(58)【調査した分野】(Int.Cl.,DB名)
シート状の溶融材と、前記溶融材に積層し前記溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用い、電極を挟持する前記耐熱材同士を対面させた一対の前記セパレータを互いに接合する電気デバイスのセパレータ接合方法であって、
超音波によって前記セパレータに加工を施す超音波加工部材を一対の前記セパレータのうちの一の前記セパレータの前記溶融材に当接させ、積層方向と交差した方向に超音波を印加して前記溶融材を溶融させつつ、前記超音波加工部材を前記積層方向に沿って押圧した部分の前記耐熱材を、その押圧した領域から周囲の領域に移動させて疎にして、一対の前記セパレータの前記溶融材同士を接合する接合工程、を有し、
前記接合工程は、押圧部材によって前記超音波加工部材を押圧した状態で、前記超音波加工部材による超音波の印加を開始し、前記超音波加工部材による超音波の印加を継続した状態で、前記押圧部材による前記超音波加工部材に対する押圧を終了する電気デバイスのセパレータ接合方法。
シート状の溶融材と、前記溶融材に積層し前記溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用い、電極を挟持する前記耐熱材同士を対面させた一対の前記セパレータを互いに接合する電気デバイスのセパレータ接合装置であって、
一対の前記セパレータのうちの一の前記セパレータの前記溶融材に当接し、積層方向と交差した方向に超音波を印加して加工を施す超音波加工部材と、
前記超音波加工部材を前記積層方向に沿って押圧する押圧部材と、を有し、
前記超音波加工部材は、前記押圧部材によって押圧された状態で、超音波の印加を開始し、超音波の印加を継続した状態で、前記押圧部材による前記超音波加工部材に対する押圧を終了する電気デバイスのセパレータ接合装置。
【発明を実施するための形態】
【0011】
以下、添付した図面を参照しながら、本発明に係る第1および第2実施形態について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。
図1〜
図16の全ての図において、X、Y、およびZで表す矢印を用いて、方位を示している。Xで表す矢印の方向は、セラミックセパレータ40や正極20等の搬送方向Xを示している。Yで表す矢印の方向は、セラミックセパレータ40や正極20等の搬送方向と交差した方向Yを示している。Zで表す矢印の方向は、セラミックセパレータ40や正極20等の積層方向Zを示している。
【0012】
(第1実施形態)
セパレータ接合装置100によって接合して形成する電気デバイスは、
図1〜
図4に示すように、例えばリチウムイオン二次電池10の袋詰電極11に相当する。リチウムイオン二次電池10は、充放電が行われる発電要素12を外装材50で封止して構成している。発電要素12は、正極20を一対のセラミックセパレータ40で挟持して接合した袋詰電極11と、負極30とを交互に積層して構成している。リチウムイオン二次電池10が振動したり衝撃を受けたりしても、一対のセラミックセパレータ40の両端に形成した接合部40hによって正極20の移動を抑制することによって、セラミックセパレータ40を介して隣り合う正極20と負極30との短絡を防止する。接合部40hは、セラミックス層42同士を対面させた状態で、ポリプロピレン層41同士を部分的に溶融させつつ、溶融するポリプロピレン層41に隣接するセラミックス層42を周囲の領域に移動させて疎にし、対面したポリプロピレン層41同士を溶着させて形成している。
【0013】
セパレータ接合装置100は、
図5〜
図7等に示している。セパレータ接合装置100は、電気デバイス(リチウムイオン二次電池10の袋詰電極11)の接合において使用される。セパレータ接合装置100は、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い溶融材(ポリプロピレン層41に相当)を含むセラミックセパレータ40同士を接合する。
【0014】
セパレータ接合装置100は、電極(正極20または負極30)を搬送する電極搬送部110、正極20の一面に積層するセラミックセパレータ40を搬送する第1セパレータ搬送部120、および正極20の他面に積層するセラミックセパレータ40を搬送する第2セパレータ搬送部130を、含んでいる。また、セパレータ接合装置100は、正極20を挟持した一対のセラミックセパレータ40を保持するセパレータ保持部140、一対のセラミックセパレータ40を互いに接合するセパレータ接合部150、セラミックセパレータ40同士が接合されている間、袋詰電極搬送部170の搬送動作に追随するセパレータ搬送追随部160を、含んでいる。さらに、セパレータ接合装置100は、袋詰電極11を搬送する袋詰電極搬送部170、および各構成部材の作動をそれぞれ制御する制御部180を、含んでいる。
【0015】
先ず、セパレータ接合装置100によって接合して形成する袋詰電極11を、その袋詰電極11を包含するリチウムイオン二次電池10の構成に基づき、
図1〜
図4を参照しながら説明する。
【0016】
図1は、電気デバイス(袋詰電極11)を用いて構成したリチウムイオン二次電池10を示す斜視図である。
図2は、
図1のリチウムイオン二次電池10を各構成部材に分解して示す分解斜視図である。
図3は、
図1の袋詰電極11の両面に負極30をそれぞれ積層した状態を示す斜視図である。
図4は、
図3の構成を
図3中に示す4−4線に沿って示す部分断面図である。
【0017】
正極20は、電極に相当し、導電体である正極集電体21の両面に正極活物質を結着して形成している。電力を取り出す正極電極端子21aは、正極集電体21の一端の一部から延在して形成している。複数積層された正極20の正極電極端子21aは、溶接または接着によって互いに固定している。
【0018】
正極20の正極集電体21の材料には、例えば、アルミニウム製エキスパンドメタル、アルミニウム製メッシュ、アルミニウム製パンチドメタルを用いている。正極20の正極活物質の材料には、種々の酸化物(LiMn2O4のようなリチウムマンガン酸化物、二酸化マンガン、LiNiO2のようなリチウムニッケル酸化物、LiCoO2のようなリチウムコバルト酸化物、リチウム含有ニッケルコバルト酸化物、またはリチウムを含む非晶質五酸化バナジウム)またはカルコゲン化合物(二硫化チタン、二硫化モリブテン)等を用いている。
【0019】
負極30は、正極20と極性が異なる電極に相当し、導電体である負極集電体31の両面に負極活物質32を結着して形成している。負極電極端子31aは、正極20に形成した正極電極端子21aと重ならないように、負極集電体31の一端の一部から延在して形成している。負極30の長手方向の長さは、正極20の長手方向の長さよりも長い。負極30の短手方向の長さは、正極20の短手方向の長さと同様である。複数積層された負極30の負極電極端子31aは、溶接または接着によって互いに固定している。
【0020】
負極30の負極集電体31の材料には、例えば、銅製エキスパンドメタル、銅製メッシュ、または銅製パンチドメタルを用いている。負極30の負極活物質32の材料には、リチウムイオンを吸蔵して放出する炭素材料を用いている。このような炭素材料には、例えば、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、または有機前駆体(フェノール樹脂、ポリアクリロニトリル、またはセルロース)を不活性雰囲気中で熱処理して合成した炭素を用いている。
【0021】
セラミックセパレータ40は、正極20と負極30の間に設けられ、その正極20と負極30を電気的に隔離している。セラミックセパレータ40は、正極20と負極30との間に電解液を保持して、イオンの伝導性を担保している。セラミックセパレータ40は、矩形状に形成している。セラミックセパレータ40の長手方向の長さは、負極電極端子31aの部分を除いた負極30の長手方向の長さよりも長い。
【0022】
セラミックセパレータ40は、
図4に示すように、例えば、溶融材に相当するポリプロピレン層41に対して、耐熱材に相当するセラミックス層42を積層して形成している。セラミックス層42は、ポリプロピレン層41よりも溶融温度が高い。一対のセラミックセパレータ40は、正極20を挟持し、セラミックス層42同士を対面させて積層している。セラミックス層42は、正極20の正極活物質に当接している。
【0023】
セラミックセパレータ40のポリプロピレン層41は、ポリプロピレンをシート状に形成している。ポリプロピレン層41には、非水溶媒に電解質を溶解することによって調製した非水電解液を含浸させている。非水電解液をポリプロピレン層41に保持するために、ポリマーを含有させている。セラミックス層42は、例えば、無機化合物を高温で成形したセラミックスをポリプロピレン層41に塗布して乾燥させることによって形成している。セラミックスは、シリカ、アルミナ、ジルコニウム酸化物、チタン酸化物等のセラミック粒子とバインダーの結合により形成された多孔質からなる。
【0024】
一対のセラミックセパレータ40は、セパレータ接合装置100の搬送方向Xに沿った長手方向の両端にそれぞれ形成した複数の接合部40hによって、互いに接合している。接合部40hは、セラミックス層42同士を対面させた状態で、ポリプロピレン層41同士を部分的に溶融しつつ、ポリプロピレン層41に隣接するセラミックス層42を周囲の領域に移動させて疎にし、対面したポリプロピレン層41同士を溶着することによって、形成している。
【0025】
一対のセラミックセパレータ40によって、正極20の両面を挟持するように積層して袋詰めし、袋詰電極11を構成している。接合部40hは、一対のセラミックセパレータ40の長手方向に沿った両側において、たとえば両端部と中央部に合計3つずつ形成している。リチウムイオン二次電池10が振動したり衝撃を受けたりしても、セラミックセパレータ40の長手方向の両端に形成した接合部40hによって、袋詰電極11内における正極20の移動を抑制することができる。すなわち、セラミックセパレータ40を介して、隣り合う正極20と負極30の短絡を防止できる。したがって、リチウムイオン二次電池10は、所期の電気的特性を維持することができる。
【0026】
外装材50は、例えば、内部に金属板を備えたラミネートシート51および52から構成し、発電要素12を両側から被覆して封止している。ラミネートシート51および52で発電要素12を封止する際に、そのラミネートシート51および52の周囲の一部を開放して、その他の周囲を熱溶着等によって封止する。ラミネートシート51および52の開放している部分から電解液を注入し、セラミックセパレータ40等に電荷液を含浸させる。ラミネートシート51および52の開放部から内部を減圧することによって空気を抜きつつ、その開放部も熱融着して完全に密封する。
【0027】
外装材50のラミネートシート51および52は、例えば、それぞれ3種類の材料を積層して3層構造を形成している。1層目は、熱融着性樹脂に相当し、例えばポリエチレン(PE)、アイオノマー、またはエチレンビニルアセテート(EVA)を用いている。1層目の材料は、負極30に隣接させる。2層目は、金属を箔状に形成したものに相当し、例えばAl箔またはNi箔を用いている。3層目は、樹脂性のフィルムに相当し、例えば剛性を有するポリエチレンテレフタレート(PET)またはナイロンを用いている。
【0028】
次に、電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法を具現化したセパレータ接合装置100の各構成部材(電極搬送部110、第1セパレータ搬送部120、第2セパレータ搬送部130、セパレータ保持部140、セパレータ接合部150、セパレータ搬送追随部160、袋詰電極搬送部170、および制御部180)について、
図5〜
図12を参照しながら順に説明する。
【0029】
図5は、電気デバイス(袋詰電極11)のセパレータ接合装置100を示す斜視図である。
図6は、
図5のセパレータ保持部140とセパレータ接合部150とセパレータ搬送追随部160と袋詰電極搬送部170とを示す斜視図である。
図7は、
図5のセパレータ接合部150を示す斜視図である。
図8は、
図5のセパレータ接合部150によって一対のセラミックセパレータ40を接合する直前の状態を模式的に示す部分断面図である。
図9は、
図8の状態における一対のセラミックセパレータ40を搬送方向Zに沿った側面から示す写真である。
図10は、
図5のセパレータ接合部150によって一対のセラミックセパレータ40を接合した直後の状態を模式的に示す部分断面図である。
図11は、
図10の状態における一対のセラミックセパレータ40を搬送方向Zに沿った側面から示す写真である。
図12は、
図5のセパレータ接合部150のホーンの様々な形態を示す斜視図である。
【0030】
電極搬送部110は、
図5に示し、長尺状の正極用基材20Aから正極20を切り出して搬送する。
【0031】
電極搬送部110の電極供給ローラ111は、円柱形状からなり、長尺状の正極用基材20Aを巻き付けて保持している。搬送ローラ112は、細長い円柱形状からなり、電極供給ローラ111に巻き付けられた正極用基材20Aに対して一定の張力をかけた状態で搬送ベルト113に導く。搬送ベルト113は、外周面に吸引口を複数設けた無端状のベルトからなり、正極用基材20Aを吸引した状態で搬送方向Xに沿って搬送する。搬送ベルト113は、搬送方向Xと交差した方向Yに沿った幅が、正極用基材20Aの幅よりも長い。回転ローラ114は、搬送方向Xと交差した方向Yに沿って、搬送ベルト113の内周面に複数配設し、搬送ベルト113を回転させる。複数の回転ローラ114のうち、一つが動力を設けた駆動ローラであり、その他が駆動ローラに従動する従動ローラである。搬送ローラ112および電極供給ローラ111は、搬送ベルト113の回転に従動して回転する。
【0032】
電極搬送部110の切断刃115および116は、搬送方向Xと交差した方向Yに沿って隣り合うように配設し、正極用基材20Aを所定の形状に切断して正極を成形する。切断刃115は、先端に直線状の鋭利な刃を設け、正極用基材20Aの一端を方向Yに沿って直線状に切断する。切断刃116は、先端に一部を屈折させ段違いに形成した鋭利な刃を設け、一端を切断された直後の正極用基材20Aの他端を、正極電極端子21aの形状に対応して切断する。受け台117は、正極用基材20Aを切断する切断刃115および切断刃116を受ける。受け台117は、搬送する正極用基材20Aを介して、切断刃115および切断刃116と対向して配設している。電極搬送部110は、正極用基材20Aから切り出した正極20を、第1セパレータ搬送部120と第2セパレータ搬送部130との間を通過するように搬出する。
【0033】
第1セパレータ搬送部120は、
図5に示し、セラミックセパレータ用基材40Aから、正極20の一面(積層方向Zに沿った
図5中に示す上方)に積層するためのセラミックセパレータ40を切り出して搬送する。
【0034】
第1セパレータ搬送部120は、電極搬送部110よりも搬送方向Xの下流側であって、積層方向Zに沿った
図5中に示す上方に配設している。第1セパレータ搬送部120の第1セパレータ供給ローラ121は、円柱形状からなり、長尺状のセラミックセパレータ用基材40Aを巻き付けて保持している。対向して配設した第1加圧ローラ122と第1ニップローラ123は、それぞれ細長い円柱形状からなり、第1セパレータ供給ローラ121に巻き付けられたセラミックセパレータ用基材40Aに対して一定の張力をかけた状態で第1搬送ドラム124に導く。第1搬送ドラム124は、円柱形状からなり、その外周面に吸引口を複数設けている。第1搬送ドラム124は、搬送方向Xと交差した方向Yに沿った幅を、セラミックセパレータ用基材40Aの幅よりも短くしている。すなわち、セラミックセパレータ用基材40Aの両端は、第1搬送ドラム124から方向Yに対して外方に突出している。このようにして、第1搬送ドラム124は、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。
【0035】
第1セパレータ搬送部120の第1搬送ドラム124を回転させると、第1加圧ローラ122と第1ニップローラ123に加えて第1セパレータ供給ローラ121が従動して回転する。第1切断刃125は、先端に直線状の鋭利な刃を設け、搬送方向Xと交差した方向Yに沿って配設し、第1搬送ドラム124によって吸引されている長尺状のセラミックセパレータ用基材40Aを一定の幅で切断する。第1搬送ドラム124は、長方形状に切断されたセラミックセパレータ40を、電極搬送部110から搬出された正極20の一面の側に近接させつつ積層する。セラミックセパレータ40は、そのセラミックス層42の側を、正極20の一面に対向させている。
【0036】
第2セパレータ搬送部130は、
図5に示し、セラミックセパレータ用基材40Aから、正極20の一面に対向した他面(積層方向Zに沿った
図5中に示す下方)に積層するためのセパレータ40を切り出して搬送する。
【0037】
第2セパレータ搬送部130は、電極搬送部110よりも搬送方向Xの下流側であって、積層方向Zに沿った
図5中に示す下方に配設している。第2セパレータ搬送部130は、第1セパレータ搬送部120と積層方向Zに沿って対向して配設している。第2セパレータ搬送部130の第2セパレータ供給ローラ131は、円柱形状からなり、長尺状のセラミックセパレータ用基材40Aを巻き付けて保持している。対向して配設した第2加圧ローラ132と第2ニップローラ133は、それぞれ細長い円柱形状からなり、第2セパレータ供給ローラ131に巻き付けられたセラミックセパレータ用基材40Aに対して一定の張力をかけた状態で第2搬送ドラム134に導く。第2搬送ドラム134は、円柱形状からなり、その外周面に吸引口を複数設けている。第2搬送ドラム134は、第1搬送ドラム124と同様に、搬送方向Xと交差した方向Yに沿った幅を、セラミックセパレータ用基材40Aの幅よりも短くすることによって、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。
【0038】
第2セパレータ搬送部130の第2搬送ドラム134を回転させると、第2加圧ローラ132と第2ニップローラ133に加えて第2セパレータ供給ローラ131が従動して回転する。第2切断刃135は、先端に直線状の鋭利な刃を設け、搬送方向Xと交差した方向Yに沿って配設し、第2搬送ドラム134によって吸引されている長尺状のセラミックセパレータ40を一定の幅で切断する。第2搬送ドラム134は、長方形状に切断されたセラミックセパレータ用基材40Aを、電極搬送部110から搬出された正極20の他面の側に近接させつつ積層する。セラミックセパレータ40は、そのセラミックス層42の側を、正極20の他面に対向させている。
【0039】
第1セパレータ搬送部120と第2セパレータ搬送部130は、第1搬送ドラム124と第2搬送ドラム134との隙間の部分において、一対のセラミックセパレータ40によって正極20を挟持させるように積層しつつ、搬送方向Xに沿って搬送する。その搬送方向Xに沿った下流側の両端には、それぞれセパレータ保持部140およびセパレータ接合部150を配設している。
【0040】
セパレータ保持部140は、
図5および
図6に示し、正極20を挟持して積層した一対のセラミックセパレータ40を保持する。
【0041】
セパレータ保持部140は、電極搬送部110と搬送方向Xに沿って隣り合い、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ保持部140は、袋詰電極搬送部170の搬送方向Xに沿った両端に一組ずつ配設している。セパレータ保持部140の保持プレート141は、長尺の板状に形成している。保持プレート141は、セラミックセパレータ40の積層方向Zよりも
図6中に示す下方であって、セラミックセパレータ40の搬送方向Xに沿った端部に並行して配設している。保持プレート141は、一対のセラミックセパレータ40を積層方向Zの
図6中に示す下方から保持することによって、セパレータ接合部150によるセラミックセパレータ40同士の接合を補助する。保持プレート141は、セパレータ接合部150のホーン151およびアンビル154との干渉を回避するために、矩形状の穴を備えている。
【0042】
セパレータ保持部140の保持プレート141は、セパレータ接合部150の駆動支柱158によって、積層方向Zに沿って上昇および降下する。保持プレート141は、ホーン151とアンビル154が一対のセラミックセパレータ40を挟持するように当接している間、一対のセラミックセパレータ40を積層方向Zの
図6中に示す下方から保持する。一方、保持プレート141は、ホーン151とアンビル154が一対のセラミックセパレータ40から離間している間、積層方向Zの
図6中に示す下方に退避している。
【0043】
セパレータ接合部150は、
図5〜
図12に関連し、正極20を挟持するように積層した超音波によって摩擦し、その摩擦に伴う摩擦熱によってセラミックセパレータ40同士を溶融して接合する。
【0044】
先ず、セパレータ接合部150の構成について、
図5〜
図7を参照しながら説明する。
【0045】
セパレータ接合部150は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ接合部150は、搬送方向Xに沿った両端に一組ずつ配設している。セパレータ接合部150は、セパレータ保持部140に近接している。
【0046】
セパレータ接合部150のホーン151は、超音波をセラミックセパレータ40に印加する。ホーン151は、金属からなり、長方形状の本体部151aとその本体部151aの隅から突出して形成した突起部151bとを一体に形成している。ホーン151は、
図7中のP1の矢印で表すように押圧部材155によって押圧され、突起部151bがセラミックセパレータ40のポリプロピレン層41に当接する。ホーン151は、
図7中のS1の波線で表すように、積層方向Zと交差したセラミックス層42同士の接合面に沿って超音波を印加して振動させることによって摩擦熱を発生させる。
【0047】
セパレータ接合部150のブースタ152は、ホーン151と振動子153を締結しつつ、超音波を増幅させる。ブースタ152は、金属からなり、円柱形状に形成している。振動子153は、外部から供給された電力によって、超音波の周波数に相当する振動を発生させる。振動子153は、その一端をブースタ152に締結し、一端に対向する他端に電源ケーブルを接続する。アンビル154は、当接部材に相当し、ホーン151から導出される超音波振動を受け止めつつ、ホーン151を付勢する。アンビル154は、金属からなり、長方形状の本体部154aとその本体部154aの一端から突出して形成した突起部154bを一体に形成している。アンビル154の突起部154bは、一対のセラミックセパレータ40を介して、ホーン151の突起部151bと対向している。アンビル154は、
図7中のP2の矢印で表すように付勢部材156によって押圧され、ホーン151を付勢する。
【0048】
セパレータ接合部150の押圧部材155は、ホーン151を積層方向Zに沿って
図7中に示す下方に押圧する。押圧部材155は、その一端を環状に形成し、ホーン151と締結したブースタ152を挿通している。押圧部材155は、その側部を駆動支柱158に対して積層方向Zに沿って移動自在に連結している。付勢部材156は、アンビル154を積層方向Zに沿って
図7中に示す上方に押圧する。付勢部材156は、板状に形成し、その端部にアンビル154を接合している。付勢部材156は、駆動支柱158に対して積層方向Zに沿って移動自在に連結している。
【0049】
セパレータ接合部150の駆動ステージ157は、駆動支柱158を介し、押圧部材155および付勢部材156を積層方向Zに沿って移動させる。駆動ステージ157で発生させた駆動力は、駆動支柱158によって積層方向Zに沿った駆動力に変換して用いている。
【0050】
セパレータ接合部150において、ホーン151とブースタ152と振動子153と押圧部材155は、セパレータ保持部140に対して積層方向Zの
図7中に示す上方に配設し、搬送方向Xに沿って長尺状に構成している。アンビル154と付勢部材156は、セパレータ保持部140に対して積層方向Zの
図7中に示す下方に配設し、搬送方向Xに沿って長尺状に構成している。駆動ステージ157は、アンビル154を載置した付勢部材156の積層方向Zの図中7の直下に配設し、搬送方向Xに沿って配設している。すなわち、セパレータ接合部150の各構成材は、搬送方向Xに沿って長尺状に配設している。
【0051】
次に、セパレータ接合部150の作用について、
図8〜
図11を参照しながら説明する。
【0052】
セパレータ接合部150によって一対のセラミックセパレータ40を接合する直前の状態を
図8および
図9に示す。ポリプロピレン層41とセラミックス層42を積層して形成したセラミックセパレータ40は、
図9に示すようにセラミックス層42同士を対面させている。
【0053】
セパレータ接合部150によって一対のセラミックセパレータ40を接合した直後の状態を
図10および
図11に示す。ホーン151は、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差したセラミックス層42同士の接合面に沿って
図10中の波線S1で表すように超音波を印加した。波線S1の方向は、積層方向Zと交差した搬送方向Xに相当する。同時に、押圧部材155は、
図10中の矢印P1で表すように、ホーン151をセラミックセパレータ40のポリプロピレン層41に向かって押圧した。また、付勢部材156は、
図10中の矢印P2で表すように、アンビル154をホーン151に向かって押圧した。このように作用させることによって、一対のセラミックセパレータ40は、
図11に示すようにポリプロピレン層41が摩擦熱によって溶融し、セラミックス層42が接合部40hから周囲の領域に移動して疎になったことから、対面したポリプロピレン層41同士を接合させることができた。
【0054】
次に、セパレータ接合部150のホーンの様々な構成について、
図12を参照しながら説明する。
【0055】
前述したホーン151を、
図12(a)に示す。ホーン151は、振動子153によって超音波が印加されることから、アンビル154と対向した部分が劣化する。そこで、本体部151aの一側面の一つの隅に形成した突起部151b1が劣化すると、先ず、本体部151aを搬送方向Xに沿って180°回転させ、突起部151b1と対向した突起部151b2を使用する。次に、突起部151b2が劣化すると、袋詰電極搬送部170を介して方向Yに沿って対向して1つずつ配設したホーン151同士を方向Yに沿って平行移動するように交換し、その交換したホーン151の突起部151b3を使用する。さらに、突起部151b3が劣化すると、本体部151aを搬送方向Xに沿って180°回転させ、突起部151b3と対向した突起部151b4を使用する。このように、本体部151aの一端の4隅に対して突起部151bを1個ずつ形成すれば、ホーン151の寿命を4倍に延ばすことができる。
【0056】
ホーン151の改変例1に係るホーン191を、
図12(b)に示す。ホーン191は、本体部191aの一側面の4隅に対して、互いに直交した状態で隣り合うように突起部191bを2個ずつ一体形成している。したがって、突起部191bが劣化する毎に、別の突起部191bを使用することによって、ホーン191の寿命を、ホーン151の寿命の2倍に延ばすことができる。
【0057】
ホーン151の改変例2に係るホーン192を、
図12(c)に示す。ホーン192は、本体部192aの一側面の4隅と一側面に対向する他側面の4隅に対して、それぞれ突起部192bを1個ずつ一体形成している。したがって、突起部192bが劣化する毎に、別の突起部192bを使用することによって、ホーン192の寿命をホーン191の寿命と同程度に延ばすことができる。ここで、アンビル154は、一対のセラミックセパレータ40を介して、ホーン151から導出された超音波振動を受けることから、ホーン151と同様に劣化する。したがって、アンビル154は、ホーン151と同様に、本体部154aに対して複数の突起部154bを一体形成しておく。
【0058】
セパレータ搬送追随部160は、
図5および
図6に示し、セパレータ接合部150がセラミックセパレータ40同士を接合している間、袋詰電極搬送部170の搬送に追随してセパレータ接合部150等を移動させる。
【0059】
セパレータ搬送追随部160は、袋詰電極搬送部170の積層方向Zに沿った
図5中に示す下方であって、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ搬送追随部160のX軸ステージ161は、セパレータ保持部140の全ての構成部材と、セパレータ接合部150の全ての構成部材を載置している。X軸ステージ161は、搬送方向Xの下流側と上流側との間を往復するように移動する。X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接して接合している間、搬送方向Xの下流側に沿って移動する。一方、X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40の接合を完了し離間すると、搬送方向Xの上流側に沿って高速で移動して元の位置に戻る。
【0060】
セパレータ搬送追随部160によって、セパレータ保持部140とセパレータ接合部150とを搬送方向Xに沿って移動させることから、一対のセラミックセパレータ40が接合されている間、第1セパレータ搬送部120および第2セパレータ搬送部130の動作を継続させることができる。すなわち、X軸ステージ161を用いることによって、第1セパレータ搬送部120の第1搬送ドラム124、および第2セパレータ搬送部130の第2搬送ドラム134の回転を止めることなく、一対のセラミックセパレータ40の接合を完了させることができる。
【0061】
袋詰電極搬送部170は、
図5および
図6に示し、セパレータ接合部150によって形成される袋詰電極11を搬送する。
【0062】
袋詰電極搬送部170は、電極搬送部110と搬送方向Xに沿って隣り合い、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。袋詰電極搬送部170の搬送ベルト171は、外周面に吸引口を複数設けた無端状のベルトからなり、袋詰電極11を吸引した状態で搬送方向Xに沿って搬送する。搬送ベルト171は、搬送方向Xと交差した方向Yに沿った幅を、袋詰電極11の幅よりも短く形成している。すなわち、袋詰電極11の両端は、搬送ベルト171から方向Yに対して外方に突出している。このようにして、搬送ベルト171は、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。
【0063】
袋詰電極搬送部170の回転ローラ172は、搬送方向Xと交差した方向Yに沿って、搬送ベルト171の内周面に複数配設し、搬送ベルト171を回転させる。回転ローラ172は、セパレータ保持部140およびセパレータ接合部150との干渉を回避するため、搬送ベルト171から突出させていない。複数の回転ローラ172のうち、一つが動力を設けた駆動ローラであり、その他が駆動ローラに従動する従動ローラである。搬送ベルト171は、例えば、搬送方向Xに沿って3組配設している。
【0064】
袋詰電極搬送部170の吸着パッド173は、搬送ベルト171に載置された袋詰電極11よりも積層方向Zの
図5中に示す上方において、袋詰電極11と対向するように位置している。吸着パッド173は、板状からなり、袋詰電極11と当接する面に吸引口を複数設けている。伸縮部材174は、吸着パッド173よりも積層方向Zの
図5中に示す上方に位置している。伸縮部材174の一端は、吸着パッドを接合している。伸縮部材174は、エアーコンプレッサー等を動力として、積層方向Zに沿って伸縮自在である。
【0065】
袋詰電極搬送部170のX軸ステージ175およびX軸補助レール176は、伸縮部材174の一端に対向した他端を移動自在に支持している。X軸ステージ175は、搬送方向Xに沿って配設し、伸縮部材174を搬送方向Xに沿って走査する。X軸補助レール176は、X軸ステージ175と並行に配設し、X軸ステージ175による伸縮部材174の走査を補助する。載置台177は、板状からなり、例えば3組配設された搬送ベルト171よりも、搬送方向Xに沿った下流側に配設している。載置台177は、袋詰電極11を一時的に載置して保管する。
【0066】
制御部180は、
図5に示し、電極搬送部110と第1セパレータ搬送部120と第2セパレータ搬送部130とセパレータ保持部140とセパレータ接合部150とセパレータ搬送追随部160および袋詰電極搬送部170の作動をそれぞれ制御する。
【0067】
制御部180のコントローラ181は、ROM、CPU、およびRAMを含んでいる。ROM(Read Only Memory)は、セパレータ接合装置100に係る制御プログラムを格納している。制御プログラムは、電極搬送部110の回転ローラ114と切断刃115および116、第1セパレータ搬送部120の第1搬送ドラム124と第1切断刃125、および第2セパレータ搬送部130の第2搬送ドラム134と第2切断刃135の制御に関するものを含んでいる。さらに、制御プログラムは、セパレータ保持部140の保持プレート141、セパレータ接合部150の振動子153と駆動ステージ157等、セパレータ搬送追随部160のX軸ステージ161、袋詰電極搬送部170の回転ローラ172と伸縮部材174等の制御に関するものを含んでいる。
【0068】
制御部180のCPU(Central Processing Unit)は、制御プログラムに基づいてセパレータ接合装置100の各構成部材の作動を制御する。RAM(Random Access Memory)は、制御中のセパレータ接合装置100の各構成部材に係る様々なデータを一時的に記憶する。データは、例えば、セパレータ接合部150の振動子153の作動のタイミングに関するものである。
【0069】
次に、セパレータ接合装置100の作用について説明する。
【0070】
電極搬送部110は、
図5に示すように、切断刃115および116によって、長尺状の正極用基材20Aを所定の形状に1枚ずつ切断して正極20を成形する。電極搬送部110は、正極20を第1セパレータ搬送部120および第2セパレータ搬送部130の間に搬出する。
【0071】
次いで、第1セパレータ搬送部120は、
図5に示すように、セラミックセパレータ用基材40Aから正極20の一面に積層するためのセラミックセパレータ40を切り出して搬送する。第1切断刃125によって、長尺状のセラミックセパレータ用基材40Aを長方形状に1枚ずつ切断してセラミックセパレータ40を成形する。第1セパレータ搬送部120は、セラミックセパレータ40を電極搬送部110から搬出された正極20の一面の側に積層する。
【0072】
次いで、第2セパレータ搬送部130は、
図5に示すように、セラミックセパレータ用基材40Aから正極20の一面に対向した他面に積層するためのセラミックセパレータ40を切り出して搬送する。第2切断刃135によって、長尺状のセラミックセパレータ用基材40Aを長方形状に1枚ずつ切断してセラミックセパレータ40を成形する。第2セパレータ搬送部130は、セラミックセパレータ40を電極搬送部110から搬出された正極20の他面の側に積層する。
【0073】
次いで、セパレータ保持部140は、
図5および
図6に示すように、正極20に積層した一対のセラミックセパレータ40を保持する。保持プレート141は、一対のセラミックセパレータ40を積層方向Zの
図6中に示す下方から保持することによって、セパレータ接合部150によるセラミックセパレータ40同士の接合を補助する。すなわち、保持プレート141は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接している間、一対のうちの下方に位置するセラミックセパレータ40を積層方向Zの
図5中に示す下方から保持する。
【0074】
次いで、セパレータ接合部150は、
図10および
図11に示すように、正極20を挟持するように積層したセラミックセパレータ40同士を接合する。ホーン151は、セラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差したセラミックス層42同士の接合面に沿って図中の波線S1で表すように超音波を印加する。波線S1の方向は、積層方向Zと交差した搬送方向Xに相当する。押圧部材155は、ホーン151を積層方向Zに沿って図中の矢印P1で表すように、セラミックセパレータ40のポリプロピレン層41に向かって押圧する。アンビル154は、図中の矢印P2で表すようにホーン151に向かって押圧する。このようにして、一対のセラミックセパレータ40は、
図11に示すようにポリプロピレン層41が溶融し、セラミックス層42が接合部40hから周囲の領域に移動して疎になり、ポリプロピレン層41同士が接合する。したがって、セラミックセパレータ40は、溶融させることが困難であるセラミックス層42同士を対面させた状態から互いに接合させることができる。
【0075】
ここで、セパレータ搬送追随部160は、
図5および
図6に示すように、セパレータ接合部150がセラミックセパレータ40同士を接合している間、袋詰電極搬送部170の搬送動作に追随する。X軸ステージ161は、セパレータ保持部140の全ての構成部材と、セパレータ接合部150の全ての構成部材を載置している。X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接して接合している間、搬送方向Xの下流側に沿って移動する。すなわち、X軸ステージ161を用いることによって、第1搬送ドラム124および第2搬送ドラム134の回転を止めることなく、一対のセラミックセパレータ40を接合することができる。
【0076】
その後、袋詰電極搬送部170は、
図5および
図6に示すように、セパレータ接合部150によって形成された袋詰電極11を搬送する。袋詰電極搬送部170は、袋詰電極11を載置台177に載置して一時的に保管する。
【0077】
上述した第1実施形態によれば、以下の構成によって作用効果を奏する。
【0078】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いる。このセパレータ接合方法では、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合する。リチウムイオン二次電池10の袋詰電極11のセパレータ接合方法は、接合工程を有している。接合工程では、超音波によってセラミックセパレータ40に加工を施す加工部材(ホーン151に相当)を一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接させ、積層方向Zと交差した方向に超音波を印加してポリプロピレン層41を溶融させつつ、ホーン151を積層方向Zに沿って押圧した部分のセラミックス層42を、その押圧した領域(接合部40h)から周囲の領域に移動させて疎にして、一対のセラミックセパレータ40のポリプロピレン層41同士を接合する。
【0079】
また、電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置100にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いる。このセパレータ接合装置100では、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合する。セパレータ接合装置100は、超音波加工部材(ホーン151に相当)と押圧部材155を有している。ホーン151は、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差した方向に超音波を印加して加工を施す。押圧部材155は、ホーン151を積層方向Zに沿って押圧する。
【0080】
このような構成では、セラミックセパレータ40の積層方向Zと交差した方向に沿って超音波を印加してポリプロピレン層41を溶融させつつ、セラミックセパレータ40を積層方向Zに沿って押圧する。したがって、セラミックス層42を部分的に周囲の領域に移動させて疎にすることによって対面したポリプロピレン層41同士を接合することができる。すなわち、セラミックス層42同士を対面させた一対のセラミックセパレータ40同士を十分に接合することができる。
【0081】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法において、接合工程は、押圧部材155によってホーン151を押圧した状態で、ホーン151による超音波の印加を開始する構成とすることができる。
【0082】
このような構成によれば、一対のセラミックセパレータ40は、ポリプロピレン層41がホーン151に押圧された状態で超音波が印加されることから、その押圧された部分に超音波の振動に起因したしわが生じることを防止できる。したがって、一対のセラミックセパレータ40は、その接合部40hの接合強度を十分に保つことができる。
【0083】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法において、接合工程は、ホーン151による超音波の印加を継続した状態で、押圧部材155によるホーン151に対する押圧を終了する構成とすることができる。
【0084】
このような構成によれば、一対のセラミックセパレータ40は、ホーン151による超音波の印加が継続された状態で、押圧部材155によるホーン151の押圧が終了されることから、接合に要する総時間において、実際に超音波を印加している時間の割合を高めることができる。したがって、接合部40hの形成に要する時間を短縮することができる。
【0085】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置100において、アンビル154と付勢部材156をさらに有する構成とすることができる。アンビル154は、ホーン151と積層方向Zに沿って対向して配設し、一対のセラミックセパレータ40のうちの他のセラミックセパレータ40のポリプロピレン層41に当接する。付勢部材156は、アンビル154を積層方向Zに沿ってホーン151の側に付勢する。
【0086】
このような構成によれば、ホーン151とアンビル154とで一対のセラミックセパレータ40を挟持して十分に押圧することができる。したがって、ホーン151だけで一対のセラミックセパレータ40を押圧する場合と比較して、より短時間でセラミックス層42を部分的に周囲の領域に移動させ、接合部40hを形成することができる。
【0087】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いている。袋詰電極11は、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合したものである。袋詰電極11は、セラミックス層42を部分的に周囲の領域に移動させて疎にして一対のセラミックセパレータ40のポリプロピレン層41同士を接合して形成した接合部40hを備えている。
【0088】
このような構成によれば、一対のセラミックセパレータ40を接合するために、接合部分からセラミックス層42を予め除外したセラミックセパレータ40を用いる必要がない。すなわち、このような袋詰電極11によれば、セラミックセパレータ40の製造コストとタクトを削減することができ、かつ、そのセラミックセパレータ40同士を十分に接合することができる。
【0089】
(第1実施形態の変形例)
第1実施形態の変形例に係る袋詰電極11のセパレータ接合方法を具現化したセパレータ接合装置について、
図13および
図14を参照しながら説明する。
【0090】
図13は、セパレータ接合装置のセパレータ保持部240とセパレータ接合部150とセパレータ搬送追随部160と袋詰電極搬送部170とを示す斜視図である。
図14は、
図13のセパレータ保持部240とセパレータ接合部150の作動を示す断面図である。
【0091】
第1実施形態の変形例に係るセパレータ接合装置は、ホーン151をセラミックセパレータ40のポリプロピレン層41から離脱させた後に、一対の保持プレート241および242をポリプロピレン層41同士から離間させる構成が、前述した第1実施形態に係るセパレータ接合装置100の構成と異なる。
【0092】
第1実施形態の変形例においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
【0093】
先ず、セパレータ保持部240の構成について、
図13を参照しながら説明する。
【0094】
セパレータ保持部240は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ保持部240は、袋詰電極搬送部170の搬送方向Xに沿った両端に一組ずつ配設している。セパレータ保持部240の保持プレート241は、長尺の板状からなり、セラミックセパレータ40の積層方向Zよりも
図13中に示す下方であって、セラミックセパレータ40の搬送方向Xに沿った端部に並行して配設している。保持プレート242は、保持プレート241と同様の形状からなる。保持プレート241と保持プレート242は、一対のセラミックセパレータ40を介して、積層方向Zに沿って対向して配設している。保持プレート241は、セパレータ接合部150のアンビル154との干渉を回避するために、矩形状の穴を備えている。一方、保持プレート242は、セパレータ接合部150のホーン151との干渉を回避するために、矩形状の穴を備えている。保持プレート241および242は、セパレータ接合部150の駆動支柱158によって、積層方向Zに沿って互いに接近離間するように、上昇および降下する。
【0095】
次に、セパレータ保持部240の作用について、
図14を参照しながら説明する。
【0096】
セパレータ保持部240は、
図14(a)に示すように、一対の保持プレート241および242によって、一対のセラミックセパレータ40を積層方向Zに沿って挟持して保持する。ホーン151とアンビル154は、それぞれポリプロピレン層41に押圧した状態で、一対のセラミックセパレータ40を超音波接合する。次に、
図14(b)に示すように、ホーン151は、
図14中のT1の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って上方に離脱する。アンビル154は、ホーン151の動作と同時に、
図14中のT2の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って下方に離間する。次に、
図14(c)に示すように、保持プレート241は、
図14中のT4の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って下方に離間する。保持プレート242は、保持プレート241の動作と同時に、
図14中のT3の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って上方に離脱する。
【0097】
上述した第1実施形態の変形例によれば、以下の構成によって作用効果を奏する。
【0098】
電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置にあっては、一対の保持プレート241および242をさらに有している。一対の保持プレート241および242は、ポリプロピレン層41同士を積層方向Zに沿って挟持して保持する。一対の保持プレート241および242は、ホーン151がポリプロピレン層41から離脱してから、ポリプロピレン層41同士から離間する。
【0099】
このような構成によれば、ホーン151は、一対のセラミックセパレータ40を溶着する際にポリプロピレン層41に付着してしまっても、一対の保持プレート241および242によってポリプロピレン層41同士を保持させた状態で、ポリプロピレン層41から離間させることができる。したがって、ホーン151がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。
【0100】
また、第1実施形態の変形例の構成において、アンビル154は、一対のセラミックセパレータ40に当接した際にポリプロピレン層41に付着してしまっても、一対の保持プレート241および242によってポリプロピレン層41同士を保持させた状態で、ポリプロピレン層41から離間させることができる。したがって、アンビル154がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。
【0101】
(第2実施形態)
第2実施形態に係る袋詰電極13のセパレータ接合方法を具現化したセパレータ接合装置について、
図15および
図16を参照しながら説明する。
【0102】
図15は、セパレータ接合装置のセパレータ接合部350を示す斜視図である。
図16は、
図15のセパレータ接合部350によって形成した袋詰電極13を示す斜視図である。
【0103】
第2実施形態に係るセパレータ接合装置は、一対のセラミックセパレータ40の搬送方向Xに沿った両端をシーム溶着する構成が、前述した第1実施形態に係るセパレータ接合装置100の構成と異なる。
【0104】
第2実施形態においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。
【0105】
セパレータ接合部350は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ接合部350は、搬送方向Xに沿った両端に一組ずつ配設している。セパレータ接合部350は、セパレータ接合部150と異なり、各構成材を搬送方向Xと交差した方向Yに沿って配設している。セパレータ接合部350は、セパレータ接合部150と比較して、ホーン351とアンビル354と付勢部材356の構成が異なる。
【0106】
セパレータ接合部350のホーン351は、超音波をセラミックセパレータ40に印加する。ホーン351は、金属からなり、円盤形状に形成している。ホーン351は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在に配設している。ホーン351は、
図15中のP3の矢印で表すように押圧部材155によって押圧され、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41を押圧する。ホーン351は、
図15中のS2の波線で表すように、積層方向Zと交差したセラミックス層42同士の接合面に沿って超音波を印加する。波線S2の方向は、積層方向Zと交差した方向Yに相当する。
【0107】
アンビル354は、金属からなり、円盤形状に形成している。ホーン351は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在に配設している。アンビル354は、一対のセラミックセパレータ40を介して、ホーン351と対向している。アンビル354は、
図15中のP4の矢印で表すように付勢部材356によって押圧され、ホーン351を付勢する。付勢部材356は、その一端を環状に形成し、アンビル354の後部を挿通し回転自在に連結している。付勢部材356は、駆動支柱158に対して積層方向Zに沿って移動自在としている。
図16に示すように、セパレータ接合部350によって、一対のセラミックセパレータ40の搬送方向Xに沿った両端を連続的に接合し直線状の接合部40iを備えた袋詰電極13を形成する。
【0108】
上述した第2実施形態によれば、以下の構成によって作用効果を奏する。
【0109】
電気デバイス(リチウムイオン二次電池10の袋詰電極13に相当)のセパレータ接合装置にあっては、ホーン351を、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在な円盤形状に形成している。
【0110】
このような構成によれば、一対のセラミックセパレータ40の搬送方向Xに沿った両端をシーム溶着によって連続的に接合して直線状の接合部40iを形成することができる。したがって、一対のセラミックセパレータ40の両端をより強固に接合することができる。
【0111】
さらに、このような構成によれば、ホーン351は、一対のセラミックセパレータ40両端の部分を移動しつつ溶着していくことから、ポリプロピレン層41に付着し難い。したがって、ホーン351がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。
【0112】
さらに、このような構成によれば、ホーン351をセラミックセパレータ40のポリプロピレン層41に回転自在に当接させているだけでよい。すなわち、セパレータ搬送追随部160を用いることなく、第1搬送ドラム124および第2搬送ドラム134の回転を継続したままの状態で、一対のセラミックセパレータ40を接合することができる。
【0113】
さらに、アンビル354は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在な円盤形状に形成した構成とすることができる。
【0114】
このような構成によれば、ホーン351とアンビル354とで一対のセラミックセパレータ40を挟持して十分に押圧することができる。したがって、ホーン351だけで一対のセラミックセパレータ40を押圧する場合と比較して、より短時間でセラミックス層42を部分的に周囲の領域に移動させ、接合部40iを形成することができる。
【0115】
そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
【0116】
例えば、セラミックセパレータ40に超音波を伝搬させる方向は、積層方向Zと交差したセラミックス層42同士の接合面に沿った方向であればよく、積層方向Zと交差した搬送方向Xと方向Yとでなす面内であれば、特に限定されることはない。
【0117】
また、第1および第2実施形態では、一対のセラミックセパレータ40のセラミックス層42を部分的に周囲の領域に移動させて疎にすることによって、対面したポリプロピレン層41同士を接合する構成として説明した。ここで、接合部となる部位のセラミックス層42同士を周囲の領域に完全に移動させる必要はなく、疎になる程度に移動させればよい。すなわち、セラミックス層42同士の一部が接合部となる部位に残留した状態で、対面したポリプロピレン層41同士を接合することもできる。
【0118】
また、第1および第2実施形態では、リチウムイオン二次電池10に用いる袋詰電極11において、一対のセラミックセパレータ40を互いに接合する構成で説明したが、このような構成に限定されることはない。リチウムイオン二次電池10に用いる袋詰電極11以外の部材の接合にも適用することができる。
【0119】
また、第1および第2実施形態では、二次電池をリチウムイオン二次電池10の構成で説明したが、このような構成に限定されることはない。二次電池は、例えば、ポリマーリチウム電池、ニッケル−水素電池、ニッケル−カドミウム電池として構成することができる。
【0120】
また、第1および第2実施形態では、セラミックセパレータ40の耐熱材をセラミックス層42の構成で説明したが、このような構成に限定されることはない。耐熱材は、セラミックスに限定されることはなく、溶融材よりも溶融温度が高い部材であればよい。
【0121】
また、第1および第2実施形態では、セラミックセパレータ40の溶融材をポリプロピレン層41の構成で説明したが、このような構成に限定されることはない。溶融材は、ポリプロピレンに限定されることはなく、耐熱材よりも溶融温度が低い部材であればよい。
【0122】
また、第1および第2実施形態では、セラミックセパレータ40を、溶融材(ポリプロピレン層41)の片面に耐熱材(セラミックス層42)を積層させた構成として説明したが、このような構成に限定されることはない。セラミックセパレータ40は、溶融材(ポリプロピレン層41)の両面に耐熱材(セラミックス層42)を積層させて構成してもよい。
【0123】
また、第1および第2実施形態では、正極20を一対のセラミックセパレータ40によって袋詰めして袋詰電極11を形成する構成で説明したが、このような構成に限定されることはない。負極30を一対のセラミックセパレータ40によって袋詰めして袋詰電極を形成する構成としてもよい。さらに、一対のセラミックセパレータ40を互いに接合した後に、正極20または負極30を挿入して袋詰電極を形成する構成としてもよい。
【0124】
また、第1および第2実施形態では、正極20、セラミックセパレータ40、および袋詰電極11を自動で搬送する構成として説明したが、このような構成に限定されることはない。正極20、セラミックセパレータ40、または袋詰電極11は、人手によって搬送する構成としてもよい。
【0125】
また、第1実施形態では、突起部を備えたホーン151とアンビル154を用いて、一対のセラミックセパレータ40の両端をスポット溶着する構成として説明したが、このような構成に限定されることはない。突起部を備えたホーン151とアンビル154を接合部が連なるように作動させて、一対のセラミックセパレータ40の両端をシーム溶着する構成としてもよい。
【0126】
また、第1実施形態では、ホーン151の突起部151bとアンビル154の突起部154bによって、一対のセラミックセパレータ40を挟持しつつ押圧する構成として説明したが、このような構成に限定されることはない。ホーン151またはアンビル154のいずれか一方に突起部を備えていればよい。すなわち、ホーン151の突起部151bとアンビル154の本体部154aの平坦部分によって、一対のセラミックセパレータ40を挟持しつつ押圧する構成としてもよい。また、ホーン151の凸状の突起部151bと、アンビル154の凹状の窪み部によって、一対のセラミックセパレータ40の接合部となる部分を挟み込むように挟持しつつ押圧する構成としてもよい。さらに、ホーン151の本体部151aの平坦部分の一端とアンビル154の本体部154aの平坦部分の一端によって、一対のセラミックセパレータ40を挟持しつつ押圧する構成としてもよい。
【0127】
また、第2実施形態では、円盤状のホーン351と円盤状のアンビル354を用いて、一対のセラミックセパレータ40の両端をシーム溶着する構成として説明したが、このような構成に限定されることはない。円盤状のホーン351とアンビル354を一定の周期で一対のセラミックセパレータ40から離間させることによって、一対のセラミックセパレータ40の両端をスポット溶着する構成としてもよい。また、このような構成の場合には、円盤状のホーン351とアンビル354を回転させなくてもよい。さらに、このような構成の場合には、
図15に示す長尺のセパレータ接合部350を、搬送方向Xに沿わせるように、接合部位を基準にして90°回転させて配設してもよい。また、ホーン351を回転させつつ、アンビル354を回転させない構成としてもよい。
【0128】
また、第2実施形態では、円盤状のホーン351を一対のセラミックセパレータ40に向かって押圧する押圧部材155に換えて、伸縮性を備えた螺旋状のバネ部材を用いる構成としてもよい。同様に、円盤状のアンビル354をホーン351に向かって付勢する付勢部材356に換えて、伸縮性を備えた螺旋状のバネ部材を用いる構成としてもよい。
【0129】
本出願は、2013年10月2日に出願された日本特許出願番号2013−207665号に基づいており、その開示内容は、参照され、全体として、組み入れられている。