【課題を解決するための手段】
【0009】
そこで、本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的な高負荷が作用する合金工具鋼、耐熱鋼等の高速断続切削加工に用いた場合であっても、硬質被覆層がすぐれた熱的・機械的な衝撃吸収性を備え、その結果、長期の使用にわたってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具について鋭意研究を行った。
【0010】
即ち、特許文献3に示される被覆工具においては、上部層と下部層との界面近傍の下部層中に孔径2〜70nmの微小空孔を有する微小空孔富裕層を形成し、該微小空孔富裕層を所定の層厚と定め、さらに、微小空孔の孔径分布の第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μm
2であって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μm
2であるような微小空孔のバイモーダルな孔径分布を形成することによって、Al
2O
3層の高温強度と高温硬さの低下を招くことなく、機械的、熱的な耐衝撃性の向上を図っていた。
【0011】
そして、特許文献3に示される被覆工具は、炭素鋼、合金鋼、鋳鉄の高速断続切削加工に使用した場合には、満足できる耐チッピング、耐欠損性を発揮するが、これを、合金工具鋼、耐熱鋼等の高速断続切削加工に使用した場合には、切れ刃がより高熱に曝されるため、特許文献3に記載されるような硬質被覆層構造では、十分な耐チッピング性、耐欠損性が発揮されるとはいえなかった。
そこで、上記特許文献3に記載される被覆工具において、その上部層と下部層との界面に着目して、空孔の適正な分布形態についてさらに研究を進めたところ、特許文献3に記載されるような硬質被覆層の空孔分布形態に加えて、上部層と下部層の界面に接して、所定孔径かつ所定密度の空孔を形成することにより、切れ刃がより高熱に曝される合金工具鋼、耐熱鋼等の高速断続切削加工に供した場合であっても、すぐれた熱的・機械的な衝撃吸収性を備え、長期の使用にわたってすぐれた耐チッピング性、耐欠損性を発揮することを見出したのである。
【0012】
本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が下部層と上部層とからなり、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層であり、
(c)前記下部層と上部層との界面近傍の下部層中に、孔径2〜70nmの微小空孔を有する微小空孔富裕層が存在し、該微小空孔富裕層が0.1〜1μmの層厚を有し、
(d)前記下部層と上部層との界面に接して、界面の単位長さ当たり1〜3個/μmの空孔密度で孔径90〜150nmの空孔を形成したことを特徴とする表面被覆切削工具。
(2)前記下部層中に存在する微小空孔の孔径分布がバイモーダルな分布をとることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記微小空孔の孔径分布の第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μm
2であって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μm
2であることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
【0013】
本発明について、以下に詳細に説明する。
【0014】
下部層のTi化合物層:
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができ、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体とAl
2O
3層からなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
【0015】
上部層のAl
2O
3層:
上部層を構成するAl
2O
3層が、高温硬さと耐熱性を備えることは既に良く知られているが、その平均層厚が1μm未満では、長期の使用にわたっての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えるとAl
2O
3結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速断続切削加工時の耐チッピング性、耐欠損性が低下するようになることから、その平均層厚を1〜25μmと定めた。
【0016】
下部層と上部層との界面近傍の下部層中に設けた微小空孔富裕層:
図1に示すように、本発明のTi化合物層で構成された下部層とAl
2O
3層で構成された上部層との界面近傍の下部層中に孔径2〜70nmの微小空孔を有する微小空孔富裕層が存在している下部層は、切れ刃が高温に曝され、しかも、機械的・熱的衝撃を受ける高速断続切削加工においても、すぐれた高温強度、高温硬さを備え、同時に、すぐれた耐チッピング性、耐欠損性を発揮する。さらに、該微小空孔富裕層の微小空孔の孔径を2nmから70nmにわたって均一に分布させるのではなく、バイモーダルな分布(双峰分布)をとることにより、より高い耐チッピング性、耐欠損性を発揮する。
【0017】
微小空孔富裕層の形成:
本発明の微小空孔富裕層は、通常の化学蒸着条件で成膜した下部層の表面を次の2つの条件によるエッチングを施すことによって形成することができる。
下部層成膜用の反応ガスの導入と、以下の2つ条件によるエッチングを交互に行うことにより、下部層と上部層との界面近傍の下部層中に所定の孔径分布を有する微小空孔富裕層が形成される。
(A条件)
反応ガス組成(容量%):
SF
6:5〜10%,
H
2:残
反応雰囲気温度:800〜950℃、
反応雰囲気圧力: 4〜9kPa、
の条件で5〜30分間SF
6エッチングを行う。
(B条件)
反応ガス組成(容量%):
SF
6:5〜10%,
H
2:残
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力: 13〜27kPa、
の条件で4〜30分間SF
6エッチングを行う。
【0018】
微小空孔富裕層の孔径分布形態:
図2に、前記のエッチング条件を用いて形成された本発明の下部層と上部層との界面近傍の下部層中の微小空孔富裕層に形成された微小空孔の孔径分布図を示す。
図2に示されるように、本発明の下部層と上部層との界面近傍の下部層中の微小空孔富裕層には、孔径2〜70nmの微小空孔が存在しているが、その孔径分布は、第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μm
2であって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μm
2である形態のバイモーダルな分布をとっている。
【0019】
本発明で、微小空孔の孔径分布において、孔径2〜10nmである小さな微小空孔の第1ピークを200〜500個/μm
2の範囲内と定めたのは、孔径2〜10nmである小さな微小空孔の孔径分布における第1ピークが200個/μm
2未満であるとAl
2O
3の核生成数向上という効果が十分に発揮しえなくなり、一方、500個/μm
2を超えると空隙率が高くなりすぎ、下部層と上部層との界面近傍の脆化とともに耐摩耗性の低下が生じるからである。
【0020】
また、微小空孔の孔径分布において、孔径20〜50nmである大きな微小空孔の第2ピークを10〜50個/μm
2の範囲内と定めたのは、10個/μm
2以下あるいは50個/μm
2を超える範囲では、熱的および機械的衝撃を吸収緩和するという効果が十分に発揮しえなくなり、耐チッピング性、耐欠損性向上という効果が十分に発揮されないという理由による。
【0021】
また、本発明で、微小空孔の孔径を2〜70nmと定めたのは、下部層と上部層との界面近傍の下部層中の微小空孔富裕層に形成される空孔の孔径が2nm未満では、衝撃緩和効果が期待できず、一方、孔径が70nmを超えると、下部層の靭性低下が大きくなるためであり、下部層の高温強度、高温硬さを維持しつつ、断続的・衝撃的負荷に対する衝撃緩和効果を保持するためには、下部層と上部層との界面近傍の下部層内部に形成される微小空孔の孔径は2〜70nmでなければならない。
また、本発明で、下部層と上部層との界面近傍の下部層中の微小空孔富裕層の層厚を0.1〜1μmの範囲内と定めたのは、0.1μm未満では、微小空孔による衝撃緩和効果が十分に期待できず、一方、1μmを超えると、界面近傍の靭性が低下し、耐チッピング性、耐欠損性向上という効果が十分に発揮されないという理由による。
【0022】
下部層と上部層の界面に接した空孔:
下部層と上部層との界面近傍の下部層中には、前述の微小空孔富裕層を形成して衝撃緩和作用により、耐チッピング性、耐欠損性の向上を図ったが、これに加えて、本発明では、下部層と上部層との界面に接して、界面の単位長さ当たり1〜3個/μmの空孔密度で孔径90〜150nmの空孔を形成することによって、衝撃緩和効果をさらに向上させることができる。
即ち、切削時に切れ刃に作用する断続的・衝撃的な高負荷によって、硬質被覆層の上部層にはクラックが発生するが、このクラックが伝播進展した場合においても、この空孔でクラックの進展を停止させ、その結果、下部層にまでクラックが伝播進展することが抑制されることによって耐チッピング性、耐欠損性がさらに向上する。
また、下部層と上部層との界面に接して形成された空孔は、界面における残留応力をも緩和することによって、より一層、耐チッピング性、耐欠損性が向上する。
本発明において、空孔密度が界面の単位長さ当たり1個/μm未満、空孔の孔径が90nm未満では、衝撃緩和効果、残留応力緩和効果が少なく、一方、空孔密度が3個/μmを超える場合、あるいは、空孔の孔径が150nmを超える場合には、界面剥離を生じやすくなるので、本発明では、界面の単位長さ当たりの空孔密度を1〜3個/μmと定め、また、空孔の孔径を90〜150nmと定めた。
ここで、空孔の孔径とは、被覆工具を下部層と上部層の界面を含む縦断面で観察した場合に、界面に接して形成されている空孔の最大幅をいう。
【0023】
下部層と上部層の界面に接した空孔の形成法:
下部層と上部層の界面に接した空孔の形成は、下部層として、前述の微小空孔富裕層を有する下部層を形成した後、例えば、以下の(C条件)、(D条件)により下部層を処理し、次いで、通常のAl
2O
3形成条件で蒸着することによって、下部層と上部層の界面に接した空孔を有する上部層を形成することができる。
(C条件)
反応ガス組成(容量%):
TiCl
4:0.8〜1.5%,
C
2H
4:0.8〜2.0%
CO:3.0〜5.0%
HCl:0.05〜0.1%
H
2:残
反応雰囲気温度:800〜850℃、
反応雰囲気圧力: 53〜67kPa、
の条件で10〜15分間の処理を行う。
(D条件)
反応ガス組成(容量%):
AlCl
3:3.5〜4.5%,
HCl:2.0〜3.0%
H
2:残
反応雰囲気温度:1200〜1300℃、
反応雰囲気圧力: 3〜5kPa、
の条件で5〜15分間の処理を行う。
上記(C条件)による処理を行った後、(D条件)による処理を行うことで、反応ガス組成中のAlCl
3が、すでに基体上に被覆された膜中のO(酸素原子)を吸い上げ、自らはAl
2O
3となり基体上に被覆し、さらにその後、通常のAl
2O
3蒸着条件で成膜することによって、下部層と上部層の界面に接して所定の空孔が形成された上部層を成膜することができる。
図1に、下部層と上部層との界面近傍の下部層中に所定の微小空孔富裕層が形成された下部層と、下部層と上部層の界面に接して所定の空孔が形成された上部層からなる本発明被覆工具の硬質被覆層の縦断面模式図を示す。