を参照して、実施の形態1に係る炭化珪素半導体基板10について説明する。本実施の形態に係る炭化珪素半導体基板10は、ベース基板1と、ベース基板1の主面1A上に形成されたエピタキシャル層2とを備え、ベース基板1において主面1Aと反対側に位置する裏面1Bに溝9が形成されている。
【0033】
ベース基板1は、単結晶炭化珪素からなり、外径が6インチである主面1Aを有している。ベース基板1を構成する炭化珪素は、たとえば六方晶の結晶構造を有しており、好ましくは結晶多形(ポリタイプ)が4H−SiCである。ベース基板1は、たとえば窒素(N)などのn型不純物を高濃度で含んでおり、導電型はn型である。ベース基板1の不純物濃度は、たとえば1.0×1018cm-3以上1.0×1018cm-3以下程度である。主面1Aは、たとえば{0001}面であってもよいし、{0001}面に対するオフ角が1°以上10°以下である面であってもよい。ベース基板1の厚みは、たとえば200μm以上700μm以下程度であり、好ましくは300μm以上600μm以下である。
【0034】
エピタキシャル層2は、ベース基板1の主面1A上にエピタキシャル成長により形成された炭化珪素からなる層である。エピタキシャル層2は、たとえば窒素(N)などのn型不純物を含んでおり、エピタキシャル層2の導電型はn型である。エピタキシャル層2の不純物濃度は、ベース基板1の不純物濃度よりも低くてもよい。エピタキシャル層2の不純物濃度は、たとえば7.5×1015cm-2程度である。エピタキシャル層2の膜厚は、たとえば5μm以上40μm以下程度である。
【0035】
炭化珪素半導体基板10において、ベース基板1の主面1Aの反対側に位置する裏面1Bには、上述のように溝9が形成されている。溝9の深さDや幅Wは任意の値とすることができる。たとえば、溝9の深さDは1nm以上100μm以下、より好ましくは10nm以上10μm以下とすることができる。また、溝9の幅Wは0.1μm以上50mm以下、より好ましくは1μm以上1mm以下とすることができる。
【0036】
溝9は裏面1Bにおいて複数本形成されていてもよい。また、溝9の断面形状は、図1に示すように側壁と底壁とを有する矩形状であってもよいが、他の形状(たとえば側壁が裏面1Bに対して傾斜している断面形状、あるいはV字状の形状、あるいは底壁が曲面状になった形状、あるいは側壁および底壁の両方が曲面状になった形状、など)を採用してもよい。
【0037】
炭化珪素半導体基板10は、基板温度が室温であるときの反り量は−100μm以上100μm以下であり、好ましくは40μm以上40μm以下である。また、炭化珪素半導体基板10は、基板温度が100℃以上500℃以下であるときの反り量が−1.5mm以上1.5mm以下であり、好ましくは−1.0mm以上1.0mm以下である。より好ましくは、基板温度が200℃以上400℃以下であるときの反り量が−1.5mm以上1.5mm以下であり、さらに好ましくは−1.0mm以上1.0mm以下である。
【0038】
また、溝9の平面形状は、任意の形状とすることができる。たとえば、溝9の平面形状としては、図4に示すように線状に延びる溝9が複数本、互いに間隔を隔てて並ぶように配置されたストライプ状としてもよい。図4においては、複数の溝9は互いにほぼ平行に延びるように形成されているが、複数の溝9の延びる方向は必ずしも平行である必要はなく、1つの溝9の延びる方向に対して、他の溝9の延びる方向が交差していてもよい。さらに、隣接する溝9の間の間隔は、炭化珪素半導体基板10の裏面1B全体においてほぼ一定であってもよいが、当該間隔が局所的に変更されていてもよい。たとえば、裏面1Bの中央部では当該間隔を相対的に狭く、裏面1Bの外周部においては当該間隔を相対的に広くしてもよく、逆に裏面1Bの中央部では当該間隔を相対的に広く、裏面1Bの外周部においては当該間隔を相対的に狭くしてもよい。また、図4では溝9は直線状に延びるように形成されているが、溝9が屈曲部を有するように形成されていてもよいし、曲線状となるように形成されていてもよい。また、個々の溝9の幅Wや深さDを同じにしてもよいし、当該幅Wや深さDを個々の溝9において異なる値としてもよい。
【0039】
また、溝9の平面形状としては、図5に示すように格子状としてもよい。具体的には、間隔を隔てて第1の方向に延びるように形成された複数の溝9と、当該第1の方向と交差する方向(好ましくは直交する方向)である第2の方向に延びるように形成された複数の溝9とが形成されていてもよい。第1の方向と第2の方向とにおいて、隣接する溝9の間の間隔を同じにしてもよいし、当該間隔を第1の方向と第2の方向とで異なる値としてもよい。また、第1の方向および第2の方向のそれぞれにおいて、当該間隔を局所的に変更してもよい。たとえば、裏面1Bの中央部では当該間隔を相対的に狭く、裏面1Bの外周部においては当該間隔を相対的に広くしてもよく、また逆に裏面1Bの中央部では当該間隔を相対的に広く、裏面1Bの外周部においては当該間隔を相対的に狭くしてもよい。また、図5では溝9は直線状に延びるように形成されているが、溝9が屈曲部を有するように形成されていてもよいし、曲線状となるように形成されていてもよい。また、個々の溝9の幅Wや深さDを同じにしてもよいし、当該幅Wや深さDを個々の溝9において異なる値としてもよい。たとえば、第1の方向に延びる溝9と第2の方向に延びる溝9とで幅Wや深さDを異なる値としてもよい。
【0040】
また、溝9の平面形状としては、図6に示すように同心円状としてもよい。具体的には、同心円状に配置された複数の環状の溝9が形成されていてもよい。複数の溝9の幅Wや深さDはそれぞれ同じにしてもよいし異なる値としてもよい。たとえば、同心円の中心側での上記幅Wを相対的に小さくし、同心円の外周側での上記幅Wを相対的に大きくしてもよい。あるいは、同心円の中心側での上記幅Wを相対的に大きくし、同心円の外周側での上記幅Wを相対的に小さくしてもよい。また、同心円の中心側での上記深さDを相対的に浅くし、同心円の外周側での上記深さDを相対的に深くしてもよい。あるいは、同心円の中心側での上記深さDを相対的に深くし、同心円の外周側での上記深さDを相対的に浅くしてもよい。
【0041】
また、隣接する溝9の間の距離をすべて同じにしてもよいし、局所的に当該距離を変更してもよい。たとえば、同心円の中心側での上記距離を相対的に小さくし、同心円の外周側での上記距離を相対的に大きくしてもよい。あるいは、同心円の中心側での上記距離を相対的に大きくし、同心円の外周側での上記距離を相対的に小さくしてもよい。
【0042】
また、溝9の平面形状としては、図7に示すようにハニカム状としてもよい。具体的には、多角形状の領域(図7では六角形状の領域)を複数形成するように、溝9が形成されていてもよい。上記領域のサイズは、裏面1B全体でほぼ起因いつであってもよいが、局所的に異なっていてもよい。たとえば、裏面1Bの中心側で上記領域のサイズが相対的に小さく、裏面1Bの外周側で上記領域のサイズが相対的に大きくなっていてもよい。あるいは、裏面1Bの中心側で上記領域のサイズが相対的に大きく、裏面1Bの外周側で上記領域のサイズが相対的に小さくなっていてもよい。また、溝9の幅Wや深さDは裏面1B全体で均一であってもよいが、局所的に変更されていてもよい。たとえば、裏面1Bの中心側での上記幅Wを相対的に小さくし、裏面1Bの外周側での上記幅Wを相対的に大きくしてもよい。あるいは、裏面1Bの中心側での上記幅Wを相対的に大きくし、裏面1Bの外周側での上記幅Wを相対的に小さくしてもよい。また、裏面1Bの中心側での上記深さDを相対的に浅くし、裏面1Bの外周側での上記深さDを相対的に深くしてもよい。あるいは、裏面1Bの中心側での上記深さDを相対的に深くし、裏面1Bの外周側での上記深さDを相対的に浅くしてもよい。
【0043】
次に、図8図11を参照して、本実施の形態に係る炭化珪素半導体基板の製造方法について説明する。
【0044】
図8および図9を参照して、まず、外径が6インチである主面1Aを有し、単結晶炭化珪素からなるベース基板1が準備される(工程(S10))。外径が6インチであるベース基板1は任意の方法で準備される。なお、ベース基板1の外径は100mm以上(たとえば5インチや8インチなど)であってもよい。
【0045】
図10を参照して、次に、ベース基板1の主面1A上にエピタキシャル成長法により、エピタキシャル層2が形成される(工程(S20))。エピタキシャル成長はCVD法により行われる。原料ガスとしては、たとえば、シラン(SiH4)とプロパン(C38)との混合ガスを用い得る。この際、不純物として、たとえば窒素(N)やリン(P)を導入してもよい。
【0046】
本工程(S20)を実施した後の時点で、ベース基板1の裏面1Bの全面または一部において、珪素(Si)原子が抜けることにより炭素(C)原子の濃度が相対的に高くなったダメージ層3(炭化層)が形成されることがある。ダメージ層3は、たとえば0.001μm以上10μm以下程度の厚みで形成されることがあり、1μm以上の厚みで形成された場合には裏面1Bにおける白濁として目視で確認できることがある。ダメージ層3が形成されている領域の裏面1Bの表面粗さ(Ra)は0.001μm以上である。本工程(S20)を実施した後の時点で、裏面1Bにダメージ層3が形成されているベース基板1とエピタキシャル層2との積層体4は、基板温度が室温であるときの反りが、たとえば−150μm以上150μm以下である。
【0047】
図11を参照して、次に、ベース基板1の裏面1Bに溝9を形成する(工程(S30))。具体的には、積層体4におけるベース基板1の裏面1Bに、任意の深さDおよび幅Wの溝9を形成する。溝9の形成方法としては、機械加工、エッチングなど、任意の方法を用いることができる。また、ここでは上記工程(S20)を実施した後の積層体4が、エピタキシャル層2の主面2Aが凸状に反る場合を想定している。このような場合、上記のように溝9をベース基板1の裏面1Bに形成することにより、裏面1B側の応力を緩和することができる。このため、当該積層体4の反りを効果的に抑制できる。
【0048】
なお、上記工程(S20)後にエピタキシャル層2の主面2Aが凹状に反るときには、図12に示すようにエピタキシャル層2の主面2Aに溝9を形成してもよい。この場合、エピタキシャル層2の主面2A側の応力を溝9によって緩和することができるので、上記反りを効果的に低減できる。また、このとき、エピタキシャル層2の主面2Aは半導体装置を形成する面であるため、図13に示すように溝9をダイシングライン21内に形成することが好ましい。このようにすれば、ダイシングラインで囲まれた素子形成領域に溝9を形成しないので、炭化珪素半導体基板10において溝9を形成するために素子形成領域の面積が狭くなるといった問題の発生を抑制できる。また、このようにダイシングライン21内に溝9を形成する場合、複数のダイシングライン21のうちの一部のみに溝9を形成してもよいし、すべてのダイシングライン21内に溝9を形成してもよい。
【0049】
また、上述したように積層体4の反りの状態に応じて溝9を形成する面を決定しているが、反りの状態に応じてエピタキシャル層2の主面2Aおよびベース基板1の裏面1Bの両方に溝9を形成してもよい。
【0050】
次に、本実施の形態に係る炭化珪素半導体基板10およびその製造方法の作用効果について説明する。本実施の形態に係る炭化珪素半導体基板10は、外径が6インチであるベース基板1とベース基板1の主面1A上に形成されたエピタキシャル層2とが積層してなる積層体4の裏面1Bまたはエピタキシャル層2の主面2Aに溝9を形成している。これにより、炭化珪素半導体基板10は、基板温度が室温であるときの反りが−100μm以上100μm以下であるとともに、基板温度が100℃以上500℃以下であるときの反り量が−1.5mm以上1.5mm以下とすることができる。さらに、炭化珪素半導体基板10は、基板温度が室温であるときの反りが−100μm以上100μm以下であるとともに、基板温度が200℃以上400℃以下であるときの反り量が−1.5mm以上1.5mm以下とすることもできる。また、本実施の形態においては、溝9の平面形状、幅Wおよび深さD、さらには溝9を形成する面を適宜調整・選択することにより、基板温度を100℃以上500℃以下としたときに、炭化珪素半導体基板10の反り量を上述した反り量の範囲内に抑えることができる。具体的には、工程(S20)後の積層体4の反り形状や反り量に応じて、溝9の平面形状、幅Wおよび深さD、さらには溝9を形成する面を適宜調整することにより、上述のように高温時においても反り量の小さい炭化珪素半導体基板10を得ることができる。その結果、本実施の形態に係る炭化珪素半導体基板の製造方法によれば、基板温度が100℃以上500℃以下程度になるまで加熱された場合にも反り量が−1.5mm以上1.5mm以下、より好ましくは−1.0mm以上1.0mm以下と十分に小さい炭化珪素半導体基板10を得ることができる。
【0051】
また、本実施の形態に係る炭化珪素半導体基板の製造方法により作製される炭化珪素半導体基板10は、ベース基板1の外径が6インチであって、ベース基板1の厚みが200μm以上700μm以下のときにも、基板温度が100℃以上500℃以下程度にまで加熱された場合にも、反り量が小さく高い平坦性を有することができる。言い換えると、本実施の形態に係る炭化珪素半導体基板10は、ベース基板1が700μmを超える程の厚みを有していなくても、高温下においても高い平坦性を有することができる。その結果、本実施の形態に係る炭化珪素半導体基板の製造方法によれば、高温下においても高い平坦性を有する大口径の炭化珪素半導体基板10を、低コストで得ることができる。
【0052】
図14を参照して、次に、本実施の形態に係る炭化珪素半導体装置について説明する。本実施の形態に係る炭化珪素半導体装置は、素子領域IR(活性領域)と、素子領域IRを取り囲む終端領域OR(無効領域)とを有する。終端領域ORはガードリング領域5を含む。つまり、素子領域IRはガードリング領域5に取り囲まれている。素子領域IRにはトランジスタやダイオードなどの半導体素子7が設けられている。
【0053】
半導体素子7は、たとえば六方晶炭化珪素からなる炭化珪素半導体基板10と、ゲート絶縁膜15と、ゲート電極17と、ソース電極16と、ドレイン電極19とを主に備える。炭化珪素半導体基板10は、ベース基板1とエピタキシャル層2とを備え、エピタキシャル層2は、ドリフト領域12と、pボディ領域13と、n+ソース領域14と、p+領域18とを主に有する。
【0054】
ドリフト領域12は、エピタキシャル層2であって、pボディ領域13、n+ソース領域14、およびp+領域18が形成されていない領域である。
【0055】
pボディ領域13はp型の導電型を有する。pボディ領域13は、ドリフト領域12において、炭化珪素半導体基板10の主面2Aを含んで形成されている。pボディ領域13に含まれるp型不純物は、たとえばアルミニウム(Al)、ホウ素(B)などである。pボディ領域13に含まれるアルミニウムなどの不純物濃度はたとえば1×1017cm-3程度である。
【0056】
n+ソース領域14はn型の導電型を有する。n+ソース領域14は、主面2Aを含み、かつpボディ領域13に取り囲まれるように、pボディ領域13の内部に形成されている。n+ソース領域14に含まれるn型不純物は、たとえばP(リン)などである。n+ソース領域14に含まれるリンなどの不純物濃度は、ドリフト領域12に含まれるn型不純物よりも高い濃度であり、たとえば1×1020cm-3程度である。
【0057】
p+領域18はp型の導電型を有する。p+領域18は、主面2Aおよびpボディ領域13と接し、n+ソース領域14の中央付近を貫通するように形成されている。p+領域18は、p型不純物、たとえばAl、Bなどをpボディ領域13に含まれるp型不純物よりも高い濃度、たとえば1×1020cm−3程度の濃度で含んでいる。
【0058】
ゲート絶縁膜15は、一方のn+ソース領域14の上部表面から他方のn+ソース領域14の上部表面にまで延在するようにドリフト領域12に接して形成されている。ゲート絶縁膜15はたとえば二酸化珪素(SiO)からなっている。
【0059】
ゲート電極17は、一方のn+ソース領域14上から他方のn+ソース領域14上にまで延在するように、ゲート絶縁膜15上に接触して配置されている。ゲート電極17は、たとえばポリシリコン、Alなどの導電体からなっている。
【0060】
ソース電極16は、主面2Aにおいてn+ソース領域14およびp+領域18と接触して配置されている。ソース電極16は、たとえばチタン(Ti)原子、Al原子およびシリコン(Si)原子を含んでいる。これにより、ソース電極16はn型炭化珪素領域(n+ソース領域14)およびp型炭化珪素領域(p+領域18)のいずれに対してもオーミック接触することができる。
【0061】
ドレイン電極19は、炭化珪素半導体基板10において裏面1Bに接触して形成されている。このドレイン電極19は、たとえば上記ソース電極16と同様の構成を有していてもよいし、ニッケル(Ni)など、炭化珪素半導体基板10(ベース基板1)とオーミック接触可能な他の材料からなっていてもよい。これにより、ドレイン電極19はベース基板1と電気的に接続されている。
【0062】
ガードリング領域5は、平面形状が環状であり、半導体素子7が設けられた素子領域IRを取り囲むように、炭化珪素半導体基板10の終端領域ORに配置されている。ガードリング領域5はp型(第2導電型)を有する。ガードリング領域5はガードリングとして作用する導電領域である。
【0063】
ガードリング領域5の複数のガードリング6には、たとえばホウ素やアルミニウムなどの不純物が含まれている。複数のガードリング6の各々における不純物濃度はpボディ領域13の不純物濃度よりも低い。複数のガードリング6の各々における当該不純物の濃度はたとえば1.3×1013cm-3であり、好ましくは8×1012cm-3以上1.4×1013cm-3以下程度である。
【0064】
図15を参照して、次に、本実施の形態に係る炭化珪素半導体装置の製造方法について説明する。本実施の形態に係る炭化珪素半導体装置の製造方法は、本実施の形態に係る炭化珪素半導体基板を用いて作製される。
【0065】
まず、上述のようにして得られた炭化珪素半導体基板10を準備する(工程(S10)〜工程(S30))。図15を参照して、次に、炭化珪素半導体基板10の主面2Aに対して不純物を注入することにより、エピタキシャル層2に、pボディ領域13、nソース領域14、p+領域18、およびガードリング領域5を形成する(工程(S40))。具体的には、導電型がn型のエピタキシャル層2に、p型不純物としてたとえばAlがイオン注入されることにより、導電型がp型のpボディ領域13が形成される。さらに、pボディ領域13に、n型不純物としてたとえばPがイオン注入されることにより、導電型がn型のnソース領域14が形成される。さらに、p型不純物としてたとえばAlがイオン注入されることにより、導電型がp型のp+領域18が形成される。さらに、p型不純物としてたとえばAlがイオン注入されることにより、導電型がp型のガードリング領域5が形成される。このとき、本工程(S40)におけるイオン注入は、たとえば炭化珪素半導体基板10の基板温度を100℃以上500℃以下程度に昇温させた状態で行われる(いわゆる、高温注入)。本工程(S40)を実施前および実施した後の時点において、炭化珪素半導体基板10の反り量は−1.5mm以上1.5mm以下である。
【0066】
次に、イオン注入により添加された不純物を活性化するための熱処理が行われる(工程(S50))。熱処理の温度は、好ましくは1500℃以上1900℃以下であり、たとえば1700℃程度である。熱処理の時間は、たとえば30分程度である。熱処理の雰囲気は、好ましくは不活性ガス雰囲気であり、たとえばアルゴン(Ar)雰囲気である。本工程(S50)を実施した後の時点において、炭化珪素半導体基板10の反り量は−1.5mm以上1.5mm以下である。
【0067】
次に、ゲート絶縁膜15が形成される(工程(S60))。具体的には、まず、所望の不純物領域が形成された炭化珪素半導体基板10が熱酸化される。熱酸化は、たとえば酸素雰囲気中で1300℃程度に加熱し、40分間程度保持することにより実施することができる。これにより、炭化珪素半導体基板10の主面2A上にSiOからなるゲート絶縁膜15が形成される。
【0068】
次に、ゲート電極17が形成される(工程(S70))。この工程では、たとえば導電体であるポリシリコン、Alなどからなるゲート電極17が、一方のn+ソース領域14上から他方のn+ソース領域14上にまで延在するとともに、ゲート絶縁膜15に接触するように形成される。ゲート電極17の材料としてポリシリコンを採用する場合、当該ポリシリコンは、Pが1×1020cm−3を超える高い濃度で含まれるものとすることができる。その後、ゲート電極17を覆うように、たとえばSiOからなる絶縁膜が形成される。
【0069】
次に、オーミック電極が形成される(工程(S80))。具体的には、たとえばp+領域18およびn+ソース領域14の一部が露出するような開口部を有するレジストパターンを形成し、たとえばSi原子、Ti原子、およびAl原子とを含有する金属膜が基板全面に形成される。オーミック電極となる上記金属膜の形成は、たとえば、スパッタリング法や蒸着法により行われる。その後、当該レジストパターンをたとえばリフトオフすることにより、ゲート絶縁膜15に接し、かつp+領域18およびn+ソース領域14に接する金属膜が形成される。その後、当該金属膜をたとえば1000℃程度に加熱することにより、炭化珪素半導体基板10とオーミック接触するソース電極16が形成される。また炭化珪素半導体基板10のベース基板1とオーミック接触するドレイン電極19が形成される。このようにして、MOSFETとしての炭化珪素半導体装置100が完成する。
【0070】
次に、本実施の形態に係る炭化珪素半導体装置の製造方法の作用効果について説明する。本実施の形態に係る炭化珪素半導体装置の製造方法によれば、上述した本実施の形態に係る炭化珪素半導体基板10を用いて、炭化珪素半導体装置の製造に必要なイオン注入工程(S40)等のプロセスが実施される。炭化珪素半導体基板10は、基板温度が100℃以上500℃以下程度と高温に加熱処理される場合にも高い平坦性を有しているため、反り量が大きい炭化珪素半導体基板10を用いることによる品質不良発生のリスクを低減させることができる。たとえば、外径が100mm以上の炭化珪素半導体基板10を半導体製造装置の静電チャックステージで吸着させる場合、炭化珪素半導体基板10の割れ等の異常発生リスクの観点から、炭化珪素半導体基板10の反り量は−1.5mm以上1.5mm以下であるのが好ましく、より好ましくは−1.0mm以上1.0mm以下である。本実施の形態に係る炭化珪素半導体基板10は、基板温度が100℃以上500℃以下程度と高温に加熱処理された場合にも、反り量が−1.5mm以上1.5mm以下であるため、静電チャックステージで吸着することによる炭化珪素半導体基板10の割れ等の異常発生リスクを低減することができる。また、本実施の形態に係る炭化珪素半導体基板10は、基板温度が200℃以上400℃以下程度と高温に加熱処理された場合にも、反り量が−1.5mm以上1.5mm以下であるため、静電チャックステージで吸着することによる炭化珪素半導体基板10の割れ等の異常発生リスクを低減することができる。さらに、溝9について平面形状などを調整することで、炭化珪素半導体基板10は、基板温度が100℃以上500℃以下程度と高温に加熱処理された場合の反り量を−1.0mm以上1.0mm以下に抑えることも可能である。そのため、静電チャックステージで吸着することによる炭化珪素半導体基板10の割れ等の異常発生リスクをより低減することができる。さらに、溝9の平面形状など材質や厚みなどの条件を最適化した炭化珪素半導体基板10では、基板温度が200℃以上400℃以下程度と高温に加熱処理された場合の反り量を−1.0mm以上1.0mm以下に抑えることができる。そのため、静電チャックステージで吸着することによる炭化珪素半導体基板10の割れ等の異常発生リスクをより低減することができる。
【0071】
また、本実施の形態に係る炭化珪素半導体装置の製造方法は、平坦性が高く、主面2Aの平行度が高い炭化珪素半導体基板10を用いるため、炭化珪素半導体基板10の主面2A面内における加工品質のバラつき等の不良の発生に関するリスクを低減させることができ、炭化珪素半導体装置100を歩留まり良く作製することができる。具体的には、図15を参照して、たとえば工程(S40)において、該工程(S40)が実施される炭化珪素半導体基板10は主面2Aの平坦度が高いため、主面2Aと不純物の注入方向40i(図16参照)とが成すイオン注入角度については、主面2Aの面内におけるバラつきが低く抑えられている。そのため、図17を参照して、炭化珪素半導体基板10の主面2A上に形成されたマスク膜20の開口部から不純物が注入されて形成される不純物注入領域30(pボディ領域13、nソース領域14など)は、炭化珪素半導体基板10の中心部および外周部において同じように形成される。異なる観点から言えば、炭化珪素半導体装置100において不純物注入領域30は、主面2Aに対して垂直な方向に伸びる側壁部を有している。
【0072】
一方、図18を参照して、イオン注入工程において、炭化珪素半導体基板10の反り量が大きく主面2Aの平坦度が低い場合には、主面2Aと不純物の注入方向40iとが成すイオン注入角度については、主面2Aの面内におけるバラつきが大きい。この場合、図19を参照して、不純物注入領域30(pボディ領域13、nソース領域14など)は、炭化珪素半導体基板10の中心部と外周部とでは炭化珪素半導体基板10において形成される領域の位置や拡がり方が異なる。異なる観点から言えば、炭化珪素半導体装置100において不純物注入領域30は、主面2Aにおいて、局所的に当該主面2Aに対する側壁部の伸びる方向が異なる。つまり、本実施の形態に係る炭化珪素半導体装置の製造方法によれば、外径が100mm以上である大口径の炭化珪素半導体基板10を用いても、炭化珪素半導体基板10の主面2A全面において、当該主面2Aに対して垂直に伸びる側壁部を有する不純物注入領域30を形成することができる。そのため、主面2Aにおいて局所的に不純物注入領域30の形状(たとえば側壁部の伸びる方向)が異なるといった問題が発生しないので、炭化珪素半導体装置100を歩留まりよく得ることができる。
【0073】
なお、本実施の形態に係る炭化珪素半導体装置は、ガードリング領域5を取り囲むように、フィールドストップ領域(図示しない)を有していても構わない。フィールドストップ領域は導電型がn型であり、不純物注入工程(S40)においてソース領域14等と同様に高温注入により形成されればよい。本実施の形態に係る炭化珪素半導体装置は、高温環境下においても平坦性の高い炭化珪素半導体基板10を用いて作製されるため、ガードリング領域5やフィールドストップ領域の配置や形態についても主面2A内で局所的に変動するといった問題の発生を抑制できる。具体的には、たとえば主面2A内においてガードリング領域5とフィールドストップ領域との間隔が変動することを抑制することができる。
【0074】
以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
【産業上の利用可能性】
【0075】
本発明は、外径が100mm以上の大口径の炭化珪素半導体基板、およびその製造方法、ならびに該炭化珪素半導体基板を用いた炭化珪素半導体装置の製造方法に特に有利に適用される。
【符号の説明】
【0076】
1 ベース基板、1A,2A 主面、1B 裏面、2 エピタキシャル層、3 ダメージ層、4 積層体、5 ガードリング領域、6 ガードリング、7 半導体素子、9 溝、10 炭化珪素半導体基板、12 ドリフト領域、13 ボディ領域、14 ソース領域、15 ゲート絶縁膜、16 ソース電極、17 ゲート電極、18 p+領域、19 ドレイン電極、20 マスク膜、21 ダイシングライン、30 不純物注入領域、100 炭化珪素半導体装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19