特許第6201729号(P6201729)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田中央研究所の特許一覧

特許6201729熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法
<>
  • 特許6201729-熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法 図000002
  • 特許6201729-熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法 図000003
  • 特許6201729-熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法 図000004
  • 特許6201729-熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6201729
(24)【登録日】2017年9月8日
(45)【発行日】2017年9月27日
(54)【発明の名称】熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法
(51)【国際特許分類】
   F04B 37/06 20060101AFI20170914BHJP
   B01J 3/02 20060101ALN20170914BHJP
【FI】
   F04B37/06
   !B01J3/02 M
【請求項の数】5
【全頁数】11
(21)【出願番号】特願2013-263824(P2013-263824)
(22)【出願日】2013年12月20日
(65)【公開番号】特開2015-121103(P2015-121103A)
(43)【公開日】2015年7月2日
【審査請求日】2016年10月5日
(73)【特許権者】
【識別番号】000003609
【氏名又は名称】株式会社豊田中央研究所
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】釘本 恒
(72)【発明者】
【氏名】大瀬 佳之
【審査官】 新井 浩士
(56)【参考文献】
【文献】 国際公開第2013/145640(WO,A1)
【文献】 実開昭57−164270(JP,U)
【文献】 特開2010−190227(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F04B 37/06
B01J 3/02
F04D 33/00
(57)【特許請求の範囲】
【請求項1】
細孔膜の低温部から細孔膜の高温部に向かって誘起される一方向の熱遷移流を利用する熱遷移流ポンプと、
内部空間を有する室と、
前記熱遷移流ポンプの吸入口と前記室との間に設けられるバルブであって、前記室の内部空間の圧力と前記熱遷移流ポンプの吸入口側の圧力との間の圧力差が予め定めた所定の閾値圧力差以下のときに開弁するバルブと、
を備えることを特徴とする熱遷移流ポンプシステム。
【請求項2】
請求項1に記載の熱遷移流ポンプシステムにおいて、
前記室は、内部空間が真空に維持される真空維持室であることを特徴とする熱遷移流ポンプシステム。
【請求項3】
請求項1に記載の熱遷移流ポンプシステムにおいて、
前記熱遷移流を誘起させる温度勾配を形成する熱源は、前記室自体が発生する熱または前記室の内部で発生する熱に基づくことを特徴とする熱遷移流ポンプシステム。
【請求項4】
請求項1に記載の熱遷移流ポンプシステムにおいて、
前記熱遷移流ポンプの排出口側に接続され所定の真空度を有するバッファ容器を備えることを特徴とする熱遷移流ポンプシステム。
【請求項5】
細孔膜の低温部から前記細孔膜の高温部に向かって誘起される一方向の熱遷移流を利用する熱遷移流ポンプの吸入口にバルブを介して接続される真空室の真空維持方法であって、
前記バルブが閉状態のときに前記真空室を減圧ポンプで真空引きし、
前記バルブが閉状態のままで、前記熱遷移流ポンプの前記温度勾配を形成して前記熱遷移流ポンプを駆動し、
前記真空引きされた前記真空室の内部圧力と前記駆動された前記熱遷移流ポンプの吸入口側の圧力との間の圧力差が予め定めた所定の閾値圧力差以下となったときに前記バルブを開弁し、
前記熱源が放熱する間、前記バルブを継続的に開弁し、前記真空室を高真空に維持することを特徴とする熱遷移流ポンプを用いた真空室の真空維持方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法、特に、真空室に熱遷移流ポンプが接続される熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法に関する。
【背景技術】
【0002】
希薄気体中に温度勾配のある壁面が存在しているとき、壁面の低温部から高温部に向かって壁面に沿う一方向の熱遷移流が誘起されることが知られている。希薄気体とは、ある領域を考えたときに、その中で平衡状態が保たれないほど気体分子間の衝突が少ない場合の気体である。このような希薄気体の例としては、1cm3程度の領域内の圧力が1Pa程度の低圧である場合、10nm×10nm×10nm程度の空間の狭い領域内の圧力が大気圧程度である場合等である。後者のように、nm程度の領域内では大気圧でも希薄気体となって、熱遷移流を誘起することができる。
【0003】
例えば、非特許文献1には、流れを誘起する媒体気体の平均自由行程の5倍の長さ以下の小さい孔径を有する細孔が内部に多数形成された多孔体膜を用いて、大気圧下で熱遷移流を発生させることが述べられている。大気圧下の空気の平均自由行程は約60nmである。非特許文献1では、多孔体膜の片面側の媒体気体をヒータによって加熱し、多孔体膜の片面とその裏面との間に温度差を発生させ、多孔体膜の内部に温度勾配を形成させ、多孔体膜の低温側から高温側に熱遷移流を発生させる。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】N.K.Gupta他,Thermal transpiration in mixed cellulose ester menmranes:Enabling miniature,motionless gas pumps,Microporous and Mesoporous Materials,vol.142,pp.535−541,2011
【発明の概要】
【発明が解決しようとする課題】
【0005】
高真空下で動作する装置は、高真空状態に維持することが必要であるが、どうしても多少のリークが生じる。その都度高真空状態に戻すために高真空用ポンプ等を稼働させればよい。しかし、高真空用ポンプ等は高価であるが、僅かなリークを補うための稼働期間は短くかつ不定期である。これに対し、熱遷移流ポンプは流量があまり取れないが、例えば、複数の熱遷移流ポンプを縦続接続することで吸入口側を高真空にすることができる。そこで、熱遷移流ポンプを高真空ポンプ等の代わりに用いることが考えられる。ここで、熱遷移流ポンプを構成する細孔膜は、圧力の急変に弱い。したがって、高真空下で動作する装置に熱遷移流ポンプの吸入口側をそのまま接続すると、熱遷移流ポンプの排気側の圧力と装置の高真空との間の圧力差で細孔膜に損傷や破壊が生じる恐れがある。
【0006】
本発明の目的は、真空室に熱遷移流ポンプを接続する際に、細孔膜に生じ得る損傷や破壊を抑制することを可能とする熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法を提供することである。他の目的は、熱遷移流ポンプの駆動に電気エネルギを消費しない熱遷移流ポンプシステムを提供することである。さらに他の目的は、真空室に接続される熱遷移流ポンプの縦続接続数を減らすことが可能な熱遷移流ポンプシステムを提供することである。以下の各手段は、上記目的の少なくとも1つに貢献する。
【課題を解決するための手段】
【0007】
本発明に係る熱遷移流ポンプシステムは、細孔膜の低温部から細孔膜の高温部に向かって誘起される一方向の熱遷移流を利用する熱遷移流ポンプと、内部空間を有する室と、熱遷移流ポンプの吸入口と室との間に設けられるバルブであって、室の内部空間の圧力と熱遷移流ポンプの吸入口側の圧力との間の圧力差が予め定めた所定の閾値圧力差以下のときに開弁するバルブと、を備えることを特徴とする。
【0008】
本発明に係る熱遷移流ポンプシステムにおいて、室は、内部空間が真空に維持される真空維持室であることが好ましい。
【0009】
本発明に係る熱遷移流ポンプシステムにおいて、熱遷移流を誘起させる温度勾配を形成する熱源は、室自体が発生する熱または室の内部で発生する熱に基づくことが好ましい。
【0010】
本発明に係る熱遷移流ポンプシステムにおいて、熱遷移流ポンプの排出口側に接続され所定の真空度を有するバッファ容器を備えることが好ましい。
【0011】
また、本発明に係る熱遷移流ポンプを用いた真空室の真空維持方法は、細孔膜の低温部から細孔膜の高温部に向かって誘起される一方向の熱遷移流を利用する熱遷移流ポンプの吸入口にバルブを介して接続される真空室の真空維持方法であって、バルブが閉状態のときに真空室を減圧ポンプで真空引きし、バルブが閉状態のままで、熱遷移流ポンプの温度勾配を形成して熱遷移流ポンプを駆動し、真空引きされた真空室の内部圧力と駆動された熱遷移流ポンプの吸入口側の圧力との間の圧力差が予め定めた所定の閾値圧力差以下となったときにバルブを開弁し、熱源が放熱する間、バルブを継続的に開弁し、真空室を高真空に維持することを特徴とする。
【発明の効果】
【0012】
上記構成の熱遷移流ポンプシステムによれば、室の内部空間の圧力と熱遷移流ポンプの吸入口側の圧力との間の圧力差が閾値圧力差以下のときに初めて開弁するバルブを備える。例えば、閾値圧力差を細孔膜が破壊しない程度の圧力差とすることで、室に熱遷移流ポンプを接続する際に、細孔膜に生じ得る損傷や破壊を抑制することが可能となる。
【0013】
また、熱遷移流ポンプシステムにおいて、室は、内部空間が真空に維持される真空維持室であるので、真空維持室に熱遷移流ポンプを接続する際に、細孔膜に生じ得る損傷や破壊を抑制することが可能となる。
【0014】
また、熱遷移流ポンプシステムにおいて、熱遷移流を誘起させる温度勾配を形成する熱源は、室自体が発生する熱または室の内部で発生する熱に基づくので、熱遷移流ポンプの駆動に電気エネルギを消費しないことが可能になる。
【0015】
また、熱遷移流ポンプシステムにおいて、熱遷移流ポンプの排出口側に接続され所定の真空度を有するバッファ容器を備える。これにより、最初から所定の真空度になっているので、熱遷移流ポンプの縦続接続数を少なくすることができる。
【0016】
上記構成の熱遷移流ポンプを用いた真空室の真空維持方法によれば、真空室の内部空間の圧力と熱遷移流ポンプの吸入口側の圧力との間の圧力差が閾値圧力差以下のときに初めてバルブを開弁する。例えば、閾値圧力差を細孔膜が破壊しない程度の圧力差とすることで、室に熱遷移流ポンプを接続する際に、細孔膜に生じ得る損傷や破壊を抑制することが可能となる。
【図面の簡単な説明】
【0017】
図1】本発明に係る実施の形態の熱遷移流ポンプシステムの構成を示す図である。(a)は、3つの熱遷移流ポンプを縦続接続した場合の構成図で、(b)は、1つの熱遷移流ポンプの構成図である。
図2】本発明に係る実施の形態の熱遷移流ポンプシステムに用いられる熱遷移流ポンプの原理図である。
図3】本発明に係る実施の形態の熱遷移流ポンプを用いた真空室の真空維持方法の手順を示すフローチャートである。
図4】他の実施の形態の熱遷移流ポンプシステムの構成を示す図である。
【発明を実施するための形態】
【0018】
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下で述べる寸法、形状、材質、圧力、減圧比、孔径、熱遷移流ポンプの縦続接続数等は説明のための例示であって、熱遷移流ポンプシステム及び熱遷移流ポンプを用いた真空室の真空維持方法の仕様に応じ適宜変更が可能である。以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。
【0019】
図1は、熱遷移流ポンプシステム8の構成図である。(a)は全体構成図、(b)は熱遷移流ポンプの内部構成を示す図である。この熱遷移流ポンプシステム8は、真空室10と、熱遷移流ポンプブロック20と、真空室10と熱遷移流ポンプブロック20との間に設けられるバルブ70で構成される。
【0020】
真空室10は、内部空間12を有し、内部空間12が高真空に維持されることが必要な真空容器である。高真空の例としては、例えば約10Paである。真空室10の例は、セリア(セリウム酸化物)の酸化還元反応を利用して水素ガスや一酸化炭素ガスを生成するセリア反応室である。以下では、セリア反応室を真空室10として説明する。
【0021】
真空室10であるセリア反応室は、内部空間12の内壁面にセリアが塗布され、その内部空間12を高温かつ低酸素分圧の雰囲気にすることでセリアを還元できる。セリアを還元した後に、内部空間12に水または二酸化炭素ガスを供給すると、還元されたセリアが水または二酸化炭素ガスから酸素を奪い、水素ガスや一酸化炭素ガスを生成する。このとき酸素が放出されるので、内部空間12の酸素分圧が上昇する。酸素分圧が上昇しすぎるとセリアが還元されないので、還元されたセリアによる脱酸素反応を継続するには、放出された酸素を次々に排気して、内部空間12を所定の低酸素分圧の状態にする必要がある。
【0022】
そのために、バルブ70に接続される排出口11と、図示を省略したが、水や二酸化炭素ガスの供給口及び生成された水や一酸化炭素ガスを出力する出力口とを除き、真空室10の内部空間12が気密空間とされる。しかし、この気密空間とされる内部空間から僅かにリークが生じて、大気からの酸素が混入する等で、所定の酸素分圧の状態にならないことが生じ得る。そこで、この僅かなリークに相当する分を排気するため、バルブ70を介して熱遷移流ポンプブロック20が真空室10に接続される。
【0023】
なお、真空室10の内部空間12に接続される減圧ポンプ16は、内部空間12を真空引きする真空ポンプである。減圧ポンプ16は、真空室10の内部空間12の圧力が所定の減圧となるとその作動が停止される。
【0024】
また、真空室10であるセリア反応室は、セリアの還元のために加熱されるので、真空室10の外壁から輻射熱14が放出される。この輻射熱14は、電気エネルギを用いることなく、真空室10自体が外壁から発生する排熱、または真空室10の内部で発生する排熱に基づくものである。この輻射熱14は、熱遷移流ポンプブロック20で熱遷移流を発生させるための熱源として用いられる。
【0025】
熱遷移流ポンプブロック20は、複数の熱遷移流ポンプを縦続接続したもので、各熱遷移流ポンプが真空室10からの輻射熱を受け止めるのに好適な位置に配置される。例えば、真空室10の外壁の近傍、あるいは外壁に密着して配置される。図1(a)の例では、熱遷移流ポンプブロック20は、3つの熱遷移流ポンプ22,24,26を縦続接続して構成される。熱遷移流ポンプブロック20は、大気圧P0または大気圧P0に近いP-1からP-2,P-3,P-4と3段階の減圧を行い、バルブ70が開弁された状態で、真空室10の内部空間12の圧力を所定の減圧であるP-5とするように働く。
【0026】
なお、圧力Pに付記した(−1),(−2),(−3),(−4),(−5)の(−)の符号は大気圧P0よりも低い圧力であることを示し、(−)の後の数字は、値が大きいほど高真空であることを示す。圧力計18は、熱遷移流ポンプブロック20において最も減圧された熱遷移流ポンプ26の吸入口34の側の圧力P-4を検出する圧力検出手段で、圧力計19は、真空室10の内部空間12の圧力P-5を検出する圧力検出手段である。
【0027】
熱遷移流ポンプブロック20を構成する3つの熱遷移流ポンプ22,24,26の内容は同じであるので、その中の熱遷移流ポンプ24に代表させて、その内部構成について、図1(b)を用いて説明する。
【0028】
熱遷移流ポンプ24のケーシング30は、筒部材である。ケーシング30は、窓部31と一体化して内部に凹部を有する蓋部32を形成する。かかるケーシング30は、気密性を有し熱絶縁性の良好な材料を用いることができる。例えば、セラミック、耐熱性プラスチック等を用いることができる。
【0029】
窓部31は、真空室10から放射される輻射熱14を通し、熱遷移流ポンプ24の内部に導く部材である。かかる窓部31としては、赤外線等を透過するガラス板、フィルム等を用いることができる。
【0030】
ヒートシンク33は、熱伝導率の大きな材料で構成され、熱遷移流を発生させる温度差を形成するために低温側となる中実筒部材である。かかるヒートシンク33としては、断面が円形や矩形等の形状に成形された金属製の円柱や角柱を用いることができる。金属の材質としては、銅、アルミニウム等を用いることができる。
【0031】
ヒートシンクの33の一方側の端面を含む外壁は大気に面し、必要があれば、適当な放熱フィンを設け、あるいは冷媒流路を設けて冷却してもよい。ヒートシンク33の他方側の端面38は、平坦面に加工され、蓋部32の凹部の先端面と気密に接合される。これにより、蓋部32とヒートシンク33とが一体化される。その一体化によって、熱遷移流ポンプ24の外形が形作られ、熱遷移流ポンプ24の内部空間が形成される。蓋部32とヒートシンク33の一体化によって形成される内部空間は、吸入口34を有する吸入路35と、排出口36を有する排出路37を除いて、気密空間となる。
【0032】
吸入口34は、熱遷移流ポンプ24の内部空間へ媒体気体が吸い込まれる流入口である。吸入口34は、ヒートシンク33の内部に設けられる吸入路35の一方側の開口部で、ヒートシンク33の外壁に設けられる。吸入口34における媒体気体の圧力は、図1の例ではP-3である。吸入路35の他方側の開口部は、ケーシング30とヒートシンク33とで形成される熱遷移流ポンプ24の内部空間に面するケーシング30の他方側の端面38に設けられる。ここで媒体気体とは、熱遷移流ポンプ24の内部空間にある気体、特に多孔体膜50の周囲にあって熱遷移流を生じさせる周囲気体のことである。したがって、媒体気体の平均自由行程は、周囲気体の圧力や温度等で決まる。
【0033】
排出口36は、熱遷移流ポンプ24の内部空間から媒体気体を排出する流出口である。排出口36は、排出路37の一方側の開口部で、吸入口34とは別の場所としてケーシング30の外壁に設けられる。排出口36における媒体気体の圧力は、図1の例ではP-2である。ここで、P-2は吸入口34の圧力のP-3よりも大気圧P0に近い高圧である。排出路37の他方側の開口部は、蓋部32とヒートシンク33とで形成される熱遷移流ポンプ24の内部空間に面して設けられる。
【0034】
多孔体膜50は、細孔52を含む細孔膜で、複数の細孔52を所定の多孔率で有する多孔質の膜を用いることができる。細孔52は、媒体気体の平均自由行程の5倍の長さ以下の孔径を有する。多孔体膜50は、熱伝導率の小さい材料で構成される。熱伝導率としては、0.2W/(m・K)以下が好ましい。多孔体膜50における細孔52の多孔率は、例えば、孔部分の体積占有率で評価出来る。多孔率の一例を挙げると、約90%である。これ以外の多孔率であっても構わない。多孔体膜50の厚さの一例を挙げると、約0.5mmから約1mmである。これ以外の厚さであっても構わない。かかる多孔体膜50としては、シリカ(SiO2)を多孔質にしたエアロジェル(物質名)を用いることができる。あるいはこれに代えて、樹脂フィルム等に細孔を形成した多孔質フィルムを用いてもよい。
【0035】
多孔体膜50は、その一方側の端面と他方側の端面に温度差があると、低温側の端面から高温側の端面に向かって、熱遷移流54が生じる。熱遷移流54については、図2を用いて後述する。
【0036】
シール部40は、ヒートシンク33の他方側の端面38と多孔体膜50の間に設けられ、熱伝導率の小さい材料で構成される気密シール手段である。シール部40は、ヒートシンク33の他方側の端面38に設けられる吸入路35の開口部を内側に囲んで環状に配置される。
【0037】
かかるシール部40としては、多孔体膜50とヒートシンク33の双方に対し接着性の良好で、熱伝導性の小さい気密性接着剤を用いることができる。このような接着剤として、アラルダイト(登録商標)を用いることができる。例えば、アラルダイト(登録商標)を多孔体膜50の一方側端面62(図2参照)の外周側に沿って一周全部に塗布し、その塗布側をヒートシンク33の他方側の端面38に向けて押し付けることで、円環状に塗布された接着剤で構成されるシール部40を形成することができる。
【0038】
低温側空間56は、多孔体膜50の一方側端面62とヒートシンク33の他方側の端面38とシール部40の内側面とで形成される空間である。シール部40としてアラルダイト(登録商標)を用いるときは、シール部40の内側面は、円環状に塗布されたアラルダイト(登録商標)の内側面となる。シール部40の高さはアラルダイト(登録商標)の塗布厚さに対応する。低温側空間56には、吸入路35の他方側の開口部が開口する。
【0039】
高温側空間58は、熱遷移流ポンプ24の内部空間において、シール部40によって低温側空間56と気密分離された空間である。高温側空間58には、排出路37の他方側の開口部が開口する。このように、熱遷移流ポンプ24の内部空間において、吸入口側の低温側空間56と排出口側の高温側空間58の間に多孔体膜50が配置される。
【0040】
図2は、熱源15からの熱が窓部31を通して多孔体膜50に到達し多孔体膜50を加熱したときに多孔体膜50に熱遷移流54が生じることを示す原理図である。熱源15からの熱は、真空室10からの輻射熱14である。熱源15からの熱が窓部31を通して多孔体膜50に到達すると、多孔体膜50の他方側端面60が加熱されて高温側端面となる。多孔体膜50は熱伝導率が小さく、シール部40も熱伝導率が小さく、一方でヒートシンク33は熱伝導率が大きいので、多孔体膜50の一方側端面62は低温側端面となる。
【0041】
多孔体膜50の細孔52の孔径は媒体気体の平均自由行程の5倍の長さ以下の孔径を有するので、多孔体膜50の低温側端面である一方側端面62から高温側端面である他方側端面60に向かって熱遷移流54が生じる。これによって、低温側空間56の媒体気体が多孔体膜50の一方側端面62から吸い込まれ、多孔体膜50の細孔52を通って多孔体膜50の他方側端面60に抜けて高温側空間58へ流れる。このようにして熱遷移流54が生じ、低温側空間56の圧力は、高温側空間58の圧力P-2よりも減圧されたP-3となる。
【0042】
多孔体膜50は、厚さが約0.5mmから約1mmで、多孔質のシリカ(SiO2)や樹脂フィルム等に細孔を形成した多孔質フィルムであるので、一方側端面62側の低温側空間56の圧力と、他方側端面60の高温側空間58の圧力との差である圧力差が急変すると、損傷や破壊が生じ得る。これを防ぐために、図1(a)に示すように、熱遷移流ポンプブロック20と真空室10との間にバルブ70が設けられる。
【0043】
図1(a)のバルブ70は、熱遷移流ポンプブロック20の最も低圧側の熱遷移流ポンプ26の吸入口34と、真空室10の内部空間12との間に設けられる。熱遷移流ポンプ26の駆動によって吸入口34側の圧力P-4が次第に低下し、真空室10の内部空間12の圧力P-5との圧力差が小さくなって、所定の圧力差以下の範囲の低圧になると、バルブ70が開弁する。すなわち、真空室10の内部空間12の圧力P-5と熱遷移流ポンプ26の吸入口34側の圧力P-4の間の圧力差ΔPの絶対値|ΔP|=|(P-5−P-4|が予め定めた所定の閾値圧力差Pth以下のときに開弁する。|ΔP|=|P-5−P-4|は、圧力計18,19の検出値によって求められる。所定の閾値圧力差Pthは、多孔体膜50に損傷等が生じない値に設定される。閾値圧力差Pthは、予め実験等で求めることができる。
【0044】
バルブ70の閉状態から開状態への切替は、初期状態を閉状態とし、圧力計18,19の圧力を見ながら、圧力計18の圧力P-4が次第に低下し、圧力計19の圧力P-5との圧力差の絶対値|ΔP|=|P-5−P-4|が閾値圧力差Pth以下となったときに、操作者が手動で開弁して行うことができる。
【0045】
バルブ70に、リリーフ弁を用いることで、圧力計18,19を省略でき、操作者の操作を不要として、自動的な開閉を行うことができる。リリーフ弁は、2つの開口部を有し、一方側の開口部側には、弁体と、弁体の先端部を開口部の周辺部の弁座に押し付ける付勢力を発生するリリーフバネが配置される弁で、リリーフバネの付勢力は、圧力に換算した値がリリーフ圧となるように設定される。したがって、一方側の開口部における圧力が他方側の開口部における圧力よりも高く、その圧力差がリリーフ圧より大きくなると、弁体が弁座から離れてリリーフ弁が開弁する。換言すれば、他方側の開口部における圧力が一方側の開口部における圧力より低く、その圧力差がリリーフ圧以下となると、リリーフ弁が開弁する。
【0046】
そこで、リリーフ圧を閾値圧力差Pthに相当する圧力に設定し、熱遷移流ポンプ26の吸入口34をリリーフ弁の他方側の開口部に接続し、真空室10の内部空間12をリリーフ弁の一方側の開口部に接続する。このようにすることで、初期状態を閉弁状態とし、真空室10の内部空間12の圧力P-5と熱遷移流ポンプ26の吸入口34側の圧力P-4の間の圧力差の絶対値|ΔP|=|P-5−P-4|が予め定めた所定の閾値圧力差Pth以下となると、リリーフ弁であるバルブは、自動的に開弁する。
【0047】
図3は、上記構成の熱遷移流ポンプシステム8を用いて、真空室10の真空状態を維持する方法の手順を示すフローチャートである。初期状態においてバルブ70は閉状態である(S10)。次に、真空室10の内部空間12の真空引きが行われる(S12)。真空引きには、真空室10の内部空間12に接続される減圧ポンプ16を駆動して行うことができる。真空室10が減圧され、真空室10であるセリア反応室が加熱されて、真空室10からの輻射熱14が発生すると、熱遷移流ポンプブロック20の駆動が開始する(S14)。
【0048】
熱遷移流ポンプブロック20の駆動によって、各熱遷移流ポンプ22,24,26の各内部空間が減圧されてその圧力が次第に低下してくる。そこで、熱遷移流ポンプブロック20の最も低圧側の熱遷移流ポンプ26の吸入口34側の圧力P-4と真空室10の内部空間12の圧力P-5との圧力差ΔPの絶対値|ΔP|=|P-5−P-4|が閾値圧力差Pth以下であるか否かが判断される(S16)。判断が否定されるとS12に戻り、真空室10の内部空間12の真空引きと熱遷移流ポンプブロック20の駆動が継続される。
【0049】
S16の判断が肯定されると、バルブ70が閉弁状態から開弁状態に切り替える(S18)。これによって、真空室10の内部空間12の圧力は、減圧ポンプ16による真空引きと、熱遷移流ポンプブロック20による減圧とによって、より低圧となる。真空室10の内部空間12が所望の高真空に到達すると、減圧ポンプ16の駆動が停止され、図示されていない開閉弁によって真空室10の内部空間12と減圧ポンプ16との間が遮断される。バルブ70は開状態のまま、熱遷移流ポンプブロック20の駆動が継続される。S16の判断が否定されるときは、適当な所定時間待機し(S20)、S16へ戻り、S16の判断が肯定されるまで、これを繰り返す。
【0050】
これによって、真空室10の内部空間12からのリークがあっても、その分を熱遷移流ポンプブロック20の駆動で補うことができる。このようにして、真空室10の内部空間12の圧力を所望の高真空に維持できる。熱遷移流ポンプブロック20の駆動は、真空室10からの輻射熱によって行われるので、電気エネルギを消費しない。
【0051】
熱遷移流ポンプブロック20によって大気圧から真空室10の内部空間12の高真空まで引くには、多数の熱遷移流ポンプを縦続接続する必要がある。熱遷移流ポンプブロック20の駆動前に、予め他の減圧ポンプ等で各熱遷移流ポンプの圧力を減圧しておけば、その分、熱遷移流ポンプブロック20を構成する熱遷移流ポンプの縦続接続数を少なくすることができる。
【0052】
図4は、熱遷移流ポンプブロック20において最も低真空度で大気圧P0側の熱遷移流ポンプ22の排出口36に予め所定の真空度を有するバッファ容器80を接続した熱遷移流ポンプシステム9の構成を示す図である。バッファ容器80には、開閉弁82を介して減圧ポンプ84が接続される。減圧ポンプ84は、真空室10の内部空間12に接続される減圧ポンプ16とは別の小型真空ポンプである。
【0053】
図3のS14の工程の前、すなわち熱遷移流ポンプブロック20の駆動前に、開閉弁82を開いて、減圧ポンプ84を駆動させ、バッファ容器80と熱遷移流ポンプブロック20を構成する各熱遷移流ポンプの圧力を所定の真空度まで減圧する。所定の真空度は、バルブ70の閾値圧力差Pthに対応する圧力に比べれば大気圧P0側の低真空度である。例えば、所定の真空度を約1000Paとすることができる。バッファ容器80と熱遷移流ポンプブロック20を構成する各熱遷移流ポンプの圧力が所定の真空度に到達すると、開閉弁82が閉じられ、減圧ポンプ84の駆動が停止される。
【0054】
その後、熱遷移流ポンプブロック20を駆動させる。これにより、熱遷移流ポンプブロック20は予め約1000Pa程度の圧力に減圧されているので、より少ない縦続接続数の熱遷移流ポンプでバルブ70の閾値圧力差Pthまで短時間で到達することができる。
【0055】
所定の真空度を有するバッファ容器80は、熱遷移流ポンプブロック20の最も高圧側の熱遷移流ポンプ22の排出口36に接続されたままである。これによって、熱遷移流ポンプブロック20の僅かなリークや内部ガスの発生があっても、熱遷移流ポンプブロック20の真空度の変動を少なく抑制できる。
【符号の説明】
【0056】
8,9 熱遷移流ポンプシステム、10 真空室、11 排出口、12 内部空間、
14 輻射熱、15 熱源、16,84 減圧ポンプ、18,19 圧力計、
20 熱遷移流ポンプブロック、22,24,26 熱遷移流ポンプ、30 ケーシング、31 窓部、32 蓋部、33 ヒートシンク、34 吸入口、35 吸入路、36 排出口、37 排出路、38 端面、40 シール部、50 多孔体膜、52 細孔、54 熱遷移流、56 低温側空間、58 高温側空間、60 他方側端面、62 一方側端面、70 バルブ、80 バッファ容器、82 開閉弁。
図1
図2
図3
図4