(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
図6は、本発明の対象となる車輪支持用転がり軸受ユニットの1例として、特許文献1に記載されたものを示している。この
図6に示した車輪支持用転がり軸受ユニット1は、外輪2と、ハブ3と、複数個の転動体(図示の例では玉)4、4とを備えている。
このうちの外輪2は、外周面に静止側フランジ5を、内周面に複列の外輪軌道6a、6bを、それぞれ有している。又、前記ハブ3は、ハブ本体7と内輪8とを組み合わせて成る。このうちのハブ本体7は、外周面の軸方向外端寄り部分に回転側フランジ9を、同じく軸方向中間部に軸方向外側の内輪軌道10aを、同じく軸方向内端部に小径段部11を、それぞれ有している。尚、本明細書及び特許請求の範囲で、「軸方向」、「径方向」、「円周方向」とは、特に断らない限り、ハブ本体に関するそれぞれの方向を言う。又、本明細書及び特許請求の範囲で、軸方向に関して「外側」とは、自動車への組み付け状態で車両の幅方向外側を言い、
図6の左側を言う。反対に、自動車への組み付け状態で車両の中央側となる、
図6の右側を、軸方向に関して「内側」と言う。
【0003】
前記内輪8は、外周面に軸方向内側の内輪軌道10bを有するもので、前記ハブ本体7の小径段部11に締り嵌めで外嵌されている。又、前記各転動体4、4は、前記両外輪軌道6a、6bと前記両内輪軌道10a、10bとの間に、両列毎に複数個ずつ転動自在に設けられている。又、この状態で、前記ハブ本体7の軸方向内端部に設けた円筒部12のうち、前記内輪8の軸方向内端開口から突出した部分を径方向外方に塑性変形させる事によりかしめ部13を形成している。そして、このかしめ部13により前記内輪8の軸方向内端面を抑え付ける事で、前記各転動体4、4に適正な予圧が付与されている。
【0004】
上述の様に構成する車輪支持用転がり軸受ユニット1を組み立てる際には、先ず、前記ハブ本体7の周囲に前記外輪2を配置すると共に、前記両外輪軌道6a、6bのうち、軸方向外側の外輪軌道6aと、前記軸方向外側の内輪軌道10aとの間に前記各転動体4、4を、軸方向外側の保持器14aにより保持した状態で設ける。次に、前記内輪8の外周面に形成した軸方向内側の内輪軌道10bの周囲に前記各転動体4、4を、軸方向内側の保持器14bにより保持した状態で設置し、この状態で前記内輪8を、前記ハブ本体7の軸方向内端部に形成した小径段部11に締り嵌めで外嵌する。そして、この外嵌作業に伴い、前記軸方向内側の保持器14bにより保持した(軸方向内側列の)前記各転動体4、4の転動面を、前記軸方向外側の外輪軌道6aに当接させる。次いで、前記ハブ本体7の円筒部12の軸方向内端部(内輪8の軸方向内端開口から突出した部分)を径方向外方に塑性変形させ、前記かしめ部13を形成する。そして、このかしめ部13により前記内輪8の軸方向内端面を軸方向に抑え付ける事で、この内輪8を前記ハブ本体7に固定する。
【0005】
前記ハブ本体7に前記内輪8を固定する為の前記かしめ部13は、例えば、特許文献1〜3に記載された様な揺動かしめ加工により形成する。この揺動かしめ加工により前記かしめ部13を形成する場合には、例えば、
図7に示す様な揺動かしめ装置15を使用する。この揺動かしめ装置15は、押型16と、抑え治具17と、ホルダ18とを備えている。前記円筒部12をかしめ広げて前記かしめ部13を形成する際には、前記ホルダ18を介して前記ハブ3を上方に押圧しつつ、前記押型16をアクチュエータ(図示省略)により揺動回転させる。即ち、この押型16の中心軸と前記ハブ3の中心軸とを角度θだけ傾斜させた状態で、この押型16を、このハブ3の中心軸を中心として回転させる。この様な揺動かしめ装置15を使用して行う揺動かしめ加工により前記かしめ部13を形成する際には、前記押型16の円周方向の一部が前記円筒部12の軸方向内端部を押圧する事になり、前記かしめ部13への加工作業は部分的に且つ円周方向に連続して進行する事になる(押型16の中心軸をハブ3の中心軸の回りで歳差運動による中心軸の軌跡の如く振れ回り運動させる)。この為、一般的な鍛造加工により前記かしめ部13を形成する場合に比べて、加工に要する荷重を小さくできる。
【0006】
上述の様に形成する前記かしめ部13は、前記内輪8の軸方向内端面を抑え付ける事で、前記各転動体4、4に適正な予圧を付与している。この様に適切な大きさの予圧を付与する為には、前記かしめ部13が前記内輪8の軸方向内端面を軸方向外方に押圧する力(軸力)を一定にする(安定させる)事が望まれている。この為に、前述した様な揺動かしめ装置15を使用して行う揺動かしめ加工の場合、前記押型16により前記円筒部12に付与する荷重、及びこの様な荷重を付与する時間を一定にする様にしている。しかしながら、この様な方法の場合、各ワーク毎に(製造誤差や性状の違いに応じて)、付与する荷重の大きさ及びこの荷重を付与する時間を最適化できていない可能性がある。即ち、例えば、製造誤差に基づく前記円筒部12のうち、前記内輪8の軸方向内端開口から突出した部分の突出量(突出長さ)のばらつき等によっては、所望の大きさの予圧を付与する為に必要な荷重よりも大きな荷重を付与したり、この荷重を付与する時間が必要以上に長くなってしまう可能性がある。
【発明を実施するための形態】
【0015】
[実施の形態の第1例]
本発明の実施の形態の第1例に就いて、
図1〜3を参照しつつ説明する。以下、本例の製造方法で使用する事ができる揺動かしめ装置15aの構造を簡単に説明し、その後、本例の製造方法に就いて説明する。尚、本発明の製造方法で使用する事ができる揺動かしめ装置の構造は、以下で説明する本例の揺動かしめ装置15aの構造に限定されるものではない。
【0016】
本例の製造方法に使用する揺動かしめ装置15aは、
図1に示す様に、電動モータ19と、スピンドル20と、ロール把持部21と、ロール22と、押圧手段23と、電流計測手段(図示省略)とを備えている。
このうちの電動モータ19は、例えば、回転速度を調節する為のインバータとインダクションモータで構成される。又、電動モータとして、サーボモータを使用しても良い。この他、電動モータとしては、DCモータ、ステッピングモータを使用する事が可能である。この様な電動モータ19は、図示しないハウジングに支持されている。
前記スピンドル20は、このスピンドル20の軸方向一端部(
図1の上端部)が前記電動モータ19の出力軸(図示省略)に、直接(ギヤ等のトルクや速度を変化させる機構を介する事なく)結合固定されている。この様なスピンドル20は、前記電動モータ19により回転駆動される。
【0017】
前記ロール把持部21は、断面略六角形状であり、基端側半部(
図1の上半部)に設けられた円柱部24と、先端側半部(
図1の下半部)に設けられた部分円錐部25とから成る。
このうちの円柱部24は、外径寸法が前記スピンドル20の外径寸法よりも大きい。この様な円柱部24は、この円柱部24の軸方向一端部(
図1の上端部)を、前記スピンドル20の軸方向他端部(
図1の下端部)に結合固定されている。この状態で、前記円柱部24の中心軸と前記スピンドル20の中心軸α
20とは同心である。
【0018】
前記部分円錐部25は、外径寸法がこの部分円錐部25の軸方向一方に向かうほど大きくなる状態に形成されている。この様な部分円錐部25は、前記円柱部24の軸方向他端側に、この円柱部24と一体且つ同心に形成されている。
以上の様な構成を有するロール把持部21は、前記部分円錐部25から前記円柱部24の軸方向他端寄り部分に掛けて、把持凹部26が形成されている。具体的には、この把持凹部26は、円筒状の内周面を有しており、前記部分円錐部25(ロール把持部21)の軸方向他端面に、この軸方向他端面から前記ロール把持部21の軸方向に関して一方側に凹入した状態で形成されている。この様な把持凹部
26は、中心軸
β26が、前記電動モータ19の出力軸、前記スピンドル20の中心軸α
20、及び前記ロール把持部21の中心軸に対して、所定角度θ(例えば、5〜30度程度)だけ傾斜した状態で形成されている。
【0019】
前記ロール22は、軸状部材であり、支持部27と、かしめ形成部28とから成る。
このうちの支持部27は、小径軸部29と、大径軸部30とから成る段付きの軸状に形成されている。このうちの小径軸部29は、前記ロール22の軸方向全長に亙り外径寸法が変化しない円柱状である。この様な小径軸部29は、前記支持部27のうち、前記ロール22の軸方向一端(
図1の上端)寄り部分から同じく軸方向一端部に掛けての部分に形成されている。
前記大径軸部30は、前記ロール22の軸方向全長に亙り外径寸法が変化しない円柱状である。この様な大径軸部30は、前記支持部27のうち、前記小径軸部29よりも前記ロール22の軸方向他端側(
図1の下端)に形成されている。
【0020】
又、前記かしめ形成部28は、外径寸法が前記支持部27の大径軸部30よりも大きい略円柱状である。この様なかしめ形成部28の軸方向他端面のうち、このかしめ形成部28の径方向中間部には、全周に亙りこの軸方向他端面からこのかしめ形成部28の軸方向に関して一方側に凹んだ状態でかしめ形成凹溝31が形成されている。このかしめ形成凹溝31の、前記ロール22の中心軸を通る仮想平面に関する断面形状は、このロール22の径方向に関する中央部が最も深い凹円弧形状に形成されている。尚、前記かしめ形成部28と前記支持部27とを分割して、取り外し可能に構成する事もできる。この様な構成を採用する事により、前記かしめ形成部28が摩耗して交換が必要となった場合に、このかしめ形成部28のみの交換が可能となり、前記ロール22の加工費、材料費を下げる事ができる。
【0021】
以上の様な構成を有する前記ロール22は、前記ロール把持部21の把持凹部26の内側に、自身の中心軸β
22を中心とした回転(自転)を可能な状態で把持されている。具体的には、前記ロール22は、このロール22を構成する支持部27の小径軸部29を、前記把持凹部
26の奥端部に内嵌固定された円輪状の把持円輪状部材32の内側に挿入されている。又、この状態で、前記ロール22を構成する支持部27の大径軸部30は、前記
把持凹部
26の軸方向中間部に内嵌固定されたスリーブ33の内側に、一対の転がり軸受34a、34bを介して、このスリーブ33に対する回転を可能な状態に内嵌されている。又、この状態で、前記ロール22の軸方向他端面のうち、このロール22の中心軸β
22の前記スピンドル20の中心軸α
20に対する傾斜方向側の半部は、前記ロール把持部21の軸方向他端面よりも、このロール把持部21の軸方向他方に突出している。
【0022】
前記押圧手段23は、前記ロール22を下方に押圧する為のものである。この様な押圧手段23は、図示しないポンプと、油圧シリンダ35とにより構成されている。この様な油圧シリンダ35は、その内側に前記スピンドル20を、このスピンドル20の中心軸α
20を中心とする回転を可能に、且つ、この中心軸α
20の軸方向の変位を可能に支持している。又、この様な油圧シリンダ35は、前記ポンプから送り出された作動油が、供給口36を介して供給され、同時に排出口37から作動油が排出されると、前記スピンドル20を、軸方向他方(
図1の下方)に変位させる。一方、前記油圧シリンダ35は、前記排出口37から作動油が供給され、同時に前記供給口36から排出されると、前記スピンドル20を軸方向一方(
図1の上方)に変位させる。尚、押圧手段の構造は、本例の構造に限定されるものではない。この様な押圧手段として、例えば、空気圧により前記スピンドル20を軸方向に変位させるエアシリンダや、電動モータによって回転させられるボールねじ等を採用する事もできる。何れにしても、前記押圧手段は、前記スピンドル20を軸方向に変位させる事が可能な各種構造を採用できる。
【0023】
前記電流計測手段は、前記電動モータ19の駆動制御にインバータを使用する場合は、このインバータに備えられた電流計測手段を使用する事ができるので、特別に設置する必要はない。又、前記電動モータ19としてサーボモータを使用する場合には、モータドライバに電流計測手段が備わっている場合が多いので、この場合には特別に設置する必要はない。一方、前記電動モータ19の駆動制御にインバータを使用しない場合や、電流計測手段を備えたサーボモータを使用しない場合には、前記電動モータ19を流れる電流を計測する為の電流計測手段として、従来から知られている各種手段を採用する事ができる。
【0024】
次に、以上の様な構成を有する揺動かしめ装置15aを使用して行う、本例の車輪支持用転がり軸受ユニットの製造方法に就いて説明する。
本例の車輪支持用転がり軸受ユニットの製造方法は、ハブ本体7の軸方向内端部に設けた円筒部12のうち、内輪8の軸方向内端開口から突出した部分を径方向外方に塑性変形させる事によりかしめ部13を形成する為のかしめ加工を工夫した点にその特徴を有している。
【0025】
この様な本例の車輪支持用転がり軸受ユニットの製造方法は、ハブ本体7の周囲に外輪2を配置すると共に、両外輪軌道6a、6bのうち、軸方向外側の外輪軌道6aと、軸方向外側の内輪軌道10aとの間に各転動体4、4を、軸方向外側の保持器14a(
図6参照)により保持した状態で設ける。次に、内輪8の外周面に形成した軸方向内側の内輪軌道10bの周囲に前記各転動体4、4を、軸方向内側の保持器14bにより保持した状態で設置し、この状態で前記内輪8を、前記ハブ本体7の軸方向内端部に形成した小径段部11に締り嵌めで外嵌する。そして、この外嵌作業に伴い、前記軸方向内側の保持器14bにより保持した前記各転動体4、4の転動面を、前記軸方向外側の外輪軌道6aに当接させて、中間組立体(図示省略)とする。
【0026】
次いで、前記中間組立体を、軸方向内端側が上方となる状態で、前記揺動かしめ装置15aを構成する固定台38の固定部39に固定する。この状態で、前記中間組立体を構成するハブ本体7の中心軸α
7と、前記スピンドル20の中心軸α
20とが同心となる。
次いで、前記電動モータ19を、所定の回転速度(一定の回転速度)で回転駆動して、前記スピンドル20を回転駆動し、この状態のまま、前記ロール22を下方に変位させて、このロール22のかしめ形成凹溝31の一部を、前記ハブ本体7の円筒部12の円周方向一部に当接させる。そして、この状態から、前記押圧手段23により、前記ロール22のかしめ形成凹溝31を前記円筒部12の軸方向内端面に向けて下方に所定の力で押圧する。この状態では、前記ロール22は、前記スピンドル20の中心軸α
20を中心として揺動している(ハブ本体7の中心軸の回りで歳差運動している)。すると、前記ロール22は、前記ロール把持部21の把持凹部26に回転可能に把持されている為、このロール22は、このロール22のかしめ形成凹溝31と前記円筒部12との当接部の摩擦に基づいて、自身の中心軸α
22を中心に回転する。
【0027】
次に、上述の様なかしめ加工により前記ハブ本体7の円筒部12に、前記かしめ部13が形成される際の、この円筒部12の塑性変形の状態に就いて、
図2を参照しつつ説明する。
先ず、上述の様に前記ロール22のかしめ形成部28が、前記円筒部12に当接してこの円筒部12を下方に押圧すると、この円筒部12の軸方向内端面(
図2の上端面)が、この軸方向内端面の径方向内端縁{
図2(A)に二点鎖線で示す部分の左端縁}から徐々に押し潰されて、
図2(A)に実線で示す様に、前記かしめ形成凹溝31の径方向内側寄り部分31aに沿った形状となる。尚、この様な変形は、前記ロール22の、前記ハブ本体7及びスピンドル20の中心軸α
7、α
20周りの揺動に伴い、前記円筒部12の全周に亙り連続して進行する。
図2(A)に示す状態では、前記円筒部12の軸方向内端部(内輪8の軸方向内端開口から突出した部分)の外周面は、前記内輪8の軸方向内端面と、この内輪8の内周面の軸方向内端縁とを連続する、断面円弧状の曲面部40に当接していない。
【0028】
図2(A)に示す状態から、更にかしめ加工が進むと、
図2(B)に示す様に、前記円筒部12の軸方向内端面が、前記かしめ形成凹溝31の底面を、前記ロール22の径方向に関して内側から外側に沿う様に移動しつつ、前記円筒部12が、軸方向内側に向かうほど内径寸法が大きくなる方向に折れ曲がり始める。そして、前記円筒部12は、
図2(C)に示す様に、前記円筒部12の軸方向内端面が、前記かしめ形成凹溝31の径方向外側寄り部分31bに位置するまで、径方向外方に折れ曲がる。尚、
図2(B)及び(C)に示す状態では、依然として前記円筒部12の軸方向内端部の外周面は、前記曲面部40に当接していない。
【0029】
図2(C)に示す状態では、前記円筒部12は、前記かしめ形成凹溝31の径方向外側寄り部分31bに拘束されて、それ以上径方向外方に折れ曲がり難くなる。この様な
図2(C)に示す状態から、更にかしめ加工が進むと、前記円筒部12は、軸方向外側に押し潰される様に変形して、
図2(D)に示す状態となる。尚、この
図2(D)に示す状態では、前記円筒部12の軸方向内端部の外周面が、前記曲面部40に、
図2(D)のX位置で当接している。
【0030】
図2(D)に示す状態では、前記円筒部12の外周面と前記曲面部40との当接部に応力集中が生じる事により、この円筒部12の軸方向内端部が、軸方向外側に変形し易くなる。この様な
図2(D)に示す状態から、更にかしめ加工が進むと、前記円筒部12の外周面と前記曲面部40との当接部(X位置)が起点となり、前記円筒部12の軸方向内端部が軸方向外側に押し潰される様にして変形して、
図2(E)に示す状態となる。即ち、前記円筒部12の軸方向内端部の変形に伴って、変形前の前記円筒部12の軸方向中間部外周面に相当する部分と、前記内輪8の軸方向内端面との当接面積が徐々に増えていく。
図2(F)は、
図2(E)に示す状態から或る程度の時間(例えば、10秒程度)が径かした後の状態を示している。
図2(E)に示す状態と、
図2(F)に示す状態とを比較すると、かしめ部の形状はほとんど変化していない。従って、形状的な観点から見て、
図2(E)に示す状態でかしめ部の形成は終了している。しかし、後述する、
図3(へ)と(ト)との境界付近は、形状的な観点のみでは、かしめ部の形成の終了を正確に把握できない。この為、かしめ部の形成の終了を正確に把握する為に、電流値(回転トルク)といった観点からの判断が必要となる。
【0031】
本例の製造方法の場合、上述の様なかしめ加工の間中、前記電動モータ19に流れる電流の大きさを前記電流計測手段により計測する様にしている。尚、一般的に電動モータを流れる電流と、電動モータが発生する回転トルクとは相関関係(比例関係)を有しており、計測した電動モータに流れる電流値に基づいて、電動モータが発生する回転トルクを求める事もできる。この際、鉄損等のモータの損失、滑りの影響が考えられるが、通常は無視できる。即ち、本例の場合、前記電流計測手段により計測する前記電動モータ19に流れる電流が、特許請求の範囲に記載した物理量に相当する。尚、物理量としては、前記電動モータ19に流れる電流以外に、この電動モータ19、又はこの電動モータ19と同期して回転する部分の回転速度{電圧、電流が一定でかしめに必要なトルクが増加(低下)すると回転速度が低下(上昇)する}、電流計を付けて測定した電力(トルクが上昇すると電力が増加する)等を採用する事ができる。又、例えば、前記スピンドル20にトルクセンサを設けて直接トルクを測定する方法を採用する事もできる。
本例の場合、前記電動モータ19を一定の回転速度で回転駆動させている為、この電動モータ19に流れる電流の大きさは、前記円筒部12とロール22との当接部に生じる回転トルクの大きさに応じて変動する。
そして、本例の場合、前記電流計測手段により計測した電流値(回転トルク)に基づいて、かしめ加工を終了する条件(タイミング)を決定している。
【0032】
以下、前記電流計測手段により計測した電流値(回転トルク)に基づいて、かしめ加工を終了するタイミングを決定する方法に就いて説明する。
先ず、前述した様なかしめ加工の際、前記電動モータ19を駆動してから、
図2(F)の状態に至るまでに計測したこの電動モータ19に流れる電流値と、加工時間との関係は
図3に示す線図の様になる。従って、この電流値と相関を有する、前記電動モータ19が発生する回転トルクも、
図3に示す線図とほぼ同様の軌跡を描く。
【0033】
この様な
図3に示す線図のうち、(イ)で示す部分は、前記電動モータ19に通電を開始した直後であり、電流値(回転トルク)が急激に上昇している。
又、
図3に(ロ)で示す部分は、電流値(回転トルク)が緩やかに上昇している。この(ロ)で示す部分は、前記ロール22のかしめ形成凹溝31が前記円筒部12の軸方向内端面の径方向内端縁に当接した状態から、この円筒部12が徐々に押し潰されて
図2(A)に示す状態にまで変形する際の電流値(回転トルク)の変化の様子を示している。尚、前記円筒部12と前記ロール22との当接部に生じる負荷トルクT
aは、このロール22がこの円筒部12を押圧する圧下領域の軸方向断面積Sと、この円筒部12の変形抵抗Yと、前記ハブ本体7(スピンドル20)の中心軸α
7、α
20から前記当接部の中心までの距離Rとの影響が大きく、下記の式(1)により近似的に求める事ができる。ここで、前記圧下領域の軸方向断面積Sとは、
図5に示す様に、前記ロール22が、前記スピンドル20の中心軸α
20を中心として
図5に矢印Gで示す方向に揺動する場合に、前記ロール22が前記円筒部12を押圧している部分の径方向寸法dと、このロール22がこの円筒部12を軸方向に押し潰す量(潰し代)tとの積(S=d・t)で近似する事ができる。従って、前記電動モータ19に通電を開始した直後の始動トルクをT
Sとした場合に、前記ロール22に対して前記負荷トルクT
aが作用した場合に、前記電動モータ19が発生する回転トルクTは、下記の式(2)により近似的に求める事ができる。
T
a=S・Y・R −−−−− (1)
T=T
S+T
a −−−−− (2)
【0034】
前記
図3に(ロ)で示す部分では、前記ロール22のかしめ形成凹溝31が前記円筒部12の軸方向内端面の径方向内端縁に当接した状態から、この円筒部12が徐々に押し潰されていく。従って、上記式(1)のうち、前記当接部の当接面積Sが少しずつ増加するのに伴って、前記電流値(回転トルク)が緩やかに増加している。
【0035】
又、
図3に(ハ)で示す部分では、比較的急勾配に、前記電流値(回転トルク)が上昇している。この
図3に(ハ)で示す部分は、
図2(A)に示す状態から
図2(B)に示す状態を介して
図2の(C)に示す状態にまで変化する際の電流値(回転トルク)の変化の様子を示している。前述した様に、
図2(A)の状態から
図2(C)の状態にまで変化する際、前記円筒部12の軸方向内端面が、前記かしめ形成凹溝31の底面を、前記ロール22の径方向に関して内側から外側に沿う様に移動しつつ、前記円筒部12が、軸方向内側に向かうほど内径寸法が大きくなる方向に折れ曲がる様に変形する。前記円筒部12がこの様に変形すると、前記式(1)のうちの前記距離Rが大きくなり、この距離Rの増加に比例する様にして、前記電流値(回転トルク)が増加する。
【0036】
又、
図3に(ニ)で示す部分では、
図3に(ハ)で示す部分よりも比較的緩やかに、前記電流値(回転トルク)が上昇している。この
図3に(ニ)で示す部分は、
図2(C)に示す状態から
図2(D)に示す状態にまで変化する際の電流値(回転トルク)の変化の様子を示している。前述した様に、
図2(C)に示す状態では、前記かしめ形成凹溝31の径方向外側寄り部分31bに拘束されて、前記円筒部12は、この円筒部12の径方向外方に変形し難くなる。この為、
図2(C)に示す状態から、更にかしめ加工が進むと、前記円筒部12は、軸方向外側に押し潰される様に変形して、
図2(D)に示す状態となる。従って、前記円筒部12が軸方向外側に押し潰される分だけ、前記式(1)のうちの、前記当接部の当接面積Sが大きくなる。但し、この当接面積Sの増加率は、
図3に(ハ)に示す部分の、前記距離Rの増加率よりも小さくなる為、
図3に(ニ)で示す部分では、
図3に(ハ)で示す部分よりも緩やかに、前記電流値(回転トルク)が上昇している。
【0037】
又、
図3に(ホ)で示す部分では、前記電流値(トルク)が所定の変化率以上で急激に減少している。この
図3に(ホ)で示す部分は、
図2(D)に示す状態から
図2(E)に示す状態にまで変化するうちの前半部の電流値(回転トルク)の変化の様子を示している。前述した様に、
図2(D)に示す状態では、前記円筒部12の外周面と前記曲面部40との当接部に応力集中が生じる事により、この円筒部12の軸方向内端部が、軸方向外側に変形し易くなる。この様に、
図3に(ホ)で示す部分では、前記式(1)のうちの、前記変形抵抗Yが急激に減少している為、前記電流値(回転トルク)が急激に(所定値以上の変化率で)減少している。
【0038】
又、
図3に(ヘ)で示す部分では、時間が経つに連れて電流値(回転トルク)の減少が徐々に緩やかになっている。この
図3に(ヘ)で示す部分は、
図2(D)に示す状態から
図2(E)に示す状態にまで変化するうちの後半部の電流値(回転トルク)の変化の様子を示している。即ち、
図3に(ホ)で示す部分では、前述した様に変形抵抗Yの急激な減少に伴い、前記電流値(回転トルク)も急激に減少しているが、その後、変形前の前記円筒部12の軸方向中間部外周面に相当する部分と、前記内輪8の軸方向内端面との当接面積が徐々に増えるに従って、前記変形抵抗Yが徐々に大きくなる。そして、前記円筒部12の軸方向内端部が、前記押圧手段23により付与される押圧力によっては、それ以上変形し難くなる。この為、
図3に(ヘ)で示す部分では、時間が経つに連れて電流値(回転トルク)の減少が徐々に緩やかになっている。
【0039】
又、
図3に(ト)で示す部分では、電流値(回転トルク)の変化率が所定の範囲内に収束している。この
図3に(ト)で示す部分は、
図2(E)に示す状態から
図2(F)に示す状態にまで変化する際の電流値(回転トルク)の変化の様子を示している。前述した様に、
図2(E)に示す状態と、
図2(F)に示す状態とでは、前記かしめ部13の形状はほとんど変化していない。従って、前記電流値(回転トルク)と言った観点から見ると、
図2(E)の状態で、前記かしめ部13は完成している。
【0040】
本例の製造方法の場合、以上の様に前記電流計測手段により計測した電流値、又は、この電流値に基づいて求めた回転トルクに基づいて、かしめ加工を終了するタイミングを決定している。具体的には、本例の場合、
図3に(ホ)で示す部分の様に、前記電流値(回転トルク)が急激に(所定値A
r以上の変化率で)減少した時点(
図3にγで示す時点)から、所定時間T
pが経過した後に、かしめ加工を終了する様にしている。本例の場合、この所定時間を3.5秒としている。これは、
図3に示す様に、
図3にγで示す時点から約2.7秒経過後に、前記電流(回転トルク)の変化が所定の範囲内に収束し始めているからである。尚、電流値(回転トルク)が急激に減少する時点や、この時点から前記電流(回転トルク)の変化が所定の範囲内に収束し始めるまでに掛かる時間は、車輪支持用転がり軸受ユニットのサイズ(型番)や、電動モータのサイズ等により異なるものである。この為、前記所定時間T
pは、予め行ったシミュレーションや実験等の結果に基づいて、適宜決定する事ができる。同様に、前記変形抵抗Yが急激に減少する際の、前記電流値の変化率A
rも、各種条件により異なるもので、予めシミュレーションや実験により求める事ができる。
【0041】
上述の様に構成する本例の車輪支持用転がり軸受ユニットの製造方法によれば、各ワーク毎のかしめ加工の加工時間の最適化を図れる。
即ち、本例の場合、前記かしめ部13を形成する為のかしめ加工中に、前記電動モータ19に流れる電流値を検出し、この検出により得られる電流値又はこの電流値から求めた回転トルクの状態に基づいて、前記かしめ加工を終了する時間を決定する様に構成している。具体的には、前述した様に、
図3に(ホ)で示す部分の様に、前記電流値(回転トルク)が急激に(所定値A
r以上の変化率で)減少した時点(
図3にγで示す時点)から、所定時間T
p(本例の場合3.5秒)が経過した後に、かしめ加工を終了する様にしている。この様に、各ワーク毎に、前記検出により得られる電流値(回転トルク)の状態に基づいてかしめ加工を終了する時間を決定すれば、各ワーク毎にかしめ加工の加工時間の最適化を図る(加工時間が短すぎたり、徒に長くなるのを防止する)事ができる。
【0042】
[実施の形態の第2例]
本発明の実施の形態の第2例に就いて、
図2、3を参照しつつ説明する。本例の車輪支持用転がり軸受ユニット製造方法の場合も、かしめ加工中に電動モータ19に流れる電流値を計測している。
特に、本例の場合、かしめ加工を開始して、前記電流値又はこの電流値から求めた回転トルクが、
図3に(ロ)〜(ニ)に示す様に上昇し、
図3に(ホ)で示す様に急激に減少した後、
図3に(ト)で示す部分の様に、前記電流値(回転トルク)の変化が所定の範囲内に収束した事を確認した時点で、かしめ加工を終了する様にしている。具体的には、本例の場合、前記電流値(回転トルク)の変化量εが所定時間(本例の場合、0.5〜1秒)の間、所定の範囲(−0.5≦ε≦0.5)に収まった状態で、前記電流値(回転トルク)が一定になったと判断し、かしめ加工を終了する様にしている。その他の部分の構成、及び作用・効果は、前述した実施の形態の第1例と同様である。