【文献】
Andrew Segall 5750 NW Pacific Rim Blvd Camas, WA 98607 United States,New Results with the Tone Mapping SEI Message[online], JVT-U JVT-U041,インターネット<URL:http://wftp3.itu.int/av-arch/jvt-site/2006_10_Hangzhou/JVT-U041.zip>
【文献】
Sally Hattori, et.al.,Signalling of Luminance Dynamic Range in Tone mapping information SEI,Joint Collaborative Team on Video Coding(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 10th Meeting:Stockholm,SE,11-20 July 2012,米国,JCTVC,2012年 7月20日,JCTVC-J0149,P.1-P.7,URL,http://phenix.it-sudparis.eu/jct/index.php
(58)【調査した分野】(Int.Cl.,DB名)
第1のダイナミックレンジの輝度で表示される画像である第1の画像の符号化データと、前記画像の輝度のダイナミックレンジの前記第1のダイナミックレンジから第2のダイナミックレンジへの変換に関する情報であって、前記第1のダイナミックレンジのニーポイントを表す変換前情報と、前記ニーポイントに対応する前記第2のダイナミックレンジの輝度を表す変換後情報の複数のペアを重要度の高い順に含む変換情報とを含む符号化ストリームから、前記符号化データと前記変換情報を抽出する抽出部と、
前記抽出部により抽出された前記変換情報に含まれる複数の前記ペアから所定数の前記ペアを、前記変換情報に含まれる順に選択する選択部と、
前記抽出部により抽出された前記符号化データを復号し、前記第1の画像を生成する復号部と
を備え、
前記画像の輝度のダイナミックレンジの変換は、ニー変換と前記選択部により選択された所定数の前記ペアに対応するニーポイントとに基づいて行われ、
前記変換情報は、連続する複数の前記画像に前記変換情報を適用するかどうかを示す情報を含む
ように構成された
復号装置。
前記変換情報は、前記第1の画像を表示する表示部の明るさの想定値と、前記第2のダイナミックレンジの輝度で表示される前記画像である第2の画像を表示する表示部の明るさの想定値の少なくとも一方を含む
ように構成された
請求項7に記載の符号化装置。
【発明を実施するための形態】
【0028】
<本開示の前提>
(SDR画像の説明)
図1は、SDR画像を説明する図である。
【0029】
図1に示すように、SDR画像は、例えば最大輝度100nit(cd/m2)の表示装置に対応するように画質調整された画像である。自然界での最大輝度は20000nit以上に達することもあるため、SDR画像では、明るさのダイナミックレンジは大きく圧縮されることになる。
【0030】
(HDR画像の説明)
図2は、HDR画像を説明する図である。
【0031】
図2に示すように、HDR画像は、輝度のダイナミックレンジが0-100%より大きい画像である。本明細書では、特に断りのない限り、HDR画像の輝度のダイナミックレンジは、0-400%とする。例えば、
図2に示すように、輝度のダイナミックレンジが0-800%(800nit)であるHDR画像が符号化され、BD(Blu-ray(登録商標) Disc )等に記録される場合、その輝度を表す属性情報もHDR画像とともに記録される。そして、表示装置に復号されたHDR画像とともに属性情報が入力され、輝度のダイナミックレンジが0-800%である画像としてHDR画像が表示される。
【0032】
なお、表示装置の最大輝度が1000nitである場合、例えば、HDR画像の輝度が1000nitにスケーリングされて表示される。このようにスケーリングが行われる場合であっても、HDR画像は、輝度のダイナミックレンジが0-800%であるため、SDR画像に比べて、スケーリングによる画質劣化は少なくて済む。
【0033】
<第1実施の形態>
(第1実施の形態の符号化の概要)
図3は、本開示を適用した符号化装置の第1実施の形態の符号化の概要を説明する図である。
【0034】
図3において、横軸は、輝度値(input code value)であり、縦軸は、輝度(output video level)である。なお、
図3の横軸の輝度値は、輝度値のビット数を10ビットとし、白色の輝度をニー圧縮後の100%としたときの値であるが、実際に輝度に変換される輝度値は、その値が0以上1以下の値に正規化されたものである。これらのことは、後述する
図5においても同様である。
【0035】
図3に示すように、第1実施の形態では、輝度のダイナミックレンジが0-400%であるHDR画像の80-400%を80-100%にニー(knee)圧縮することにより、輝度のダイナミックレンジが0-100%であるSDR画像が生成され、符号化される。
【0036】
(第1実施の形態の復号の概要)
図4は、本開示を適用した復号装置の第1実施の形態の復号の概要を説明する図である。
【0037】
図4に示すように、第1実施の形態では、
図3で説明したようにして生成された、輝度のダイナミックレンジが0-100%であるSDR画像の符号化データが復号される。表示部がSDRディスプレイである場合、表示部には、復号の結果得られるSDR画像がそのまま入力され、表示される。一方、表示部がHDRディスプレイである場合、復号の結果得られるSDR画像がHDR画像にスケーリングされて入力され、表示部に表示される。
【0038】
具体的には、
図5に示すように、復号の結果得られる、輝度のダイナミックレンジ(範囲)が0-100%のSDR画像の80-100%が80-400%にニー伸長され、輝度のダイナミックレンジが0-400%であるHDR画像が生成される。そして、生成されたHDR画像が表示される。
【0039】
なお、このとき、所望のHDR画像を生成するためには、ニー伸長するSDR画像の輝度の範囲(
図5の例では80-100%)、その範囲に対応するHDR画像の輝度の範囲(
図5の例では80-400%)などの、SDR画像から所望のHDR画像への変換に関する情報が必要である。従って、第1実施の形態では、SDR画像からHDR画像への変換に関する変換情報を符号化装置から復号装置に伝送することにより、復号装置において、復号されたSDR画像から所望のHDR画像を生成することができるようにする。
【0040】
(符号化装置の第1実施の形態の構成例)
図6は、本開示を適用した符号化装置の第1実施の形態の構成例を示すブロック図である。
【0041】
図6の符号化装置10は、設定部11、符号化部12、伝送部13、および変換部14により構成され、HDR画像を変換したSDR画像をHEVC方式に準ずる方式で符号化する。
【0042】
具体的には、符号化装置10の設定部11は、SPS(Sequence Parameter Set),PPS(Picture Parameter Set),VUIなどを設定する。また、設定部11は、ユーザ(製作者)等の指令により、変換情報を含むknee_function_info SEI(Supplemental Enhancement Information)などを設定する。設定部11は、設定されたSPS,PPS,VUI,knee_function_info SEIなどのパラメータセットを符号化部12に供給する。
【0043】
符号化部12は、変換部14から供給されるSDR画像をHEVC方式で符号化する。符号化部12は、符号化の結果得られる符号化データと設定部11から供給されるパラメータセットから符号化ストリームを生成し、伝送部13に供給する。
【0044】
伝送部13は、符号化部12から供給される符号化ストリームを、後述する復号装置に伝送する。なお、伝送部13は、BD等の記録媒体に符号化ストリームを記録する図示せぬ記録装置に符号化ストリームを伝送するようにしてもよい。この場合、符号化ストリームは、記録媒体を介して復号装置に伝送される。
【0045】
変換部14は、外部から入力されるHDR画像をニー圧縮によりSDR画像に変換し、符号化部12に供給する。
【0046】
(knee_function_info SEIのシンタクスの例)
図7は、knee_function_info SEIのシンタクスの例を示す図であり、
図8は、
図7のknee_function_info SEIに設定される各情報を説明する図である。
【0047】
図7に示すように、knee_function_info SEIには、変換情報として、入力ニー位置情報(knee_point_of_input)、出力ニー位置情報(knee_point_of_input)、出力輝度レンジ情報(output_white_level_range)、出力輝度情報(output_white_level_range_luminance)などが設定される。
【0048】
入力ニー位置情報は、変換前の画像であるSDR画像のニー伸長対象の輝度の最小値(ニーポイント)を示す情報である。この入力ニー位置情報は、SDR画像の輝度の最大値を1000‰としたときのニーポイントの千分率である。
【0049】
出力ニー位置情報は、変換前の画像であるSDR画像のニー伸長対象の輝度の最小値(ニーポイント)に対応する、変換後の画像であるHDR画像の輝度を示す情報である。この出力ニー位置情報は、HDR画像の輝度の最大値を1000‰としたときのニーポイントに対応する輝度の千分率である。
【0050】
出力輝度レンジ情報は、変換後の画像であるHDR画像の白色の輝度を示す情報である。また、出力輝度情報は、変換後の画像であるHDR画像の白色に対応する表示部の明るさ(輝度)を示す情報である。
【0051】
(変換情報の例)
図9および
図10は、knee_function_info SEIに設定される変換情報の例を示す図である。
【0052】
図9の例では、ユーザは、SDR画像の輝度の80-100%を80-400%にニー伸長した結果得られるHDR画像を所望のHDR画像としている。この場合、knee_function_info SEIには、入力ニー位置情報(knee_point_of_input)として800が設定され、出力ニー位置情報(knee_point_of_output)として200が設定される。
【0053】
従って、後述する復号装置は、入力ニー位置情報と出力ニー位置情報に基づいて、復号の結果得られるSDR画像の輝度の80-100%を80-400%にニー伸長することができる。その結果、復号装置は、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。
【0054】
また、
図9の例では、出力輝度レンジ情報(output_white_level_range)は400であり、出力輝度情報(output_white_level_range_luminance)は800(cd/m
2)である。
【0055】
図10の例では、ユーザは、SDR画像の輝度の80-100%を100-400%にニー伸長した結果得られるHDR画像を所望のHDR画像としている。この場合、knee_function_info SEIには、入力ニー位置情報(knee_point_of_input)として800が設定され、出力ニー位置情報(knee_point_of_output)として200が設定される。
【0056】
従って、後述する復号装置は、入力ニー位置情報と出力ニー位置情報に基づいて、復号の結果得られるSDR画像の輝度の80-100%を100-400%にニー伸長することができる。その結果、復号装置は、復号の結果得られるSDR画像を所望のHDR画に変換することができる。
【0057】
また、
図10の例では、出力輝度レンジ情報(output_white_level_range)は400であり、出力輝度情報(output_white_level_range_luminance)は800(cd/m
2)である。
【0058】
(符号化装置の処理の説明)
図11は、符号化装置10のストリーム生成処理を説明するフローチャートである。
【0059】
図11のステップS10において、符号化装置10の変換部14は、外部から入力されるHDR画像をニー圧縮によりSDR画像に変換し、符号化部12に供給する。
【0060】
ステップS11において、設定部11は、SPSを設定する。ステップS12において、設定部11は、VUIを設定する。ステップS13において、設定部11は、PPSを設定する。
【0061】
ステップS14において、設定部11は、ユーザの指示等によりknee_function_info SEIを設定する。設定部11は、設定されたSPS,PPS,VUI, knee_function_info SEIなどのパラメータセットを符号化部12に供給する。
【0062】
ステップS15において、符号化部12は、変換部14から供給されるSDR画像をHEVC方式で符号化する。ステップS16において、符号化部12は、符号化の結果得られる符号化データと設定部11から供給されるパラメータセットから符号化ストリームを生成し、伝送部13に供給する。
【0063】
ステップS17において、伝送部13は、符号化部12から供給される符号化ストリームを、後述する復号装置に伝送し、処理を終了する。
【0064】
以上のように、符号化装置10は、変換情報を含むknee_function_info SEIを設定し、伝送するので、後述する復号装置は、変換情報に基づいて、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。従って、符号化装置10は、復号時に、復号されたSDR画像を所望のHDR画像へ変換することができるように、SDR画像を符号化することができるといえる。
【0065】
また、符号化装置10は、変換情報を設定するので、SDR画像を符号化するだけで、HDRディスプレイとSDRディスプレイに対応する画像の符号化ストリームを生成することができる。従って、HDR画像とSDR画像の両方を符号化する場合に比べて、符号化ストリームのデータ量を削減することができる。
【0066】
(復号装置の第1実施の形態の構成例)
図12は、
図6の符号化装置10から伝送されてくる符号化ストリームを復号する、本開示を適用した復号装置の一実施の形態の構成例を示すブロック図である。
【0067】
図12の復号装置50は、受け取り部51、抽出部52、復号部53、変換部54、表示制御部55、および表示部56により構成される。
【0068】
復号装置50の受け取り部51は、
図6の符号化装置10から伝送されてくる符号化ストリームを受け取り、抽出部52に供給する。
【0069】
抽出部52は、受け取り部51から供給される符号化ストリームから、パラメータセットとSDR画像の符号化データを抽出する。抽出部52は、パラメータセットとSDR画像の符号化データを復号部53に供給する。また、抽出部52は、パラメータセットのうちのknee_function_info SEIを変換部54に供給する。
【0070】
復号部53は、抽出部52から供給されるSDR画像の符号化データをHEVC方式で復号する。このとき、復号部53は、必要に応じて、抽出部52から供給されるパラメータセットも参照する。復号部53は、復号の結果得られるSDR画像の画像を変換部54に供給する。
【0071】
変換部54は、抽出部52から供給されるknee_function_info SEIに含まれる変換情報に基づいて、復号部53から供給されるSDR画像をニー伸長によりHDR画像に変換し、表示制御部55に供給する。
【0072】
表示制御部55は、変換部54から供給されるHDR画像を表示部56に表示させる。表示部56は、HDRディスプレイである。
【0073】
(復号装置の処理の説明)
図13は、
図12の復号装置50の画像生成処理を説明するフローチャートである。
【0074】
図13のステップS51において、復号装置50の受け取り部51は、
図6の符号化装置10から伝送されてくる符号化ストリームを受け取り、抽出部52に供給する。
【0075】
ステップS52において、抽出部52は、受け取り部51から供給される符号化ストリームから、パラメータセットとSDR画像の符号化データを抽出する。抽出部52は、パラメータセットとSDR画像の符号化データを復号部53に供給する。また、抽出部52は、パラメータセットのうちのknee_function_info SEIを変換部54に供給する。
【0076】
ステップS53において、復号部53は、抽出部52から供給されるSDR画像の符号化データをHEVC方式で復号する。このとき、復号部53は、必要に応じて、抽出部52から供給されるパラメータセットも参照する。復号部53は、復号の結果得られるSDR画像を変換部54に供給する。
【0077】
ステップS54において、変換部54は、抽出部52から供給されるknee_function_info SEIから変換情報を取得する。
【0078】
ステップS55において、変換部54は、変換情報に基づいて、復号部53から供給されるSDR画像をHDR画像に変換し、表示制御部55に供給する。
【0079】
ステップS56において、表示制御部55は、変換部54から供給されるHDR画像を表示部56に表示させ、処理を終了する。
【0080】
以上のように、復号装置50は、変換情報に基づいて、復号の結果得られるSDR画像をHDR画像に変換するので、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。
【0081】
(knee_function_info SEIのシンタクスの他の例)
図14は、knee_function_info SEIのシンタクスの他の例を示す図であり、
図15は、
図14のknee_function_info SEIに設定される各情報を説明する図である。
【0082】
図14のknee_function_info SEIは、出力輝度レンジ情報(output_white_level_range)と出力輝度情報(output_white_level_range_luminance)の代わりに、輝度レンジ情報(white_level_range)と輝度情報(white_level_range_luminance)が設定される点を除いて、
図7のknee_function_info SEIと同様である。
【0083】
輝度レンジ情報は、第1実施の形態のように入力ニー位置情報(knee_point_of_input)が出力ニー位置情報(knee_point_of_
output)以上であるとき、即ち、復号側でニー伸長が行われる場合、出力輝度レンジ情報である。
【0084】
一方、入力ニー位置情報が出力ニー位置情報より小さいとき、即ち、復号側でニー圧縮が行われる場合、輝度レンジ情報は、変換前の画像(例えばHDR画像)の白色の輝度を示す情報である。
【0085】
同様に、輝度情報(white_level_range_luminance)は、第1実施の形態のように入力ニー位置情報が出力ニー位置情報以上であるとき出力輝度情報であり、入力ニー位置情報が出力ニー位置情報より小さいとき、変換前の画像(例えばHDR画像)の白色の輝度(値)を示す情報である。
【0086】
なお、第1実施の形態では、符号化装置10において、SDR画像のみが符号化されたが、SDR画像を変換したHDR画像のみが符号化されるようにしてもよい。この場合、SDR画像からHDR画像への変換に関する情報がSEIに設定され、復号装置50に伝送される。具体的には、
図7や
図15で示したknee_function_info SEIの変更前の画像をHDR画像とし、変更後の画像をSDR画像としたものが、復号装置50に伝送される。そして、復号装置50は、そのknee_function_info SEIに基づいて、HDR画像を元のSDR画像に精度良く変換する。
【0087】
また、第1実施の形態では、表示部56がHDRディスプレイであるものとしたが、表示部56はSDRディスプレイであってもよい。この場合、変換部54は、SDR画像をHDR画像に変換せず、そのまま表示制御部55に供給する。これにより、表示部56にはSDR画像が表示される。
【0088】
さらに、所望の画像は、符号化装置10に入力されるHDR画像であってもよい。
【0089】
また、第1実施の形態では、符号化装置10が、外部から入力されるHDR画像をSDR画像に変換して符号化したが、外部から入力されるSDR画像をそのまま符号化するようにしてもよい。
【0090】
<第2実施の形態>
(符号化装置の第2実施の形態の構成例)
図16は、本開示を適用した符号化装置の第
2実施の形態の構成例を示すブロック図である。
【0091】
図16に示す構成のうち、
図6の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0092】
図16の符号化装置70の構成は、設定部11、符号化部12、変換部14の代わりに、設定部71、符号化部72、変換部73が設けられる点が、
図6の符号化装置10の構成と異なる。符号化装置70は、外部から入力されるHDR画像そのもの、または、HDR画像を変換したSDR画像をHEVC方式に準ずる方式で符号化する。
【0093】
具体的には、符号化装置70の設定部71は、SPS,PPS,VUIなどを設定する。また、設定部71は、ユーザ(製作者)等の指令により、DR変換情報を含むknee_function_info SEIなどのSEIを設定する。DR変換情報とは、符号化対象の画像の輝度のダイナミックレンジの、異なるダイナミックレンジへの変換に関する情報である。設定部71は、設定されたSPS,PPS,VUI,knee_function_info SEIなどのパラメータセットを符号化部72に供給する。
【0094】
符号化部72は、変換部73から供給されるHDR画像またはSDR画像を符号化対象の画像とし、符号化対象の画像をHEVC方式で符号化する。符号化部72は、符号化の結果得られる符号化データと設定部71から供給されるパラメータセットから符号化ストリームを生成し、伝送部13に供給する。
【0095】
変換部73は、外部から入力されるHDR画像の輝度をニー圧縮することによりSDR画像を生成し、符号化部72に供給するか、または、外部から入力されるHDR画像をそのまま符号化部72に供給する。
【0096】
(knee_function_info SEIのシンタクスの第1の例)
図17は、
図16の設定部71により設定されるknee_function_info SEIのシンタクスの第1の例を示す図であり、
図18は、
図17のknee_function_info SEIに設定される各情報を説明する図である。
【0097】
図17に示すように、knee_function_info SEIには、ニー変換ID(knee_function_id)とニー変換キャンセルフラグ(knee_function_cancel_flag)が設定される。
【0098】
ニー変換IDは、
図18に示すように、ニー圧縮またはニー伸長であるニー変換の目的に固有のIDである。また、ニー変換キャンセルフラグは、前のknee_function_info SEIの連続性をキャンセルするかどうかを表すフラグである。ニー変換キャンセルフラグは、前のknee_function_info SEIの連続性をキャンセルすることを表す場合1であり、キャンセルしないことを表す場合0である。
【0099】
ニー変換キャンセルフラグが0である場合、
図17に示すように、knee_function_info SEIには、DR変換情報として、1つの変換前位置情報(input_knee_point)、1つの変換後位置情報(output_knee_point)、HDR輝度レンジ情報(d_range)、およびディスプレイ輝度情報(d_range_disp_luminance)が設定される。
【0100】
変換前位置情報は、DR変換情報に対応する変換における変換前の画像である符号化対象の画像のニーポイントを表す情報であり、符号化対象の画像の輝度の最大値を1000‰としたときのニーポイントの千分率である。ニーポイントとは、符号化対象の画像の輝度のダイナミックレンジの同一の変換率でニー変換される輝度の範囲の始点の0以外の輝度(Linear RGB値を0.0〜1.1に正規化した値)である。
【0101】
変換後位置情報は、DR変換情報に対応する変換における変換後の画像(以下、変換画像という)の、ニーポイントを始点とするニー変換される輝度の範囲に対応する輝度の範囲の始点を表す情報である。具体的には、変換後位置情報は、変換画像の輝度の最大値を1000‰としたときのニーポイントに対応する変換画像の輝度の千分率である。
【0102】
HDR輝度レンジ情報は、符号化対象の画像または変換画像としてのHDR画像の輝度の最大値の千分率を示す情報である。また、ディスプレイ輝度情報は、HDR画像の輝度の最大値に対応する表示部の明るさ(輝度)の想定値を示す情報である。
【0103】
(DR変換情報の第1の例)
図19および
図20は、
図17のknee_function_info SEIに設定されるDR変換情報の例を示す図である。
【0104】
図19の例では、符号化対象の画像がSDR画像であり、ユーザは、SDR画像の輝度の80-100%を80-400%にニー伸長した結果得られるHDR画像を所望の変換画像としている。この場合、knee_function_info SEIには、変換前位置情報(input_knee_point)として800が設定され、変換後位置情報(output_knee_point)として200が設定される。
【0105】
また、
図19の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)である。
【0106】
図19の場合のように、符号化対象の画像がSDR画像であり、変換画像がHDR画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、以下の式(1)で定義される。
【0108】
従って、後述する復号装置は、式(1)により、ニーポイントinput_knee_point_PERと輝度output_knee_point_PERが80%であることを認識する。また、後述する復号装置は、変換前位置情報が変換後位置情報以上であるため、DR変換情報に対応するニー変換がニー伸長であることを認識する。さらに、後述する復号装置はHDR輝度レンジ情報から変換画像の輝度の最大値が400%であることを認識する。
【0109】
以上により、後述する復号装置は、復号の結果得られるSDR画像の輝度の80-100%を80-400%にニー伸長する。その結果、復号装置は、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。
【0110】
図20の例では、符号化対象の画像がHDR画像であり、ユーザは、HDR画像の輝度の80-400%を80-100%にニー圧縮した結果得られるSDR画像を所望の変換画像としている。この場合、knee_function_info SEIには、変換前位置情報(input_knee_point)として200が設定され、変換後位置情報(output_knee_point)として800が設定される。
【0111】
また、
図20の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)である。
【0112】
図20の場合のように、符号化対象の画像がHDR画像であり、変換画像がSDR画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、以下の式(2)で定義される。
【0114】
従って、後述する復号装置は、式(2)により、ニーポイントinput_knee_point_PERと輝度output_knee_point_PERが80%であることを認識する。また、後述する復号装置は、変換後位置情報より変換前位置情報が小さいため、DR変換情報に対応するニー変換がニー圧縮であることを認識する。さらに、後述する復号装置は、HDR輝度レンジ情報から符号化対象の画像の輝度の最大値が400%であることを認識する。
【0115】
以上により、後述する復号装置は、復号の結果得られるHDR画像の輝度の80-400%を80-100%にニー圧縮する。その結果、復号装置は、復号の結果得られるHDR画像を所望のSDR画像に変換することができる。
【0116】
(符号化装置の処理の説明)
図21は、
図16の符号化装置70のストリーム生成処理を説明するフローチャートである。
【0117】
図21のステップS71において、符号化装置70の変換部73は、例えば、ユーザからの指示等に応じて、符号化対象の画像はSDR画像であるかどうかを判定する。ステップS71で符号化対象の画像はSDR画像であると判定された場合、処理はステップS72に進む。
【0118】
ステップS72において、変換部73は、外部から入力されるHDR画像の輝度をニー圧縮によりSDR画像に変換し、符号化部72に供給する。
【0119】
一方、ステップS71で符号化対象の画像はSDR画像ではないと判定された場合、即ち、符号化対象の画像はHDR画像である場合、変換部73は、外部から入力されるHDR画像をそのまま符号化部72に供給し、処理をステップS73に進める。
【0120】
ステップS73において、設定部71は、SPSを設定する。ステップS74において、設定部71は、VUIを設定する。ステップS75において、設定部71は、PPSを設定する。
【0121】
ステップS76において、設定部71は、ユーザの指示等によりknee_function_info SEIを設定する。設定部71は、設定されたSPS,PPS,VUI, knee_function_info SEIなどのパラメータセットを符号化部72に供給する。
【0122】
ステップS77において、符号化部72は、変換部73から供給されるSDR画像またはHDR画像を符号化対象の画像としてHEVC方式で符号化する。ステップS78において、符号化部72は、符号化の結果得られる符号化データと設定部71から供給されるパラメータセットから符号化ストリームを生成し、伝送部13に供給する。
【0123】
ステップS79において、伝送部13は、符号化部72から供給される符号化ストリームを、後述する復号装置に伝送し、処理を終了する。
【0124】
以上のように、符号化装置70は、DR変換情報を含むknee_function_info SEIを設定し、伝送するので、後述する復号装置は、DR変換情報に基づいて、復号の結果得られる符号化対象の画像を所望の変換画像に変換することができる。従って、符号化装置70は、復号時に、復号画像をダイナミックレンジの異なる所望の変換画像に変換することができるように、画像を符号化することができるといえる。
【0125】
また、符号化装置70は、DR変換情報を設定するので、SDR画像とHDR画像のいずれか一方を符号化するだけで、HDRディスプレイとSDRディスプレイに対応する画像の符号化ストリームを生成することができる。従って、HDR画像とSDR画像の両方を符号化する場合に比べて、符号化ストリームのデータ量を削減することができる。
【0126】
(復号装置の第2実施の形態の構成例)
図22は、
図16の符号化装置70から伝送されてくる符号化ストリームを復号する、本開示を適用した復号装置の第2実施の形態の構成例を示すブロック図である。
【0127】
図22に示す構成のうち、
図12の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0128】
図22の復号装置90の構成は、抽出部52、復号部53、変換部54、表示制御部55、表示部56の代わりに、抽出部91、復号部92、変換部93、表示制御部94、表示部95が設けられる点が、
図12の復号装置50の構成と異なる。復号装置90は、表示部95の種類に応じて復号画像を変換画像に変換し、表示部95に表示する。
【0129】
具体的には、復号装置90の抽出部91は、受け取り部51から供給される符号化ストリームから、パラメータセットと符号化データを抽出する。抽出部91は、パラメータセットと符号化データを復号部92に供給する。また、抽出部91は、パラメータセットのうちのknee_function_info SEIを変換部93に供給する。
【0130】
復号部92は、抽出部91から供給される符号化データをHEVC方式で復号する。このとき、復号部92は、必要に応じて、抽出部91から供給されるパラメータセットも参照する。復号部92は、復号画像を変換部93に供給する。
【0131】
変換部93は、表示部95に対応する輝度のダイナミックレンジが復号画像の輝度のダイナミックレンジである場合、復号部92から供給される復号画像をそのまま表示画像として表示制御部94に供給する。一方、表示部95に対応する輝度のダイナミックレンジが復号画像の輝度のダイナミックレンジではない場合、変換部93は、抽出部91からのknee_function_info SEIに含まれるDR変換情報に基づいて、復号画像をニー変換により変換画像に変換する。そして、変換部93は、変換画像を表示画像として表示制御部94に供給する。
【0132】
具体的には、表示部95がHDRディスプレイであり、復号画像がHDR画像である場合、または、表示部95がSDRディスプレイであり、復号画像がSDR画像である場合、変換部93は、復号画像をそのまま表示画像として表示制御部94に供給する。一方、表示部95がSDRディスプレイであり、復号画像がHDR画像である場合、または、表示部95がHDRディスプレイであり、復号画像がSDR画像である場合、変換部93は、DR変換情報に基づいて復号画像に対してニー変換を行い、変換画像を生成する。そして、変換部93は、変換画像を表示画像として表示制御部94に供給する。
【0133】
表示制御部94は、変換部93から供給される表示画像を表示部95に表示させる。これにより、表示部95がHDRディスプレイである場合、HDR画像が表示部95に表示され、表示部95がSDRディスプレイである場合、SDR画像が表示部95に表示される。表示部95は、HDRディスプレイまたはSDRディスプレイであり、表示
制御部9
4から供給される表示画像を表示する。
【0134】
(復号装置の処理の説明)
図23は、
図22の復号装置90の画像生成処理を説明するフローチャートである。
【0135】
図23のステップS91において、復号装置90の受け取り部51は、
図16の符号化装置70から伝送されてくる符号化ストリームを受け取り、抽出部91に供給する。
【0136】
ステップS92において、抽出部91は、受け取り部51から供給される符号化ストリームから、パラメータセットと符号化データを抽出する。抽出部91は、パラメータセットと符号化データを復号部92に供給する。また、抽出部91は、パラメータセットのうちのknee_function_info SEIを変換部93に供給する。
【0137】
ステップS93において、復号部92は、抽出部91から供給される符号化データをHEVC方式で復号する。このとき、復号部92は、必要に応じて、抽出部91から供給されるパラメータセットも参照する。復号部92は、復号画像を変換部93に供給する。
【0138】
ステップS94において、変換部93は、抽出部91から供給されるknee_function_info SEIからDR変換情報を取得する。
【0139】
ステップS95において、変換部93は、表示部95に対応する輝度のダイナミックレンジが復号画像の輝度のダイナミックレンジであるかどうかを判定する。ステップS95で表示部95に対応する輝度のダイナミックレンジが復号画像の輝度のダイナミックレンジではないと判定された場合、処理はステップS96に進む。
【0140】
ステップS96において、変換部93は、DR変換情報に基づいて、復号部92から供給される復号画像を変換画像に変換し、変換画像を表示画像として表示制御部94に供給する。そして、処理はステップS97に進む。
【0141】
一方、ステップS95で表示部95に対応する輝度のダイナミックレンジが復号画像の輝度のダイナミックレンジであると判定された場合、変換部93は、復号部92から供給される復号画像をそのまま表示画像として表示制御部94に供給する。そして、処理はステップS97に進む。
【0142】
ステップS97において、表示制御部94は、変換部93から供給される表示画像を表示部95に表示させ、処理を終了する。
【0143】
以上のように、復号装置90は、DR変換情報に基づいて復号画像を変換画像に変換するので、復号画像を所望の変換画像に変換することができる。
【0144】
なお、第2実施の形態では、SDR画像とHDR画像のいずれか一方が符号化対象の画像とされ、他方が変換画像とされたが、SDR画像を、輝度の最大値に対応する表示部の明るさの想定値がSDR画像に比べて高いHDR画像の減感現像画像に代えてもよい。
【0145】
(DR変換情報の第2の例)
図24および
図25は、減感現像画像とHDR画像のいずれか一方が符号化対象の画像とされ、他方が変換画像とされる場合のknee_function_info SEIに設定されるDR変換情報の例を示す図である。
【0146】
なお、
図24と
図25の例では、減感現像画像は、HDR画像に対して1EV(exposure value)の減感現像を行うことにより得られた、輝度のダイナミックレンジが0-200%の画像である。また、減感現像画像の輝度の最大値に対応する表示部の明るさの想定値は、SDR画像の輝度の最大値に対応する明るさの想定値である200(cd/m
2)に比べて高い400(cd/m
2)である。
【0147】
符号化対象の画像または変換画像が、HDR画像に対して減感現像を行うことにより得られたものであることを示す情報、および、減感現像画像の輝度のダイナミックレンジは、設定部71によりtone_mapping_info_SEIに設定される。
【0148】
図24の例では、符号化対象の画像が減感現像画像であり、ユーザは、減感現像画像の輝度の160-200%を160-400%にニー伸長した結果得られるHDR画像を所望の変換画像としている。この場合、knee_function_info SEIには、変換前位置情報(input_knee_point)として800が設定され、変換後位置情報(output_knee_point)として400が設定される。
【0149】
また、
図24の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)である。
【0150】
図24の場合のように、符号化対象の画像が減感現像画像であり、変換画像がHDR画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、上述した式(1)で定義される。
【0151】
従って、復号装置90は、式(1)により、ニーポイントinput_knee_point_PERと輝度output_knee_point_PERが160%であることを認識する。また、復号装置90は、HDR輝度レンジ情報から変換画像の輝度の最大値が400%であることを認識する。さらに、復号装置90は、tone_mapping_info_SEIから、符号化対象の画像の輝度のダイナミックレンジが0-200%であることを認識する。そして、表示部95がHDRディスプレイである場合、復号の結果得られる減感現像画像の輝度の160-200%を160-400%にニー伸長し、表示画像として表示する。
【0152】
一方、表示部95がSDRディスプレイである場合、復号装置90は、復号の結果得られる減感現像画像をそのまま表示画像として表示する。このとき、減感現像画像の輝度の最大値に対応する表示部の明るさの想定値は、SDR画像に比べて高いため、表示画像の明るさは不足する。
【0153】
しかしながら、近年、輝度の最大値に対応する明るさが、より高い300(cd/m
2)などであるSDRディスプレイ(以下、高輝度SDRディスプレイという)が開発されている。表示部95が高輝度SDRディスプレイである場合、減感現像画像がそのまま表示画像として表示されても、表示画像の明るさは十分に保つことができる。また、符号化対象の画像の生成時のニー圧縮の圧縮率が、符号化対象の画像がSDR画像である場合に比べて低いため、表示画像の画質を向上させることができる。
【0154】
図25の例では、符号化対象の画像がHDR画像であり、ユーザは、HDR画像の輝度の160-400%を160-200%にニー圧縮した結果得られる減感現像画像を所望の変換画像としている。この場合、knee_function_info SEIには、変換前位置情報(input_knee_point)として400が設定され、変換後位置情報(output_knee_point)として800が設定される。
【0155】
また、
図25の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)である。
【0156】
図25の場合のように、符号化対象の画像がHDR画像であり、変換画像が減感現像画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、上述した式(2)で定義される。
【0157】
従って、復号装置90は、式(2)により、ニーポイントinput_knee_point_PERと輝度output_knee_point_PER(%)が160%であることを認識する。また、復号装置90は、HDR輝度レンジ情報から符号化対象の画像の輝度の最大値が400%であることを認識する。さらに、復号装置90は、tone_mapping_info_SEIから、変換画像の輝度のダイナミックレンジが0-200%であることを認識する。
【0158】
そして、復号装置90は、表示部95がSDRディスプレイである場合、復号の結果得られるHDR画像の輝度の160-400%を160-200%にニー圧縮し、表示画像として表示する。このとき、上述したように、表示画像の明るさは不足する。しかしながら、表示部95が高輝度SDRディスプレイである場合、上述したように、表示画像の明るさは十分に保つことができる。また、表示画像の画質を向上させることができる。
【0159】
一方、表示部95がHDRディスプレイである場合、復号装置90は、復号の結果得られるHDR画像をそのまま表示画像として表示する。
【0160】
なお、
図17のDR変換情報は、tone_mapping_info_SEIなどのknee_function_info SEI以外のSEIに含まれるようにしてもよい。
【0161】
(tone_mapping_info_SEIのシンタクスの第1の例)
図26は、
図17のDR変換情報がtone_mapping_info_SEIに含まれる場合のtone_mapping_info_SEIのシンタクスの例を示す図である。
【0162】
tone_mapping_info_SEIは、輝度の変換に関するSEIである。
図26に示すように、tone_mapping_info_SEIに
図17のDR変換情報が含まれる場合、輝度の変換モデルを表すtone_map_model_idは、例えば5に設定される。そして、tone_mapping_info_SEIには、DR変換情報として、変換前位置情報(input_knee_point)、変換後位置情報(output_knee_point)、HDR輝度レンジ情報(d_range)、およびディスプレイ輝度情報(d_range_disp_luminance)が設定される。
【0163】
なお、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)は、tone_map_model_idが4である場合のtone_mapping_info_SEIに含まれる。従って、
図27に示すように、tone_mapping_info_SEIには、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)が含まれなくてもよい。また、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)のいずれか一方のみが含まれるようにしてもよい。
【0164】
(knee_function_info SEIのシンタクスの第2の例)
図28は、
図16の設定部71により設定されるknee_function_info SEIのシンタクスの第2の例を示す図であり、
図29は、
図28のknee_function_info SEIに設定される各情報を説明する図である。
【0165】
図28のknee_function_info SEIでは、複数のニーポイントが設定される。具体的には、
図28のknee_function_info SEIには、
図17の場合と同様に、ニー変換ID(knee_function_id)とニー変換キャンセルフラグ(knee_function_cancel_flag)が設定される。
【0166】
また、ニー変換キャンセルフラグが0である場合、
図28に示すように、knee_function_info SEIには、DR変換情報が設定される。このDR変換情報は、圧縮フラグ(compression_flag)とニーポイント数(num_knee_point_minus1)を含む点、および変換前位置情報(input_knee_point)と変換後位置情報(output_knee_point)がニーポイントごとに設定される点を除いて、
図17の場合と同一である。
図17の場合と同一のものについての説明は、繰り返しになるので、適宜省略する。
【0167】
図29に示すように、圧縮フラグは、ニー変換がニー圧縮であるかどうかを表すフラグである。即ち、ニーポイントの数が1つである場合、変換前位置情報(input_knee_point)が変換後位置情報(output_knee_point)以上であるとき、ニー変換がニー伸長であると判断し、変換前位置情報が変換後位置情報より小さいとき、ニー変換がニー圧縮であると判断することができる。
【0168】
しかしながら、ニーポイントの数が複数である場合、変換前位置情報と変換後位置情報の大小関係で、ニー変換がニー伸長であるか、ニー圧縮であるかを正確に判断することができないため、圧縮フラグが設定される。なお、ニーポイントの数が1つである場合であっても、圧縮フラグが設定されるようにしてもよい。圧縮フラグは、ニー変換がニー圧縮である場合1であり、ニー伸長である場合0である。
【0169】
ニーポイント数は、ニーポイントの数から1を減算した値である。なお、ニーポイントの変換前位置情報と変換後位置情報が設定される順番i(iは0以上の整数)は、変換前位置情報の小さい順である。
【0170】
(DR変換情報の第3の例)
図30および
図31は、
図28のknee_function_info SEIに設定されるDR変換情報の例を示す図である。
【0171】
図30の例では、符号化対象の画像がSDR画像である。また、ユーザは、SDR画像の輝度の0-60%,60-80%,80-90%,90-100%を、それぞれ、0-40%,40-100%,100-180%,180-400%にニー変換した結果得られるHDR画像を、所望の変換画像としている。
【0172】
この場合、knee_function_info SEIには、0番目のニーポイントの変換前位置情報(input_knee_point[0])として600が設定され、変換後位置情報(output_knee_point[0])として100が設定される。1番目のニーポイントの変換前位置情報(input_knee_point[1])として800が設定され、変換後位置情報(output_knee_point[1])として250が設定される。2番目のニーポイントの変換前位置情報(input_knee_point[2])として900が設定され、変換後位置情報(output_knee_point[2])として450が設定される。
【0173】
また、
図30の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)であり、圧縮フラグ(compression_flag)は0である。
【0174】
上述したように、符号化対象の画像がSDR画像であり、変換画像がHDR画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、上述した式(1)で定義される。
【0175】
従って、復号装置90は、式(1)により、0乃至2番目のニーポイントinput_knee_point_PERが、それぞれ、60%,80%,90%であることを認識する。また、0乃至2番目の輝度output_knee_point_PERが、それぞれ、40%,100%,180%であることを認識する。さらに、復号装置90は、HDR輝度レンジ情報から変換画像の輝度の最大値が400%であることを認識する。
【0176】
そして、復号装置90は、ニーポイントを設定順に接続した変換直線にしたがって、復号の結果得られるSDR画像の輝度の0-60%,60-80%,80-90%,90-100%を、それぞれ、0-40%,40-100%,100-180%,180-400%にニー変換する。その結果、復号装置90は、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。
【0177】
図31の例では、符号化対象の画像がHDR画像である。ユーザは、HDR画像の輝度の0-40%,40-100%,100-180%,180-400%を0-60%,60-80%,80-90%,90-100%にニー変換した結果得られるSDR画像を所望の変換画像としている。
【0178】
この場合、knee_function_info SEIには、0番目のニーポイントの変換前位置情報(input_knee_point[0])として100が設定され、変換後位置情報(output_knee_point[0])として600が設定される。1番目のニーポイントの変換前位置情報(input_knee_point[1])として250が設定され、変換後位置情報(output_knee_point[1])として800が設定される。2番目のニーポイントの変換前位置情報(input_knee_point[2])として450が設定され、変換後位置情報(output_knee_point[2])として900が設定される。
【0179】
また、
図31の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)であり、圧縮フラグ(compression_flag)は1である。
【0180】
上述したように、符号化対象の画像がHDR画像であり、変換画像がSDR画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、上述した式(2)で定義される。
【0181】
従って、復号装置90は、式(2)により、0乃至2番目のニーポイントinput_knee_point_PERが、それぞれ、40%,100%,180%であることを認識する。また、0乃至2番目の輝度output_knee_point_PER(%)が、それぞれ、60%,80%,90%であることを認識する。また、復号装置90は、HDR輝度レンジ情報から符号化対象の画像の輝度の最大値が400%であることを認識する。
【0182】
そして、復号装置90は、ニーポイントを設定順に接続することにより、復号の結果得られるHDR画像の輝度の0-40%,40-100%,100-180%,180-400%を0-60%,60-80%,80-90%,90-100%にニー変換する。その結果、復号装置90は、復号の結果得られるHDR画像を所望のSDR画像に変換することができる。
【0183】
以上のように、ニーポイントが複数設定される場合、ニーポイントが1つ設定される場合に比べて、より細かく変換率を設定することができる。従って、より高精度なニー変換を行うことができる。
【0184】
なお、
図28のDR変換情報は、tone_mapping_info_SEI などのknee_function_info SEI以外のSEIに含まれるようにしてもよい。
【0185】
(tone_mapping_info_SEIのシンタクスの第2の例)
図32は、
図28のDR変換情報がtone_mapping_info_SEIに含まれる場合のtone_mapping_info_SEIのシンタクスの例を示す図である。
【0186】
図32に示すように、tone_mapping_info_SEIに
図28のDR変換情報が含まれる場合、tone_map_model_idは、例えば5に設定される。そして、tone_mapping_info_SEIには、DR変換情報として、圧縮フラグ(compression_flag(mapping_flag))、HDR輝度レンジ情報(d_range)、ディスプレイ輝度情報(d_range_disp_luminance)、ニーポイント数(num_knee_point_minus1)、並びに、各ニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)が設定される。
【0187】
なお、
図27のtone_mapping_info_SEIと同様に、
図32のtone_mapping_info_SEIには、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)が含まれなくてもよい。また、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)のいずれか一方のみが含まれるようにしてもよい。
【0188】
また、ニーポイント数(num_knee_point_minus1)は、
図33乃至
図35に示すように、0,1,または2のいずれかであるようにしてもよい。即ち、ニーポイント数(num_knee_point_minus1)は、2以下に制限するようにしてもよい。この場合、
図33乃至
図35に示すように、knee_function_info SEIやtone_mapping_info_SEIに含まれるニーポイント数(num_knee_point_minus1)のビット数は2ビットに固定される(u(2))。
【0189】
このように、ニーポイント数(num_knee_point_minus1)の最大値を決定することにより、DR変換情報の情報量を小さくすることができる。これにより、HDMI(登録商標)(High-Definition Multimedia Interface)のAVI InfoFrameのような小さなパケットでDR変換情報を伝送することが可能になる。
【0190】
(knee_function_info SEIのシンタクスの第3の例)
図36は、
図16の設定部71により設定されるknee_function_info SEIのシンタクスの第3の例を示す図であり、
図37は、
図36のknee_function_info SEIに設定される各情報を説明する図である。
【0191】
図36のknee_function_info SEIでは、複数のニーポイントおよび代表とするニーポイント(以下、代表ニーポイントという)が設定される。
【0192】
具体的には、
図36のknee_function_info SEIには、
図17の場合と同様に、ニー変換ID(knee_function_id)とニー変換キャンセルフラグ(knee_function_cancel_flag)が設定される。
【0193】
また、ニー変換キャンセルフラグが0である場合、
図36に示すように、knee_function_info SEIには、DR変換情報が設定される。このDR変換情報は、代表変換前位置情報(representative_input_knee_point)と代表変換後位置情報(representative_output_knee_point)を含む点を除いて、
図28の場合と同一である。
図28の場合と同一のものについての説明は、繰り返しになるので、適宜省略する。
【0194】
図37に示すように、代表変換前位置情報は、DR変換情報に対応する変換における変換前の画像である符号化対象の画像の代表ニーポイントを表す情報であり、符号化対象の画像の輝度の最大値を1000‰としたときの代表ニーポイントの千分率である。
【0195】
代表変換後位置情報は、DR変換情報に対応する変換における変換画像の代表ニーポイントに対応する輝度を表す情報であり、変換画像の輝度の最大値を1000‰としたときのニーポイントに対応する輝度の千分率である。
【0196】
なお、代表ニーポイントは、DR変換情報に含まれる複数の変換前位置情報に対応するニーポイントのうちの1つであってもよいし、このニーポイントとは全く異なるニーポイントであってもよい。
【0197】
(DR変換情報の第4の例)
図38は、
図36のknee_function_info SEIに設定されるDR変換情報の例を示す図である。
【0198】
図38の例では、符号化対象の画像がSDR画像である。また、ユーザは、復号装置90が高精度のニー変換を行う場合の所望の変換画像を、SDR画像の輝度の0-60%,60-80%,80-90%,90-100%を、それぞれ、0-40%,40-100%,100-180%,180-400%にニー変換した結果得られるHDR画像としている。また、ユーザは、復号装置90が簡易的な低精度のニー変換を行う場合の所望の変換画像を、SDR画像の輝度の80-100%を80-400%にニー伸長した結果得られるHDR画像としている。
【0199】
この場合、knee_function_info SEIには、0乃至2番目のニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)として、
図30と同一の値が設定される。また、代表変換前位置情報(representative_input_knee_point)は800であり、代表変換後位置情報(representative_output_knee_point)は200である。
【0200】
また、
図38の例では、HDR輝度レンジ情報(d_range)は4000であり、ディスプレイ輝度情報(d_range_disp_luminance)は800(cd/m
2)であり、圧縮フラグ(compression_flag)は0である。
【0201】
図38に示すように、復号装置90が低精度の簡易的なニー変換を行う場合、復号装置90は、上述した式(1)と同様の式により、代表ニーポイントrepresentative_input_knee_point_PER(%)と代表ニーポイントに対応する変換画像の輝度representative_output_knee_point_PER(%)が80%であることを認識する。さらに、復号装置90は、HDR輝度レンジ情報から変換画像の輝度の最大値が400%であることを認識する。そして、復号装置90は、復号の結果得られるSDR画像の輝度の80-100%を80-400%にニー伸長する。その結果、復号装置90は、復号の結果得られるSDR画像を所望のHDR画像に変換することができる。
【0202】
一方、復号装置90が高精度のニー変換を行う場合、復号装置90は、
図30と同様の処理を行い、復号の結果得られるSDR画像を所望のHDR画像に変換する。
【0203】
以上のように、
図36のDR変換情報には、代表変換前位置情報(representative_input_knee_point)と代表変換後位置情報(representative_output_knee_point)が含まれる。従って、復号装置90において処理速度やメモリ容量などのリソースが十分確保できない場合であっても、代表ニーポイントに基づいてニー変換を行うことができる。また、代表変換前位置情報と代表変換後位置情報が復号装置90に伝送されるので、復号装置90は、複数のニーポイントの変換前位置情報と変換後位置情報に基づいて代表変換前位置情報と代表変換後位置情報を生成する必要がない。
【0204】
なお、
図36のDR変換情報は、tone_mapping_info_SEI などのknee_function_info SEI以外のSEIに含まれるようにしてもよい。
【0205】
(tone_mapping_info_SEIのシンタクスの第3の例)
図39は、
図36のDR変換情報がtone_mapping_info_SEIに含まれる場合のtone_mapping_info_SEIのシンタクスの例を示す図である。
【0206】
図39に示すように、tone_mapping_info_SEIに
図36のDR変換情報が含まれる場合、tone_map_model_idは、例えば5に設定される。そして、tone_mapping_info_SEIには、DR変換情報として、圧縮フラグ(compression_flag)、代表変換前位置情報(representative_input_knee_point)、代表変換後位置情報(representative_output_knee_point)、HDR輝度レンジ情報(d_range)、ディスプレイ輝度情報(d_range_disp_luminance)、ニーポイント数(num_knee_point_minus1)、並びに、各ニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)が設定される。
【0207】
なお、
図27のtone_mapping_info_SEIと同様に、
図39のtone_mapping_info_SEIには、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)が含まれなくてもよい。また、HDR輝度レンジ情報(d_range)とディスプレイ輝度情報(d_range_disp_luminance)のいずれか一方のみが含まれるようにしてもよい。
【0208】
(knee_function_info SEIのシンタクスの第4の例)
図40は、
図16の設定部71により設定されるknee_function_info SEIのシンタクスの第
4の例を示す図であり、
図41は、
図40のknee_function_info SEIに設定される各情報(のSemantics)を説明する図である。
【0209】
図40のknee_function_info SEIでは、符号化対象の画像および変換画像の一方としてSDR画像以外の画像も採用することが可能にされる。
【0210】
具体的には、
図40のknee_function_info SEIには、
図17の場合と同様に、ニー変換ID(knee_function_id)とニー変換キャンセルフラグ(knee_function_cancel_flag)が設定される。
【0211】
また、ニー変換キャンセルフラグが0である場合、
図40に示すように、knee_function_info SEIには、DR変換情報が設定される。このDR変換情報は、ニー変換連続性フラグ(knee_function_persistence_flag)が新たに含まれる点と、HDR輝度レンジ情報(d_range)およびディスプレイ輝度情報(d_range_disp_luminance)の代わりに、変換前輝度レンジ情報(input_d_range)、変換前ディスプレイ輝度情報(input_disp_luminance)、変換後輝度レンジ情報(output_d_range)、および変換後ディスプレイ輝度情報(output_ disp_luminance)が含まれる点とを除いて、
図28の場合と同一である。
図28の場合と同一のものについての説明は、繰り返しになるので、適宜省略する。
【0212】
図41に示すように、ニー変換連続性フラグは、DR変換情報を連続する複数のピクチャに適用するかどうかを表すフラグである。ニー変換連続性フラグは、DR変換情報を連続する複数のピクチャに適用する場合1であり、1つのピクチャにのみ適用する場合0である。このニー変換連続性フラグは、
図17、
図28、
図34、および
図36のknee_function_info SEIにも設定されるようにすることができる。
【0213】
また、変換前輝度レンジ情報は、DR変換情報に対応する変換における変換前の画像である符号化対象の画像の輝度の最大値の千分率を示す情報であり、変換後輝度レンジ情報は、変換画像の輝度の最大値の千分率を示す情報である。
【0214】
また、変換前ディスプレイ輝度情報は、符号化対象の画像の輝度の最大値に対応する表示部の明るさの想定値を示す情報であり、変換後ディスプレイ輝度情報は、変換画像の輝度の最大値に対応する表示部の明るさの想定値を示す情報である。
【0215】
(DR変換情報の第5の例)
図42および
図43は、
図40のknee_function_info SEIに設定されるDR変換情報の例を示す図である。
【0216】
図42の例では、符号化対象の画像が、ダイナミックレンジが0-200%であるHDR画像(以下、200%HDR画像という)である。また、ユーザは、200%HDR画像の輝度の0-120%,120-160%,160-180%,180-200%、それぞれ、0-40%,40-100%,100-180%,180-400%にニー変換した結果得られる400%HDR画像を所望の変換画像としている。400%HDR画像とは、ダイナミックレンジが0-400%であるHDR画像である。
【0217】
この場合、knee_function_info SEIには、0乃至2番目のニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)として、
図30と同一の値が設定される。また、変換前輝度レンジ情報(input_d_range)として2000が設定され、変換後輝度レンジ情報(output_d_range)として4000が設定される。
【0218】
また、
図42の例では、変換前ディスプレイ輝度情報(input_disp_luminance)は400(cd/m
2)であり、変換後ディスプレイ輝度情報(output_ disp_luminance)は800(cd/m
2)である。圧縮フラグ(compression_flag)は0である。
【0219】
図42に示すように、符号化対象の画像が変換前輝度レンジ情報に対応するダイナミックレンジの画像であり、変換画像が変換後輝度レンジ情報に対応するダイナミックレンジの画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、以下の式(3)で定義される。
【0221】
従って、復号装置90は、式(3)により、0乃至2番目のニーポイントinput_knee_point_PERが、それぞれ、120%,160%,180%であることを認識する。また、0乃至2番目の輝度output_knee_point_PERが、それぞれ、40%,100%,180%であることを認識する。さらに、復号装置90は、入力輝度レンジ情報から符号化対象の画像の輝度の最大値が200%であることを認識し、出力輝度レンジ情報から変換画像の輝度の最大値が400%であることを認識する。
【0222】
そして、復号装置90は、ニーポイントを設定順に接続した変換直線にしたがって、復号の結果得られる200%HDR画像の輝度の0-120%,120-160%,160-180%,180-200%を、それぞれ、0-40%,40-100%,100-180%,180-400%にニー変換する。その結果、復号装置90は、復号の結果得られる200%HDR画像を所望の400%HDR画像に変換することができる。
【0223】
図43の例では、符号化対象の画像が400%HDR画像である。ユーザは、400%HDR画像の輝度の0-40%,40-100%,100-180%,180-400%を0-120%,120-160%,160-180%,180-200%にニー変換した結果得られる200%HDR画像を所望の変換画像としている。
【0224】
この場合、knee_function_info SEIには、0乃至2番目のニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)として、
図31と同一の値が設定される。また、変換前輝度レンジ情報(input_d_range)として4000が設定され、変換後輝度レンジ情報(output_d_range)として2000が設定される。
【0225】
また、
図43の例では、変換前ディスプレイ輝度情報(input_disp_luminance)は800(cd/m
2)であり、変換後ディスプレイ輝度情報(output_ disp_luminance)は400(cd/m
2)である。圧縮フラグ(compression_flag)は1である。
【0226】
上述したように、符号化対象の画像が変換前輝度レンジ情報に対応するダイナミックレンジの画像であり、変換画像が変換後輝度レンジ情報に対応するダイナミックレンジの画像である場合、ニーポイントinput_knee_point_PER(%)と、ニーポイントに対応する変換画像の輝度output_knee_point_PER(%)は、上述した式(3)で定義される。
【0227】
従って、復号装置90は、式(3)により、0乃至2番目のニーポイントinput_knee_point_PERが、それぞれ、40%,100%,180%であることを認識する。また、0乃至2番目の輝度output_knee_point_PER(%)が、それぞれ、120%,160%,180%であることを認識する。さらに、復号装置90は、入力輝度レンジ情報から符号化対象の画像の輝度の最大値が400%であることを認識し、出力輝度レンジ情報から変換画像の輝度の最大値が200%であることを認識する。
【0228】
そして、復号装置90は、ニーポイントを設定順に接続することにより、復号の結果得られる400%HDR画像の輝度の0-40%,40-100%,100-180%,180-400%を0-120%,120-160%,160-180%,180-200%にニー変換する。その結果、復号装置90は、復号の結果得られる400%HDR画像を所望の200%HDR画像に変換することができる。
【0229】
以上のように、
図40のDR変換情報によれば、復号装置90において、SDR画像とHDR画像の変換だけでなく、ダイナミックレンジの異なるHDR画像どうしの変換も、ユーザの要望通りに行うことができる。HDR画像のダイナミックレンジは、0-100%より大きければよく、0-400%や0-800%のほか、0-1300%などもある。また、HDR画像の輝度の最大値に対応する表示部の明るさの想定値は、100(cd/m
2)より大きければよく、800(cd/m
2)や4000(cd/m
2)のほか、1500(cd/m
2)などもある。
【0230】
(復号装置の動作の説明)
図44は、
図40のknee_function_info SEIが複数設定されている場合の復号装置90の動作を説明する図である。
【0231】
図44の例では、符号化対象の画像が400%HDR画像である。また、所望の変換画像を、ダイナミックレンジが0-800%である800%HDR画像とするknee_function_info SEI(以下、800%HDR画像用knee_function_info SEIという)と、所望の変換画像をSDR画像とするknee_function_info SEI(以下、SDR画像用knee_function_info SEIという)が設定されている。この場合、800%HDR画像用knee_function_info SEIとSDR画像用knee_function_info SEIには、異なるニー変換IDが付与される。
【0232】
復号装置90は、表示部95が800%HDR画像を表示可能なHDRディスプレイである場合、800%HDR画像用knee_function_info SEIに基づいて、復号画像である400%HDR画像の輝度をニー伸長し、所望の800%HDR画像を表示画像として生成する。
【0233】
一方、表示部95が400%HDR画像を表示可能なHDRディスプレイである場合、復号装置90は、復号画像である400%HDR画像をそのまま表示画像とする。また、表示部95がSDRディスプレイである場合、SDR画像用knee_function_info SEIに基づいて、復号画像である400%HDR画像の輝度をニー圧縮し、所望のSDR画像を表示画像として生成する。
【0234】
なお、
図40のDR変換情報は、tone_mapping_info_SEIなどのknee_function_info SEI以外のSEIに含まれるようにしてもよい。
【0235】
(tone_mapping_info_SEIのシンタクスの第4の例)
図45は、
図40のDR変換情報がtone_mapping_info_SEIに含まれる場合のtone_mapping_info_SEIのシンタクスの例を示す図である。
【0236】
図45に示すように、tone_mapping_info_SEIに
図40のDR変換情報が含まれる場合、tone_map_model_idは、例えば5に設定される。そして、tone_mapping_info_SEIには、DR変換情報として、圧縮フラグ(compression_flag)、入力輝度レンジ情報(input_d_range)、入力ディスプレイ輝度情報(input_d_range_disp_luminance)、出力輝度レンジ情報(output_d_range)、出力ディスプレイ輝度情報(output_d_range_disp_luminance)、ニーポイント数(num_knee_point_minus1)、並びに、各ニーポイントの変換前位置情報(input_knee_point)および変換後位置情報(output_knee_point)が設定される。
【0237】
なお、
図45のtone_mapping_info_SEIには、入力輝度レンジ情報(input_d_range)、入力ディスプレイ輝度情報(input_d_range_disp_luminance)、出力輝度レンジ情報(output_d_range)、および出力ディスプレイ輝度情報(output_d_range_disp_luminance)の少なくとも1つが含まれなくてもよい。
【0238】
また、上述した説明では、SEIにDR変換情報が配置されたが、システムレイヤに配置されるようにしてもよい。
【0239】
<DR変換情報をMP4のボックスに配置する例>
(DR変換情報が配置されるMP4のボックスの説明)
図46は、DR変換情報が配置されるシステムレイヤとしてのMP4のボックスを説明する図である。
【0240】
図46に示すように、DR変換情報をMP4のボックスに配置する場合、DR変換情報をToneMapInfoとして格納するtinf(Tone Mapping Information Box)ボックスが新たに定義される。このtinfボックスは、trakボックス(track box)(に格納されるstblボックス)またはtrafボックス(track fragment box)に格納される。
【0241】
(ToneMapInfoのシンタクスの例)
図47は、ToneMapInfoのシンタクスの例を示す図である。
【0242】
図47のToneMapInfoは、バイトアラインのためのpadding_valueが挿入されていることを除き、
図32のtone_mapping_info_SEIと同様に構成される。
【0243】
なお、図示は省略するが、ToneMapInfoは、バイトアラインのためのpadding_valueが挿入されていることを除き、
図26、
図27、
図39、または
図45のtone_mapping_info_SEIと同様に構成されるようにしてもよい。
【0244】
また、第2実施の形態の場合と同様に、第1実施の形態における変換情報はシステムレイヤに配置されるようにしてもよい。
【0245】
さらに、ユーザの所望のHDR画像は、符号化装置70に入力されるHDR画像であってもよい。
【0246】
また、第2実施の形態では、符号化装置70にHDR画像が入力されるようにしたが、SDR画像が入力されるようにしてもよい。この場合、符号化装置70は、符号化対象の画像がHDR画像である場合、外部から入力されるSDR画像をHDR画像に変換して符号化対象の画像とする。
【0247】
なお、
図40のknee_function_info SEIでは、複数のニーポイントが設定される。従って、1つのニーポイントのみが設定される場合に比べて、より滑らかで複雑な関数のニー変換を定義することができる。その結果、変換部93は、より最適なニー変換を行うことができる。
【0248】
しかしながら、ニーポイントの数が増加すると、DR変換情報の情報量が増加する。従って、例えば、復号画像とDR変換情報をHDMIで伝送する場合、DR変換情報の情報量がHDMIのAVI InfoFrameの1パケットのサイズである27バイト以上になり、DR変換情報がAVI InfoFrameに収まらなくなる場合がある。
【0249】
従って、後述する第3実施の形態では、復号装置が、DR変換情報をHDMIで伝送する場合などのようにDR変換情報の情報量を削減する場合に、最適なニーポイントの間引きを行うことができるようにする。
【0250】
<第3実施の形態>
(Semanticsの第1の例)
本開示を適用した符号化装置の第3実施の形態の第1の構成は、設定部71により設定される
図40のknee_function_info SEIが表すニーポイントの順番iとSemanticsを除いて、
図16の符号化装置70の構成と同一である。従って、以下では、
図40のknee_function_info SEIが表すニーポイントの順番iとSemanticsについてのみ説明する。
【0251】
本開示を適用した符号化装置の第3実施の形態の第1の構成では、設定部71により設定される
図40のknee_function_info SEIにおいて、所望のニー変換の関数を表すための重要度の高い順にニーポイントの順番iが設定される。
【0252】
また、
図48は、本開示を適用した符号化装置の第3実施の形態の第1の構成におけるSemanticsの、第2実施の形態とは異なる点を示す図である。
【0253】
図48に示すように、本開示を適用した符号化装置の第3実施の形態の第1の構成における
図40のSemanticsでは、i番目のニーポイントの変換前位置情報(input_knee_point[i])が、i-1番目のニーポイントの変換前位置情報(input_knee_point[i-1])以下であってもよいとされる。即ち、ニーポイントの変換前位置情報と変換後位置情報が設定される順番i(iは0以上の整数)は、変換前位置情報の小さい順でなくてもよいとされる。
【0254】
また、ニー変換の関数(Knee function)は、変換前位置情報(input_knee_point)の小さい順(昇順)にニーポイントを結ぶ直線であるとされる。
【0255】
さらに、ニー変換の近似関数を用いて復号画像がニー変換されてもよいとされる。このニー変換の近似関数は、0乃至N(0≦N≦num_knee_point_minus1)番目のニーポイントを変換前位置情報の小さい順に結ぶ直線である。ニーポイントの順番iは、所望のニー変換の関数を表すための重要度の高い順に設定されるので、ニー変換の近似関数は、Nが大きい方が所望のニー変換の関数に近い。
【0256】
(復号システムの一実施の形態の第1の構成例)
図49は、本開示を適用した符号化装置の第3実施の形態の第1の構成から伝送されてくる符号化ストリームを復号する、本開示を適用した復号システムの一実施の形態の第1の構成例を示すブロック図である。
【0257】
図49に示す構成のうち、
図12および
図22の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0258】
図49の復号システム110は、復号装置111と表示装置112により構成される。復号装置111は、受け取り部51、抽出部91、復号部92、選択部121、および伝送部122により構成される。
【0259】
復号装置111の選択部121は、抽出部91により抽出されたパラメータセットのうちのknee_function_info SEIを取得する。選択部121は、knee_function_info SEIに含まれる複数のニーポイントのDR変換情報から、順番iの小さい順にHDMIのAVI InfoFrameの1パケットに収まる数(例えば3)のニーポイントのDR変換情報を選択する。選択部121は、選択されたニーポイントのDR変換情報を伝送部122に供給する。
【0260】
伝送部122は、選択部121により選択されたDR変換情報をHDMIのAVI InfoFrameの1パケットに配置し、復号部92により生成された復号画像とともに、HDMIで表示装置112に伝送する。
【0261】
表示装置112は、受け取り部131、変換部93、表示制御部94、および表示部95により構成される。
【0262】
表示装置112の受け取り部131は、伝送部122からHDMIで伝送されてくるAVI InfoFrameと復号画像を受け取る。受け取り部131は、AVI InfoFrameに配置されているDR変換情報と復号画像を変換部93に供給する。
【0263】
(ニーポイントの第1の選択方法の説明)
図50は、
図49の復号システム110で受け取られるknee_function_info SEIで定義されるニーポイントおよびニー変換の関数の例を示す図である。
【0264】
なお、
図50の例では、knee_function_info SEIに設定されるニーポイント数(num_knee_point_minus1)は8である。
【0265】
図50Aに示すように、knee_function_info SEIに設定される8個のニーポイントのうちの0番目のニーポイントの変換前位置情報(input_knee_point[0])は200であり、変換後位置情報(output_knee_point[0])は433である。また、1番目のニーポイントの変換前位置情報(input_knee_point[1])は600であり、変換後位置情報(output_knee_point[1])は774であり、2番目のニーポイントの変換前位置情報(input_knee_point[2])は100であり、変換後位置情報(output_knee_point[2])は290である。
【0266】
3番目のニーポイントの変換前位置情報(input_knee_point[3])は400であり、変換後位置情報(output_knee_point[3])は628であり、4番目のニーポイントの変換前位置情報(input_knee_point[4])は800であり、変換後位置情報(output_knee_point[4])は894である。
【0267】
5番目のニーポイントの変換前位置情報(input_knee_point[5])は300であり、変換後位置情報(output_knee_point[5])は540であり、6番目のニーポイントの変換前位置情報(input_knee_point[6])は500であり、変換後位置情報(output_knee_point[6])は705である。
【0268】
7番目のニーポイントの変換前位置情報(input_knee_point[7])は700であり、変換後位置情報(output_knee_point[7])は836であり、8番目のニーポイントの変換前位置情報(input_knee_point[8])は900であり、変換後位置情報(output_knee_point[
8])は949である。
【0269】
この場合、変換前位置情報が小さい順に各ニーポイントが結ばれると、ニー変換の関数は、
図50Bに示すようになる。即ち、2,0,5,3,6,1,7,4,8番目のニーポイントの順に、ニーポイントが結ばれた直線がニー変換の関数とされる。なお、
図50Bの横軸は、符号化対象の画像の輝度を表し、縦軸は、変換画像の輝度を表す。このことは、後述する
図51、
図52、および
図57乃至
図59においても同様である。
【0270】
選択部121が、
図50のknee_function_info SEIで定義されるニーポイントのDR変換情報から、3つのニーポイントのDR変換情報を選択する場合、選択されたニーポイントを有するニー変換の近似関数は、
図51に示すようになる。
【0271】
即ち、この場合、選択部121は、knee_function_info SEIで定義される0乃至8番目のニーポイントのDR変換情報から、0乃至2番目のニーポイントのDR変換情報を選択する。従って、選択されたニーポイントを有するニー変換関数は、0乃至2番目のニーポイントが、変換前位置情報の小さい順、即ち2,0,1番目のニーポイントの順に結ばれた直線となる。
【0272】
一方、選択部121が、
図50のknee_function_info SEIで定義されるニーポイントのDR変換情報から、5つのニーポイントのDR変換情報を選択する場合、選択されたニーポイントを有するニー変換の関数は、
図52に示すようになる。
【0273】
即ち、この場合、選択部121は、knee_function_info SEIで定義される0乃至8番目のニーポイントのDR変換情報から、0乃至4番目のニーポイントのDR変換情報を選択する。従って、選択されたニーポイントを有するニー変換関数は、0乃至4番目のニーポイントが、変換前位置情報の小さい順、即ち2,0,3,1,4番目のニーポイントの順に結ばれた直線となる。
【0274】
ニーポイントの順番iは、所望のニー変換の関数である
図50Bの関数を表すための重要度の高い順に設定され、順番iの小さい方から所定数のニーポイントのDR変換情報が選択される。従って、
図51および
図52に示すように、ニー変換の近似関数は、同一の数の他のニーポイントが選択される場合に比べて、より
図50Bの関数に近くなる。
【0275】
また、ニーポイントの数が多い方がより滑らかで複雑な関数となるため、ニーポイントの数が3つである
図51のニー変換の近似関数に比べて、ニーポイントの数が5つである
図52のニー変換の近似関数は
図50Bのニー変換の関数に近くなる。
【0276】
(復号システムの処理の説明)
図53は、
図49の復号システム110の復号装置111の復号処理を説明するフローチャートである。
【0277】
図53のステップS111において、復号装置111の受け取り部51は、
図16の符号化装置70から伝送されてくる符号化ストリームを受け取り、抽出部91に供給する。
【0278】
ステップS112において、抽出部91は、受け取り部51から供給される符号化ストリームから、パラメータセットと符号化データを抽出する。抽出部91は、パラメータセットと符号化データを復号部92に供給する。また、抽出部91は、パラメータセットのうちのknee_function_info SEIを選択部121に供給する。
【0279】
ステップS113において、復号部92は、抽出部91から供給される符号化データをHEVC方式で復号する。このとき、復号部92は、必要に応じて、抽出部91から供給されるパラメータセットも参照する。復号部92は、復号画像を伝送部122に供給する。
【0280】
ステップS114において、選択部121は、抽出部91からのknee_function_info SEIに含まれる複数のニーポイントのDR変換情報から、順番iの小さい順にHDMIのAVI InfoFrameの1パケットに収まる数のニーポイントのDR変換情報を選択する。選択部121は、選択されたニーポイントのDR変換情報を伝送部122に供給する。
【0281】
ステップS115において、伝送部122は、選択部121により選択されたDR変換情報をHDMIのAVI InfoFrameの1パケットに配置し、復号部92により生成された復号画像とともに、HDMIで表示装置112に伝送する。そして、処理は終了する。
【0282】
図54は、復号システム110の表示装置112の表示処理を説明するフローチャートである。
【0283】
図54のステップS131において、表示装置112の受け取り部131は、伝送部122からHDMIで伝送されてくるAVI InfoFrameに配置されているDR変換情報と復号画像を受け取る。受け取り部131は、DR変換情報と復号画像を変換部93に供給する。
【0284】
ステップS132乃至ステップS134の処理は、
図23のステップS95乃至S97の処理と同様であるので、説明は省略する。
【0285】
以上のように、本開示を適用した第3実施の形態の第1の構成は、所望のニー変換の関数を表すための重要度の高い順に順番iが設定されたニーポイントのDR変換情報をknee_function_info SEIに設定し、伝送する。従って、復号装置111は、順番iが小さい順にAVI InfoFrameの1パケットに収まる数のニーポイントのDR変換情報を選択することにより、より所望のニー変換の関数に近いニー変換の近似関数を表すニーポイントのDR変換情報をAVI InfoFrameの1パケットに配置することができる。
【0286】
(knee_function_info SEIのシンタクスの例)
本開示を適用した符号化装置の第3実施の形態の第2の構成は、設定部71により設定されるknee_function_info SEIとSemanticsを除いて、
図16の符号化装置70の構成と同一である。従って、以下では、knee_function_info SEIとSemanticsについてのみ説明する。
【0287】
図55は、本開示を適用した符号化装置の第3実施の形態の第2の構成において、設定部71により設定されるknee_function_info SEIのシンタクスの例を示す図である。
【0288】
図55のknee_function_info SEIは、所望のニー変換の関数を表すための重要度の高い順にニーポイントの順番iを表す近似ニーポイントインデックス(approximate_knee_point_index)(重要度情報)が設定される点を除いて、
図40のknee_function_info SEIと同様である。
【0289】
図55のknee_function_info SEIでは、ニーポイントの順番iが、
図40の場合と同様に変換前位置情報の小さい順であるが、近似ニーポイントインデックス(approximate_knee_point_index)が新たに設定される。近似ニーポイントインデックス(approximate_knee_point_index)の値は、ニーポイント数(num_knee_point_minus1)以下の値である。
【0290】
(Semanticsの第2の例)
図56は、
図55のSemanticsの第2実施の形態とは異なる点を示す図である。
【0291】
図56に示すように、
図55のSemanticsでは、ニー変換の近似関数を用いて復号画像がニー変換されてもよいとされる。このニー変換の近似関数は、順番iが、0乃至N(0≦N≦num_knee_point_minus1)番目の近似ニーポイントインデックス(approximate_knee_point_index[0]乃至approximate_knee_point_index[N])であるニーポイントを、順番iの小さい順に結ぶ直線である。近似ニーポイントインデックスの順番jは、所望のニー変換の関数を表すための重要度の高い順であるので、ニー変換の近似関数は、Nが大きい方が所望のニー変換の関数に近い。
【0292】
(復号システムの一実施の形態の構成例)
本開示を適用した復号システムの一実施の形態の第2の構成は、選択部121の選択がニーポイントの順番iではなく、近似ニーポイントインデックスの順番jに基づいて行われる点を除いて、
図49の復号システム110と同一である。従って、以下では、選択部121による選択についてのみ説明する。
【0293】
(ニーポイントの第2の選択方法の説明)
図57は、
図55のknee_function_info SEIで定義されるニーポイントおよびニー変換の関数の例を示す図である。
【0294】
なお、
図57の例では、knee_function_info SEIに設定されるニーポイント数(num_knee_point_minus1)は
図50と同一の8であり、ニーポイントも
図50と同一である。但し、
図55のknee_function_info SEIでは、ニーポイントの順番iは、変換前位置情報の小さい順であるため、
図50とは異なる。
【0295】
即ち、
図57Aに示すように、knee_function_info SEIに設定される8個のニーポイントのうちの0番目のニーポイントの変換前位置情報(input_knee_point[0])は100であり、変換後位置情報(output_knee_point[0])は290である。また、1番目のニーポイントの変換前位置情報(input_knee_point[1])は200であり、変換後位置情報(output_knee_point[1])は433であり、2番目のニーポイントの変換前位置情報(input_knee_point[2])は300であり、変換後位置情報(output_knee_point[2])は540である。
【0296】
3番目のニーポイントの変換前位置情報(input_knee_point[3])は400であり、変換後位置情報(output_knee_point[3])は628であり、4番目のニーポイントの変換前位置情報(input_knee_point[4])は500であり、変換後位置情報(output_knee_point[4])は705である。
【0297】
5番目のニーポイントの変換前位置情報(input_knee_point[5])は600であり、変換後位置情報(output_knee_point[5])は774であり、6番目のニーポイントの変換前位置情報(input_knee_point[6])は700であり、変換後位置情報(output_knee_point[6])は836である。
【0298】
7番目のニーポイントの変換前位置情報(input_knee_point[7])は800であり、変換後位置情報(output_knee_point[7])は894であり、8番目のニーポイントの変換前位置情報(input_knee_point[8])は900であり、変換後位置情報(output_knee_point[6])は949である。
【0299】
この場合、順番iが小さい順に各ニーポイントが結ばれると、ニー変換の関数は、
図57Bに示すようになる。
【0300】
また、
図57Aに示すように、順番jが0乃至8である近似ニーポイントインデックス(approximate_knee_point_index)は、順に、1,5,0,3,7,2,4,6,8である。
【0301】
選択部121が、
図57のknee_function_info SEIで定義されるニーポイントのDR変換情報から、3つのニーポイントのDR変換情報を選択する場合、選択されたニーポイントを有するニー変換の関数は、
図58に示すようになる。
【0302】
即ち、この場合、選択部121は、knee_function_info SEIで定義される0乃至8番目のニーポイントのDR変換情報から、順番iが、0乃至2番目の近似ニーポイントインデックス(approximate_knee_point_index)であるニーポイントのDR変換情報を選択する。つまり、選択部121は、1,5、および0番目のニーポイントのDR変換情報を選択する。従って、選択されたニーポイントを有するニー変換関数は、1,5、および0番目のニーポイントが、順番iの小さい順、即ち0,1,5番目のニーポイントの順に結ばれた直線となる。
【0303】
一方、選択部121が、
図57のknee_function_info SEIで定義されるニーポイントのDR変換情報から、5つのニーポイントのDR変換情報を選択する場合、選択されたニーポイントを有するニー変換の関数は、
図59に示すようになる。
【0304】
即ち、この場合、選択部121は、knee_function_info SEIで定義される0乃至8番目のニーポイントのDR変換情報から、順番iが、0乃至4番目の近似ニーポイントインデックス(approximate_knee_point_index)であるニーポイントのDR変換情報を選択する。つまり、選択部121は、1,5,0,3および7番目のニーポイントのDR変換情報を選択する。従って、選択されたニーポイントを有するニー変換関数は、1,5,0,3および7番目のニーポイントが、順番iの小さい順、即ち0,1,3,5,7番目のニーポイントの順に結ばれた直線となる。
【0305】
近似ニーポイントインデックスの順番jは、所望のニー変換の関数である
図57Bの関数を表すための重要度の高い順に設定され、順番jの小さい方から所定数の近似ニーポイントインデックスを順番iとするニーポイントのDR変換情報が選択される。従って、
図58および
図59に示すように、ニー変換の近似関数は、同一の数の他のニーポイントが選択される場合に比べて、より
図57Bの関数に近くなる。
【0306】
また、ニーポイントの数が多い方がより滑らかで複雑な関数となるため、ニーポイントの数が3つである
図58のニー変換の近似関数に比べて、ニーポイントの数が5つである
図59のニー変換の近似関数は
図57Bのニー変換の関数に近くなる。
【0307】
なお、
図60に示すように、近似ニーポイントインデックス(approximate_knee_point_index)は、knee_function_info SEIとは別のapproximate_knee_function_info SEIに設定されるようにしてもよい。
【0308】
この場合、approximate_knee_function_info SEIには、近似ニー変換ID(approximate_knee_function_id)と近似ニー変換キャンセルフラグ(approximate_knee_function_cancel_flag)が設定される。
【0309】
近似ニー変換IDは、近似関数によるニー変換の目的に固有のIDである。また、近似ニー変換キャンセルフラグは、前のapproximate_knee_function_info SEIの連続性をキャンセルするかどうかを表すフラグである。近似ニー変換キャンセルフラグは、前のapproximate_knee_function_info SEIの連続性をキャンセルすることを表す場合1であり、キャンセルしないことを表す場合0である。
【0310】
近似ニー変換キャンセルフラグが0である場合、approximate_knee_function_info SEIには、参照ニー変換ID(ref_knee_function_id)が設定される。参照ニー変換IDは、approximate_knee_function_info SEIの近似ニーポイントインデックスを用いて近似されるニー変換の関数を表すニーポイントのDR情報を含むknee_function_info SEIのニー変換IDである。
【0311】
また、近似ニーポイントインデックスの数から1を減算した値である近似ニーポイントインデックス数(num_approximate_knee_point_indices_minus1)および近似ニーポイントインデックス(approximate_knee_point_index)が設定される。
【0312】
以上のように、近似ニーポイントインデックス(approximate_knee_point_index)がapproximate_knee_function_info SEIに設定される場合も、Semanticsは、
図56で説明したSemanticsと同一である。
【0313】
なお、上述した説明では、ニー変換の関数を表すニーポイントのDR情報を含むknee_function_info SEIのみが設定されたが、ニー変換の近似関数を表すニーポイントのDR情報を含むknee_function_info SEIも設定されるようにしてもよい。この場合、例えば、ニー変換IDが0であるknee_function_info SEIにニー変換の関数を表すニーポイントのDR情報が設定され、ニー変換IDが1であるknee_function_info SEIにニー変換の近似関数を表すニーポイントのDR情報が設定される。そして、復号装置は、HDMIでDR情報を伝送する場合、ニー変換IDが1であるknee_function_info SEIに含まれるDR情報をAVI InfoFrameの1パケットに配置して伝送する。
【0314】
また、変換前ディスプレイ輝度情報(input_disp_luminance)および変換後輝度レンジ情報(output_d_range)として、所定の明るさに固有のIDを設定することにより、DR情報の情報量を削減することもできる。この場合、例えば、400cd/m2にIDとして0が割り当てられ、800cd/m2に1が割り当てられる。IDと、そのIDが割り当てられた明るさとの対応関係は、符号化側と表示側で共通に設定されており、表示側は、IDから明るさを認識することができる。
【0315】
第3実施の形態では、所望のニー変換の関数を表すための重要度の高い順にニーポイントが選択されたが、その他の順にニーポイントが選択されるようにしてもよい。
【0316】
また、第3実施の形態では、選択されるニーポイントの数は、AVI InfoFrameの1パケットに収めることが可能な数であるものとしたが、これに限定されない。例えば、復号装置111が表示装置112の機能を有する場合には、変換部93で処理可能なニー変換に対応するニーポイントの数などにすることができる。
【0317】
<第4実施の形態>
(第4実施の形態の前提)
図61に示すように、CRT(Cathode Ray Tube)ディスプレイに使用されるCRT(陰極線管)では、入力電気信号と表示輝度は比例関係になく、高輝度を表示するためにはより高い電気信号を入力する必要がある。従って、
図62に示すように、CRTディスプレイに画像の輝度に比例する電気信号が入力されると、
図63に示すように、本来の画像の輝度に比べて表示輝度は暗くなる。よって、本来の画像の輝度で画像を表示させるためには、
図64に示すように、
図61の関数と逆特性の関数で画像の輝度を電気信号に変換する必要がある。
【0318】
なお、
図61および
図63において、横軸は、CRTディスプレイに最大輝度で表示するための入力電気信号の値を1として入力電気信号を正規化した値であり、縦軸は、CRTディスプレイの表示輝度の最大値を1として表示輝度を正規化した値である。
図62および
図64において、横軸は、表示対象の画像の輝度の最大値を1として表示対象の画像の輝度を正規化した値であり、縦軸は、表示対象の画像の輝度の最大値に対応する電気信号の値を1として電気信号を正規化した値である。
【0319】
図61に示すような入力電気信号を表示輝度に変換する関数をEOTF(Electro-Optical Transfer Function)と呼び、
図64に示すような画像の輝度を電気信号に変換する関数をOETF(Optical-Electro Transfer Function)と呼ぶ。
【0320】
LED(Light Emitting Diode)パネルなどの他のディスプレイは、CRTディスプレイとは異なる特性を有する。しかしながら、ディスプレイに応じて入力電気信号の生成手順を変更しないようにするため、他のディスプレイで表示を行う場合も、CRTディスプレイの場合と同様にEOTFとOETFを用いた処理が行われる。
【0321】
図65は、画像が撮像されてから表示されるまでの処理の流れの一例を示す図である。
【0322】
なお、
図65の例では、電気信号が10ビット(0〜1023)のコード値であり、OETFとEOTFはBT.709で定義されたものである。
【0323】
図65に示すように、カメラなどにより画像が撮像されると、撮像画像に対してOETFを用いて輝度(光)を電気信号(コード値)に変換する光電変換処理が行われる。その後、電気信号は符号化され、符号化された電気信号は復号される。そして、復号された電気信号に対して、EOTFを用いて電気信号を輝度に変換する電光変換処理が行われ、表示される。
【0324】
ところで、人間の視覚は、低輝度での輝度差に対しては敏感で、高輝度での輝度差には鈍感であるという特性がある。従って、
図65に示すように、BT.709のOETFは、低輝度部分に高輝度部分より多くのコード値が割り当てられる関数となっている。その結果、主観的に十分な画質が実現される。
【0325】
画像の最大輝度が100cd/m2程度である場合、BT.709のOETFにより、低輝度部分に十分なコード値を割り当てることができる。しかしながら、近年、ディスプレイの最大輝度は上昇傾向にあり、今後も加速していくことが予想される。それに伴い画像の最大輝度が上昇していくと、BT.709のOETFでは低輝度部分に割り当てられるコード値が不足し、十分な画質を得ることができなくなる。
【0326】
そこで、低輝度部分に割り当てられるコード値の割合を増加させたHDR画像用のOETFを新たに生成することにより、HDR画像において十分な画質を得ることが考えられる。しかしながら、この場合、光電変換処理および電光変換処理のために、HDR画像用のOETFおよびEOTFとSDR画像用のOETFおよびEOTFの両方を用意しておく必要がある。
【0327】
一方、HDR画像用のOETFを用いてSDR画像を光電変換する場合、輝度の階調表現が粗くなってしまう。
【0328】
例えば、
図66に示すように、最大輝度が100cd/m2であるSDR画像用のBT.709のOETFを用いてSDR画像を光電変換する場合、そのSDR画像の輝度は、0乃至1023の102
4個のコードで表現される。これに対して、
図67に示すように、最大輝度が400cd/m2であるHDR画像用のOETFを用いてSDR画像を光電変換する場合、そのSDR画像の輝度は、例えば、0乃至501の502個のコード値で表現される。
【0329】
従って、最大輝度の高いHDR画像であっても低いSDR画像であっても、低輝度部分にコード値が十分に割り当てられるように、OETFおよびEOTFを可変にすることが望ましい。そこで、第4実施の形態では、BT.709のOETFの前およびBT.709のEOTFの後にニー変換を行うことにより、低輝度部分にコード値が十分に割り当てられるようにする。
【0330】
(第4実施の形態における光電変換処理の概要)
図68は、第4実施の形態における光電変換処理の概要を説明する図である。
【0331】
図68の左側に示すように、第4実施の形態では、まず、撮像画像の輝度(入力輝度)に対して所定のニー変換が行われる。
図68の例では、ニー変換により、入力輝度の低輝度部分の10%が入力輝度´の低輝度部分90%に変換され、入力輝度の高輝度部分の90%が入力輝度´の高輝度部分の10%に変換される。これにより、高輝度部分に比べて低輝度部分に対して値が多く割り当てられた入力輝度´が生成される。
【0332】
次に、
図68の中央に示すように、入力輝度´に対してBT.709のOETFを用いた光電変換処理が行われ、所定数ビット(
図68の例では10ビット)のコード値が生成される。上述したように、入力輝度´は、高輝度部分に比べて低輝度部分に対して値が多く割り当てられているため、
図68の右側に示すように、この入力輝度´から変換されたコード値では、BT.709のOETFに比べて、入力輝度の低輝度部分により多く値が割り当てられる。
図68の例では、入力輝度の低輝度部分の10%が、コード値の94%に割り当てられている。
【0333】
以上のように、第4実施の形態では、ニー変換の関数をパラメータとして用いて、コード値の低輝度部分(暗部)に割り当てる度合と、高輝度部分(明部)に割り当てる度合が調整される。
【0334】
なお、入力輝度に対して行われるニー変換のニーポイントの情報は、
図40のknee_function_info SEIなどに設定され、復号側に伝送される。
【0335】
(第4実施の形態における電光変換処理の概要)
図69は、第4実施の形態における電光変換処理の概要を説明する図である。
【0336】
図69の左側に示すように、第4実施の形態では、まず、復号画像のコード値に対してBT.709のEOTFを用いた電光変換処理が行われ、輝度(出力輝度)が生成される。次に、
図69の中央に示すように、出力輝度に対して所定のニー変換が行われる。
図68の例では、ニー変換により、出力輝度の低輝度部分の90%が出力輝度´の低輝度部分10%に変換され、出力輝度の高輝度部分の10%が出力輝度´の高輝度部分の90%に変換される。
【0337】
これにより、
図69の右側に示すように、BT.709のE0TFに比べて入力輝度の低輝度部分により多く値が割り当てられたコード値を、そのコード値に対応する入力輝度と同一の出力輝度´に変換することができる。
【0338】
以上のように、第4実施の形態では、ニー変換の関数をパラメータとして用いて、低輝度部分(暗部)に割り当てる度合と、高輝度部分(明部)に割り当てる度合が調整されたコード値が輝度に変換される。
【0339】
なお、出力輝度に対して行われるニー変換の関数は、符号化側から伝送されてくるknee_function_info SEIなどに設定された情報に基づいて決定される。
【0340】
(符号化装置の第4実施の形態の構成例)
図70は、本開示を適用した符号化装置の第4実施の形態の構成例を示すブロック図である。
【0341】
図70に示す構成のうち、
図6や
図16の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0342】
図70の符号化装置150の構成は、変換部73の代わりに量子化部151が設けられる点が、
図16の構成と異なる。符号化装置150は、外部から入力される撮像画像に対して光電変換処理を行い、符号化を行う。
【0343】
具体的には、符号化装置150の量子化部151は、外部から入力される撮像画像の輝度をニー変換する。このニー変換のニーポイントの情報は、設定部71によりknee_function_info SEIに設定される。量子化部151は、ニー変換後の輝度に対してBT.709のOETFを用いた光電変換処理を行い、コード値を生成する。量子化部151は、生成されたコード値を符号化対象の画像として符号化部72に供給する。
【0344】
(符号化装置の処理の説明)
図71は、
図70の符号化装置150のストリーム生成処理を説明するフローチャートである。
【0345】
図71のステップS150において、符号化装置150の量子化部151は、外部から入力される撮像画像の輝度をニー変換する。ステップS152において、量子化部151は、ニー変換後の輝度に対してBT.709のEOTFを用いた光電変換処理を行い、コード値を生成する。量子化部151は、生成されたコード値を符号化対象の画像として符号化部72に供給する。
【0346】
ステップS152乃至S154の処理は、
図21のステップS73乃至S75の処理と同様であるので、説明は省略する。
【0347】
ステップS155において、設定部71は、ステップS150の処理で行われたニー変換のニーポイントの情報を含むknee_function_info SEIを設定する。設定部71は、設定されたSPS,PPS,VUI, knee_function_info SEIなどのパラメータセットを符号化部72に供給する。
【0348】
ステップS156において、符号化部72は、変換部73から供給される符号化対象の画像をHEVC方式で符号化する。ステップS157およびS158の処理は、
図21のステップS78およびS79の処理と同様であるので、説明は省略する。
【0349】
以上のように、符号化装置150は、BT.709のOETFの前にニー変換を行うので、BT.709のOETFを用いてSDR画像とHDR画像の両方に適した光電変換処理を行うことができる。
【0350】
(復号装置の第4実施の形態の構成例)
図72は、
図70の符号化装置150から伝送されてくる符号化ストリームを復号する、本開示を適用した復号装置の第4実施の形態の構成例を示すブロック図である。
【0351】
図72に示す構成のうち、
図12や
図22の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0352】
図72の復号装置170の構成は、変換部93の代わりに変換部171が設けられる点が、
図22の復号装置90の構成と異なる。復号装置170は、符号化ストリームを復号し、その結果得られる復号画像に対して電光変換処理を行う。
【0353】
具体的には、復号装置170の変換部171は、復号部92から供給される復号画像としてのコード値に対してBT.709のEOTFを用いた電光変換処理を行い、輝度を生成する。変換部171は、抽出部91からのknee_function_info SEIに基づいて、その輝度に対してニー変換を行う。変換部171は、ニー変換の結果得られる輝度を表示画像として表示制御部94に供給する。
【0354】
(復号装置の処理の説明)
図73は、
図72の復号装置170の画像生成処理を説明するフローチャートである。
【0355】
図73のステップS171乃至S173の処理は、
図23のステップS91乃至S93の処理と同様であるので、説明は省略する。
【0356】
ステップS174において、復号装置170の変換部171は、復号部92から供給される復号画像としてのコード値に対してBT.709のEOTFを用いた電光変換処理を行い、輝度を生成する。
【0357】
ステップS175において、変換部171は、抽出部91からのknee_function_info SEIに基づいて、生成された輝度に対してニー変換を行う。変換部171は、ニー変換の結果得られる輝度を表示画像として表示制御部94に供給する。
【0358】
ステップS176において、表示制御部94は、変換部93から供給される表示画像を表示部95に表示させ、処理を終了する。
【0359】
以上のように、復号装置170は、BT.709のE0TFの後にニー変換を行うので、BT.709のEOTFを用いてSDR画像とHDR画像の両方に適した電光変換処理を行うことができる。
【0360】
なお、符号化対象の画像の最大輝度は、符号化データとともに符号化ストリームに含まれ、符号化装置150から復号装置170に伝送されてもよいし、符号化装置150と復号装置170において共通の値が予め決められていてもよい。また、符号化対象の画像の最大輝度ごとにknee_function_info SEIが設定されてもよい。
【0361】
また、第4実施の形態において、第1乃至第3実施の形態のknee_function_info SEIが設定されるようにしてもよい。この場合、復号側において、DR変換情報を用いてニー変換を行うことにより、様々な輝度のディスプレイに適した画像に変換することができる。
【0362】
さらに、第4実施の形態における復号装置170は、第3実施の形態のように復号装置と表示装置に分けられてもよい。
【0363】
また、第4実施の形態では、ニー変換の関数をパラメータとして用いて、コード値の低輝度部分に割り当てる度合と、高輝度部分に割り当てる度合を調整したが、ニー変換の関数以外をパラメータとして用いて調整が行われるようにしてもよい。
【0364】
なお、本開示は、AVC方式にも適用することができる。
【0365】
<第5実施の形態>
(本開示を適用したコンピュータの説明)
上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
【0366】
図74は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
【0367】
コンピュータにおいて、CPU(Central Processing Unit)201,ROM(Read Only Memory)202,RAM(Random Access Memory)203は、バス204により相互に接続されている。
【0368】
バス204には、さらに、入出力インタフェース205が接続されている。入出力インタフェース205には、入力部206、出力部207、記憶部208、通信部209、及びドライブ210が接続されている。
【0369】
入力部206は、キーボード、マウス、マイクロホンなどよりなる。出力部207は、ディスプレイ、スピーカなどよりなる。記憶部208は、ハードディスクや不揮発性のメモリなどよりなる。通信部209は、ネットワークインタフェースなどよりなる。ドライブ210は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア211を駆動する。
【0370】
以上のように構成されるコンピュータでは、CPU201が、例えば、記憶部208に記憶されているプログラムを、入出力インタフェース205及びバス204を介して、RAM203にロードして実行することにより、上述した一連の処理が行われる。
【0371】
コンピュータ(CPU201)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア211に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
【0372】
コンピュータでは、プログラムは、リムーバブルメディア211をドライブ210に装着することにより、入出力インタフェース205を介して、記憶部208にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部209で受信し、記憶部208にインストールすることができる。その他、プログラムは、ROM202や記憶部208に、あらかじめインストールしておくことができる。
【0373】
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0374】
<第6実施の形態>
(多視点画像符号化・多視点画像復号への適用)
上述した一連の処理は、多視点画像符号化・多視点画像復号に適用することができる。
図75は、多視点画像符号化方式の一例を示す。
【0375】
図75に示されるように、多視点画像は、複数の視点(ビュー(view))の画像を含む。この多視点画像の複数のビューは、他のビューの画像を利用せずに自身のビューの画像のみを用いて符号化・復号を行うベースビューと、他のビューの画像を利用して符号化・復号を行うノンベースビューとによりなる。ノンベースビューは、ベースビューの画像を利用するようにしても良いし、他のノンベースビューの画像を利用するようにしてもよい。
【0376】
図75のような多視点画像を符号化・復号する場合、各ビューの画像を符号化・復号するが、この各ビューの符号化・復号に対して、上述した第1実施の形態の方法を適用するようにしてもよい。このようにすることにより、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0377】
さらに、各ビューの符号化・復号において、上述した第1実施の形態の方法で使用されるフラグやパラメータを共有するようにしてもよい。より具体的には、例えば、knee_function_info SEIのシンタックス要素等を、各ビューの符号化・復号において共有するようにしてもよい。もちろん、これら以外の必要な情報も、各ビューの符号化・復号において共有するようにしてもよい。
【0378】
このようにすることにより、冗長な情報の伝送を抑制し、伝送する情報量(符号量)を低減することができる(つまり、符号化効率の低減を抑制することができる)。
【0379】
(多視点画像符号化装置)
図76は、上述した多視点画像符号化を行う多視点画像符号化装置を示す図である。
図76に示されるように、多視点画像符号化装置600は、符号化部601、符号化部602、および多重化部603を有する。
【0380】
符号化部601は、ベースビュー画像を符号化し、ベースビュー画像符号化ストリームを生成する。符号化部602は、ノンベースビュー画像を符号化し、ノンベースビュー画像符号化ストリームを生成する。多重化部603は、符号化部601において生成されたベースビュー画像符号化ストリームと、符号化部602において生成されたノンベースビュー画像符号化ストリームとを多重化し、多視点画像符号化ストリームを生成する。
【0381】
この多視点画像符号化装置600の符号化部601および符号化部602に対して、符号化装置10(
図6)を適用することができる。つまり、各ビューに対する符号化において、復号時に復号画像をダイナミックレンジの異なる所望の画像に変換することができるように、画像を符号化することができる。また、符号化部601および符号化部602は、互いに同一のフラグやパラメータ(例えば、画像間の処理に関するシンタックス要素等)を用いて、符号化を行うことができる(すなわち、フラグやパラメータを共有することができる)ので、符号化効率の低減を抑制することができる。
【0382】
(多視点画像復号装置)
図77は、上述した多視点画像復号を行う多視点画像復号装置を示す図である。
図77に示されるように、多視点画像復号装置610は、逆多重化部611、復号部612、および復号部613を有する。
【0383】
逆多重化部611は、ベースビュー画像符号化ストリームとノンベースビュー画像符号化ストリームとが多重化された多視点画像符号化ストリームを逆多重化し、ベースビュー画像符号化ストリームと、ノンベースビュー画像符号化ストリームとを抽出する。復号部612は、逆多重化部611により抽出されたベースビュー画像符号化ストリームを復号し、ベースビュー画像を得る。復号部613は、逆多重化部611により抽出されたノンベースビュー画像符号化ストリームを復号し、ノンベースビュー画像を得る。
【0384】
この多視点画像復号装置610の復号部612および復号部613に対して、復号装置50(
図12)を適用することができる。つまり、各ビューに対する復号において、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。また、復号部612および復号部613は、互いに同一のフラグやパラメータ(例えば、画像間の処理に関するシンタックス要素等)を用いて、復号を行うことができる(すなわち、フラグやパラメータを共有することができる)ので、符号化効率の低減を抑制することができる。
【0385】
<第7実施の形態>
(階層画像符号化・階層画像復号への適用)
上述した一連の処理は、階層画像符号化・階層画像復号(スケーラブル符号化・スケーラブル復号)に適用することができる。
図78は、階層画像符号化方式の一例を示す。
【0386】
階層画像符号化(スケーラブル符号化)は、画像データを、所定のパラメータについてスケーラブル(scalable)機能を有するように、画像を複数レイヤ化(階層化)し、レイヤ毎に符号化するものである。階層画像復号(スケーラブル復号)は、その階層画像符号化に対応する復号である。
【0387】
図78に示されるように、画像の階層化においては、スケーラブル機能を有する所定のパラメータを基準として1の画像が複数の画像(レイヤ)に分割される。つまり、階層化された画像(階層画像)は、その所定のパラメータの値が互いに異なる複数の階層(レイヤ)の画像を含む。この階層画像の複数のレイヤは、他のレイヤの画像を利用せずに自身のレイヤの画像のみを用いて符号化・復号を行うベースレイヤと、他のレイヤの画像を利用して符号化・復号を行うノンベースレイヤ(エンハンスメントレイヤとも称する)とによりなる。ノンベースレイヤは、ベースレイヤの画像を利用するようにしても良いし、他のノンベースレイヤの画像を利用するようにしてもよい。
【0388】
一般的に、ノンベースレイヤは、冗長性が低減されるように、自身の画像と、他のレイヤの画像との差分画像のデータ(差分データ)により構成される。例えば、1の画像をベースレイヤとノンベースレイヤ(エンハンスメントレイヤとも称する)に2階層化した場合、ベースレイヤのデータのみで元の画像よりも低品質な画像が得られ、ベースレイヤのデータとノンベースレイヤのデータを合成することで、元の画像(すなわち高品質な画像)が得られる。
【0389】
このように画像を階層化することにより、状況に応じて多様な品質の画像を容易に得ることができる。例えば携帯電話のような、処理能力の低い端末に対しては、ベースレイヤ(base layer)のみの画像圧縮情報を伝送し、空間時間解像度の低い、或いは、画質の良くない動画像を再生し、テレビやパーソナルコンピュータのような、処理能力の高い端末に対しては、ベースレイヤ(base layer)に加えて、エンハンスメントレイヤ(enhancement layer)の画像圧縮情報を伝送し、空間時間解像度の高い、或いは、画質の高い動画像を再生するといったように、トランスコード処理を行うことなく、端末やネットワークの能力に応じた画像圧縮情報を、サーバから送信することが可能となる。
【0390】
図78の例のような階層画像を符号化・復号する場合、各レイヤの画像を符号化・復号するが、この各レイヤの符号化・復号に対して、上述した第1実施の形態の方法を適用するようにしてもよい。このようにすることにより、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0391】
さらに、各レイヤの符号化・復号において、上述した第1実施の形態の方法で使用されるフラグやパラメータを共有するようにしてもよい。より具体的には、例えば、knee_function_info SEIのシンタックス要素等を、各レイヤの符号化・復号において共有するようにしてもよい。もちろん、これら以外の必要な情報も、各レイヤの符号化・復号において共有するようにしてもよい。
【0392】
このようにすることにより、冗長な情報の伝送を抑制し、伝送する情報量(符号量)を低減することができる(つまり、符号化効率の低減を抑制することができる)。
【0393】
(スケーラブルなパラメータ)
このような階層画像符号化・階層画像復号(スケーラブル符号化・スケーラブル復号)において、スケーラブル(scalable)機能を有するパラメータは、任意である。例えば、
図79に示されるような空間解像度をそのパラメータとしてもよい(spatial scalability)。このスペーシャルスケーラビリティ(spatial scalability)の場合、レイヤ毎に画像の解像度が異なる。つまり、この場合、
図79に示されるように、各ピクチャが、元の画像より空間的に低解像度のベースレイヤと、ベースレイヤと合成することにより元の空間解像度が得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
【0394】
また、このようなスケーラブル性を持たせるパラメータとして、他には、例えば、
図80に示されるような、時間解像度を適用しても良い(temporal scalability)。このテンポラルスケーラビリティ(temporal scalability)の場合、レイヤ毎にフレームレートが異なる。つまり、この場合、
図80に示されるように、各ピクチャが、元の動画像より低フレームレートのベースレイヤと、ベースレイヤと合成することにより元のフレームレートが得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
【0395】
さらに、このようなスケーラブル性を持たせるパラメータとして、例えば、信号雑音比(SNR(Signal to Noise ratio))を適用しても良い(SNR scalability)。このSNRスケーラビリティ(SNR scalability)の場合、レイヤ毎にSN比が異なる。つまり、この場合、
図81に示されるように、各ピクチャが、元の画像よりSNRの低いベースレイヤと、ベースレイヤと合成することにより元のSNRが得られるエンハンスメントレイヤの2階層に階層化される。もちろん、この階層数は一例であり、任意の階層数に階層化することができる。
【0396】
スケーラブル性を持たせるパラメータは、上述した例以外であっても、もちろんよい。例えば、スケーラブル性を持たせるパラメータとして、ビット深度を用いることもできる(bit-depth scalability)。このビット深度スケーラビリティ(bit-depth scalability)の場合、レイヤ毎にビット深度が異なる。この場合、例えば、ベースレイヤ(base layer)が8ビット(bit)画像よりなり、これにエンハンスメントレイヤ(enhancement layer)を加えることにより、10ビット(bit)画像が得られるようにすることができる。
【0397】
また、スケーラブル性を持たせるパラメータとして、クロマフォーマットを用いることもできる(chroma scalability)。このクロマスケーラビリティ(chroma scalability)の場合、レイヤ毎にクロマフォーマットが異なる。この場合、例えば、ベースレイヤ(base layer)が4:2:0フォーマットのコンポーネント画像よりなり、これにエンハンスメントレイヤ(enhancement layer)を加えることにより、4:2:2フォーマットのコンポーネント画像が得られるようにすることができる。
【0398】
さらに、スケーラブル性を持たせるパラメータとして、輝度のダイナミックレンジを用いることもできる(DR scalability)。このダイナミックレンジスケーラビリティ(DR scalability)では、レイヤ毎に輝度のダイナミックレンジが異なる。この場合、例えば、ベースレイヤ(base layer)がSDR画像よりなり、これにエンハンスメントレイヤ(enhancement layer)を加えることにより、HDR画像が得られるようにすることができる。
【0399】
ダイナミックレンジスケーラビリティに上述した一連の処理を適用する場合、例えば、ベースレイヤ画像の符号化ストリームに、DR変換情報として、SDR画像のHDR画像へのニー伸長に関する情報が設定される。また、エンハンスメントレイヤ画像の符号化ストリームに、DR変換情報として、HDR画像の輝度のダイナミックレンジのニー圧縮に関する情報が設定される。
【0400】
そして、ベースレイヤ画像の符号化ストリームのみを復号可能であり、HDRディスプレイを有する復号装置は、DR変換情報に基づいて、復号画像であるSDR画像をHDR画像に変換し、表示画像とする。一方、エンハンスメントレイヤ画像の符号化ストリームも復号可能であり、低いダイナミックレンジのHDR画像を表示可能なHDRディスプレイを有する復号装置は、DR変換情報に基づいて、復号画像であるHDR画像の輝度のダイナミックレンジをニー圧縮し、表示画像とする。
【0401】
なお、エンハンスメントレイヤ画像の符号化ストリームには、DR変換情報として、HDR画像のダイナミックレンジの伸長に関する情報を設定することもできる。この場合、エンハンスメントレイヤ画像の符号化ストリームも復号可能であり、高いダイナミックレンジのHDR画像を表示可能なHDRディスプレイを有する復号装置は、DR変換情報に基づいて、復号画像であるHDR画像の輝度のダイナミックレンジをニー伸長し、表示画像とする。
【0402】
以上のように、ベースレイヤ画像やエンハンスメントレイヤ画像の符号化ストリームにDR変換情報を設定することにより、より表示能力に合った表示画像を表示させることができる。
【0403】
(階層画像符号化装置)
図82は、上述した階層画像符号化を行う階層画像符号化装置を示す図である。
図82に示されるように、階層画像符号化装置620は、符号化部621、符号化部622、および多重化部623を有する。
【0404】
符号化部621は、ベースレイヤ画像を符号化し、ベースレイヤ画像符号化ストリームを生成する。符号化部622は、ノンベースレイヤ画像を符号化し、ノンベースレイヤ画像符号化ストリームを生成する。多重化部623は、符号化部621において生成されたベースレイヤ画像符号化ストリームと、符号化部622において生成されたノンベースレイヤ画像符号化ストリームとを多重化し、階層画像符号化ストリームを生成する。
【0405】
この階層画像符号化装置620の符号化部621および符号化部622に対して、符号化装置10(
図6)を適用することができる。つまり、各レイヤに対する符号化において、復号時に復号画像をダイナミックレンジの異なる所望の画像に変換することができるように、画像を符号化することができる。また、符号化部621および符号化部622は、互いに同一のフラグやパラメータ(例えば、画像間の処理に関するシンタックス要素等)を用いて、イントラ予測のフィルタ処理の制御等を行うことができる(すなわち、フラグやパラメータを共有することができる)ので、符号化効率の低減を抑制することができる。
【0406】
(階層画像復号装置)
図83は、上述した階層画像復号を行う階層画像復号装置を示す図である。
図83に示されるように、階層画像復号装置630は、逆多重化部631、復号部632、および復号部633を有する。
【0407】
逆多重化部631は、ベースレイヤ画像符号化ストリームとノンベースレイヤ画像符号化ストリームとが多重化された階層画像符号化ストリームを逆多重化し、ベースレイヤ画像符号化ストリームと、ノンベースレイヤ画像符号化ストリームとを抽出する。復号部632は、逆多重化部631により抽出されたベースレイヤ画像符号化ストリームを復号し、ベースレイヤ画像を得る。復号部633は、逆多重化部631により抽出されたノンベースレイヤ画像符号化ストリームを復号し、ノンベースレイヤ画像を得る。
【0408】
この階層画像復号装置630の復号部632および復号部633に対して、復号装置50(
図12)を適用することができる。つまり、各レイヤに対する復号において、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。また、復号部612および復号部613は、互いに同一のフラグやパラメータ(例えば、画像間の処理に関するシンタックス要素等)を用いて、復号を行うことができる(すなわち、フラグやパラメータを共有することができる)ので、符号化効率の低減を抑制することができる。
【0409】
<第8実施の形態>
(テレビジョン装置の構成例)
図84は、本技術を適用したテレビジョン装置の概略構成を例示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース部909を有している。さらに、テレビジョン装置900は、制御部910、ユーザインタフェース部911等を有している。
【0410】
チューナ902は、アンテナ901で受信された放送波信号から所望のチャンネルを選局して復調を行い、得られた符号化ビットストリームをデマルチプレクサ903に出力する。
【0411】
デマルチプレクサ903は、符号化ビットストリームから視聴対象である番組の映像や音声のパケットを抽出して、抽出したパケットのデータをデコーダ904に出力する。また、デマルチプレクサ903は、EPG(Electronic Program Guide)等のデータのパケットを制御部910に供給する。なお、スクランブルが行われている場合、デマルチプレクサ等でスクランブルの解除を行う。
【0412】
デコーダ904は、パケットの復号化処理を行い、復号処理化によって生成された映像データを映像信号処理部905、音声データを音声信号処理部907に出力する。
【0413】
映像信号処理部905は、映像データに対して、ノイズ除去やユーザ設定に応じた映像処理等を行う。映像信号処理部905は、表示部906に表示させる番組の映像データや、ネットワークを介して供給されるアプリケーションに基づく処理による画像データなどを生成する。また、映像信号処理部905は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それを番組の映像データに重畳する。映像信号処理部905は、このようにして生成した映像データに基づいて駆動信号を生成して表示部906を駆動する。
【0414】
表示部906は、映像信号処理部905からの駆動信号に基づき表示デバイス(例えば液晶表示素子等)を駆動して、番組の映像などを表示させる。
【0415】
音声信号処理部907は、音声データに対してノイズ除去などの所定の処理を施し、処理後の音声データのD/A変換処理や増幅処理を行いスピーカ908に供給することで音声出力を行う。
【0416】
外部インタフェース部909は、外部機器やネットワークと接続するためのインタフェースであり、映像データや音声データ等のデータ送受信を行う。
【0417】
制御部910にはユーザインタフェース部911が接続されている。ユーザインタフェース部911は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部910に供給する。
【0418】
制御部910は、CPU(Central Processing Unit)やメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータ、EPGデータ、ネットワークを介して取得されたデータ等を記憶する。メモリに記憶されているプログラムは、テレビジョン装置900の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、テレビジョン装置900がユーザ操作に応じた動作となるように各部を制御する。
【0419】
なお、テレビジョン装置900では、チューナ902、デマルチプレクサ903、映像信号処理部905、音声信号処理部907、外部インタフェース部909等と制御部910を接続するためバス912が設けられている。
【0420】
このように構成されたテレビジョン装置では、デコーダ904に本願の復号装置(復号方法)の機能が設けられる。このため、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0421】
<第9実施の形態>
(携帯電話機の構成例)
図85は、本技術を適用した携帯電話機の概略構成を例示している。携帯電話機920は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931を有している。これらは、バス933を介して互いに接続されている。
【0422】
また、通信部922にはアンテナ921が接続されており、音声コーデック923には、スピーカ924とマイクロホン925が接続されている。さらに制御部931には、操作部932が接続されている。
【0423】
携帯電話機920は、音声通話モードやデータ通信モード等の各種モードで、音声信号の送受信、電子メールや画像データの送受信、画像撮影、またはデータ記録等の各種動作を行う。
【0424】
音声通話モードにおいて、マイクロホン925で生成された音声信号は、音声コーデック923で音声データへの変換やデータ圧縮が行われて通信部922に供給される。通信部922は、音声データの変調処理や周波数変換処理等を行い、送信信号を生成する。また、通信部922は、送信信号をアンテナ921に供給して図示しない基地局へ送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、得られた音声データを音声コーデック923に供給する。音声コーデック923は、音声データのデータ伸長やアナログ音声信号への変換を行いスピーカ924に出力する。
【0425】
また、データ通信モードにおいて、メール送信を行う場合、制御部931は、操作部932の操作によって入力された文字データを受け付けて、入力された文字を表示部930に表示する。また、制御部931は、操作部932におけるユーザ指示等に基づいてメールデータを生成して通信部922に供給する。通信部922は、メールデータの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、メールデータを復元する。このメールデータを、表示部930に供給して、メール内容の表示を行う。
【0426】
なお、携帯電話機920は、受信したメールデータを、記録再生部929で記憶媒体に記憶させることも可能である。記憶媒体は、書き換え可能な任意の記憶媒体である。例えば、記憶媒体は、RAMや内蔵型フラッシュメモリ等の半導体メモリ、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USB(Universal Serial Bus)メモリ、またはメモリカード等のリムーバブルメディアである。
【0427】
データ通信モードにおいて画像データを送信する場合、カメラ部926で生成された画像データを、画像処理部927に供給する。画像処理部927は、画像データの符号化処理を行い、符号化データを生成する。
【0428】
多重分離部928は、画像処理部927で生成された符号化データと、音声コーデック923から供給された音声データを所定の方式で多重化して通信部922に供給する。通信部922は、多重化データの変調処理や周波数変換処理等を行い、得られた送信信号をアンテナ921から送信する。また、通信部922は、アンテナ921で受信した受信信号の増幅や周波数変換処理および復調処理等を行い、多重化データを復元する。この多重化データを多重分離部928に供給する。多重分離部928は、多重化データの分離を行い、符号化データを画像処理部927、音声データを音声コーデック923に供給する。画像処理部927は、符号化データの復号化処理を行い、画像データを生成する。この画像データを表示部930に供給して、受信した画像の表示を行う。音声コーデック923は、音声データをアナログ音声信号に変換してスピーカ924に供給して、受信した音声を出力する。
【0429】
このように構成された携帯電話装置では、画像処理部927に本願の符号化装置および復号装置(符号化方法および復号方法)の機能が設けられる。このため、復号時に復号画像をダイナミックレンジの異なる所望の画像に変換することができるように、画像を符号化することができる。また、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0430】
<第10実施の形態>
(記録再生装置の構成例)
図86は、本技術を適用した記録再生装置の概略構成を例示している。記録再生装置940は、例えば受信した放送番組のオーディオデータとビデオデータを、記録媒体に記録して、その記録されたデータをユーザの指示に応じたタイミングでユーザに提供する。また、記録再生装置940は、例えば他の装置からオーディオデータやビデオデータを取得し、それらを記録媒体に記録させることもできる。さらに、記録再生装置940は、記録媒体に記録されているオーディオデータやビデオデータを復号して出力することで、モニタ装置等において画像表示や音声出力を行うことができるようにする。
【0431】
記録再生装置940は、チューナ941、外部インタフェース部942、エンコーダ943、HDD(Hard Disk Drive)部944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)部948、制御部949、ユーザインタフェース部950を有している。
【0432】
チューナ941は、図示しないアンテナで受信された放送信号から所望のチャンネルを選局する。チューナ941は、所望のチャンネルの受信信号を復調して得られた符号化ビットストリームをセレクタ946に出力する。
【0433】
外部インタフェース部942は、IEEE1394インタフェース、ネットワークインタフェース部、USBインタフェース、フラッシュメモリインタフェース等の少なくともいずれかで構成されている。外部インタフェース部942は、外部機器やネットワーク、メモリカード等と接続するためのインタフェースであり、記録する映像データや音声データ等のデータ受信を行う。
【0434】
エンコーダ943は、外部インタフェース部942から供給された映像データや音声データが符号化されていないとき所定の方式で符号化を行い、符号化ビットストリームをセレクタ946に出力する。
【0435】
HDD部944は、映像や音声等のコンテンツデータ、各種プログラムやその他のデータ等を内蔵のハードディスクに記録し、また再生時等にそれらを当該ハードディスクから読み出す。
【0436】
ディスクドライブ945は、装着されている光ディスクに対する信号の記録および再生を行う。光ディスク、例えばDVDディスク(DVD−Video、DVD−RAM、DVD−R、DVD−RW、DVD+R、DVD+RW等)やBlu−ray(登録商標)ディスク等である。
【0437】
セレクタ946は、映像や音声の記録時には、チューナ941またはエンコーダ943からのいずれかの符号化ビットストリームを選択して、HDD部944やディスクドライブ945のいずれかに供給する。また、セレクタ946は、映像や音声の再生時に、HDD部944またはディスクドライブ945から出力された符号化ビットストリームをデコーダ947に供給する。
【0438】
デコーダ947は、符号化ビットストリームの復号化処理を行う。デコーダ947は、復号処理化を行うことにより生成された映像データをOSD部948に供給する。また、デコーダ947は、復号処理化を行うことにより生成された音声データを出力する。
【0439】
OSD部948は、項目の選択などのメニュー画面等を表示するための映像データを生成し、それをデコーダ947から出力された映像データに重畳して出力する。
【0440】
制御部949には、ユーザインタフェース部950が接続されている。ユーザインタフェース部950は、操作スイッチやリモートコントロール信号受信部等で構成されており、ユーザ操作に応じた操作信号を制御部949に供給する。
【0441】
制御部949は、CPUやメモリ等を用いて構成されている。メモリは、CPUにより実行されるプログラムやCPUが処理を行う上で必要な各種のデータを記憶する。メモリに記憶されているプログラムは、記録再生装置940の起動時などの所定タイミングでCPUにより読み出されて実行される。CPUは、プログラムを実行することで、記録再生装置940がユーザ操作に応じた動作となるように各部を制御する。
【0442】
このように構成された記録再生装置では、デコーダ947に本願の復号装置(復号方法)の機能が設けられる。このため、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0443】
<第11実施の形態>
(撮像装置の構成例)
図87は、本技術を適用した撮像装置の概略構成を例示している。撮像装置960は、被写体を撮像し、被写体の画像を表示部に表示させたり、それを画像データとして、記録媒体に記録する。
【0444】
撮像装置960は、光学ブロック961、撮像部962、カメラ信号処理部963、画像データ処理部964、表示部965、外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970を有している。また、制御部970には、ユーザインタフェース部971が接続されている。さらに、画像データ処理部964や外部インタフェース部966、メモリ部967、メディアドライブ968、OSD部969、制御部970等は、バス972を介して接続されている。
【0445】
光学ブロック961は、フォーカスレンズや絞り機構等を用いて構成されている。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCDまたはCMOSイメージセンサを用いて構成されており、光電変換によって光学像に応じた電気信号を生成してカメラ信号処理部963に供給する。
【0446】
カメラ信号処理部963は、撮像部962から供給された電気信号に対してニー補正やガンマ補正、色補正等の種々のカメラ信号処理を行う。カメラ信号処理部963は、カメラ信号処理後の画像データを画像データ処理部964に供給する。
【0447】
画像データ処理部964は、カメラ信号処理部963から供給された画像データの符号化処理を行う。画像データ処理部964は、符号化処理を行うことにより生成された符号化データを外部インタフェース部966やメディアドライブ968に供給する。また、画像データ処理部964は、外部インタフェース部966やメディアドライブ968から供給された符号化データの復号化処理を行う。画像データ処理部964は、復号化処理を行うことにより生成された画像データを表示部965に供給する。また、画像データ処理部964は、カメラ信号処理部963から供給された画像データを表示部965に供給する処理や、OSD部969から取得した表示用データを、画像データに重畳させて表示部965に供給する。
【0448】
OSD部969は、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを生成して画像データ処理部964に出力する。
【0449】
外部インタフェース部966は、例えば、USB入出力端子などで構成され、画像の印刷を行う場合に、プリンタと接続される。また、外部インタフェース部966には、必要に応じてドライブが接続され、磁気ディスク、光ディスク等のリムーバブルメディアが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、インストールされる。さらに、外部インタフェース部966は、LANやインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。制御部970は、例えば、ユーザインタフェース部971からの指示にしたがって、メディアドライブ968から符号化データを読み出し、それを外部インタフェース部966から、ネットワークを介して接続される他の装置に供給させることができる。また、制御部970は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース部966を介して取得し、それを画像データ処理部964に供給したりすることができる。
【0450】
メディアドライブ968で駆動される記録メディアとしては、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアが用いられる。また、記録メディアは、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触IC(Integrated Circuit)カード等であってもよい。
【0451】
また、メディアドライブ968と記録メディアを一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。
【0452】
制御部970は、CPUを用いて構成されている。メモリ部967は、制御部970により実行されるプログラムや制御部970が処理を行う上で必要な各種のデータ等を記憶する。メモリ部967に記憶されているプログラムは、撮像装置960の起動時などの所定タイミングで制御部970により読み出されて実行される。制御部970は、プログラムを実行することで、撮像装置960がユーザ操作に応じた動作となるように各部を制御する。
【0453】
このように構成された撮像装置では、画像データ処理部964に本願の符号化装置および復号装置(符号化方法および復号方法)の機能が設けられる。このため、復号時に復号画像をダイナミックレンジの異なる所望の画像に変換することができるように、画像を符号化することができる。また、復号画像をダイナミックレンジの異なる所望の画像に変換することができる。
【0454】
<スケーラブル符号化の応用例>
(第1のシステム)
次に、スケーラブル符号化(階層符号化)されたスケーラブル符号化データの具体的な利用例について説明する。スケーラブル符号化は、例えば、
図88に示される例のように、伝送するデータの選択のために利用される。
【0455】
図88に示されるデータ伝送システム1000において、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを読み出し、ネットワーク1003を介して、パーソナルコンピュータ1004、AV機器1005、タブレットデバイス1006、および携帯電話機1007等の端末装置に配信する。
【0456】
その際、配信サーバ1002は、端末装置の能力や通信環境等に応じて、適切な品質の符号化データを選択して伝送する。配信サーバ1002が不要に高品質なデータを伝送しても、端末装置において高画質な画像を得られるとは限らず、遅延やオーバフローの発生要因となる恐れがある。また、不要に通信帯域を占有したり、端末装置の負荷を不要に増大させたりしてしまう恐れもある。逆に、配信サーバ1002が不要に低品質なデータを伝送しても、端末装置において十分な画質の画像を得ることができない恐れがある。そのため、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを、適宜、端末装置の能力や通信環境等に対して適切な品質の符号化データとして読み出し、伝送する。
【0457】
例えば、スケーラブル符号化データ記憶部1001は、スケーラブルに符号化されたスケーラブル符号化データ(BL+EL)1011を記憶するとする。このスケーラブル符号化データ(BL+EL)1011は、ベースレイヤとエンハンスメントレイヤの両方を含む符号化データであり、復号することにより、ベースレイヤの画像およびエンハンスメントレイヤの画像の両方を得ることができるデータである。
【0458】
配信サーバ1002は、データを伝送する端末装置の能力や通信環境等に応じて、適切なレイヤを選択し、そのレイヤのデータを読み出す。例えば、配信サーバ1002は、処理能力の高いパーソナルコンピュータ1004やタブレットデバイス1006に対しては、高品質なスケーラブル符号化データ(BL+EL)1011をスケーラブル符号化データ記憶部1001から読み出し、そのまま伝送する。これに対して、例えば、配信サーバ1002は、処理能力の低いAV機器1005や携帯電話機1007に対しては、スケーラブル符号化データ(BL+EL)1011からベースレイヤのデータを抽出し、スケーラブル符号化データ(BL+EL)1011と同じコンテンツのデータであるが、スケーラブル符号化データ(BL+EL)1011よりも低品質なスケーラブル符号化データ(BL)1012として伝送する。
【0459】
このようにスケーラブル符号化データを用いることにより、データ量を容易に調整することができるので、遅延やオーバフローの発生を抑制したり、端末装置や通信媒体の負荷の不要な増大を抑制したりすることができる。また、スケーラブル符号化データ(BL+EL)1011は、レイヤ間の冗長性が低減されているので、各レイヤの符号化データを個別のデータとする場合よりもそのデータ量を低減させることができる。したがって、スケーラブル符号化データ記憶部1001の記憶領域をより効率よく使用することができる。
【0460】
なお、パーソナルコンピュータ1004乃至携帯電話機1007のように、端末装置には様々な装置を適用することができるので、端末装置のハードウエアの性能は、装置によって異なる。また、端末装置が実行するアプリケーションも様々であるので、そのソフトウエアの能力も様々である。さらに、通信媒体となるネットワーク1003も、例えばインターネットやLAN(Local Area Network)等、有線若しくは無線、またはその両方を含むあらゆる通信回線網を適用することができ、そのデータ伝送能力は様々である。さらに、他の通信等によっても変化する恐れがある。
【0461】
そこで、配信サーバ1002は、データ伝送を開始する前に、データの伝送先となる端末装置と通信を行い、端末装置のハードウエア性能や、端末装置が実行するアプリケーション(ソフトウエア)の性能等といった端末装置の能力に関する情報、並びに、ネットワーク1003の利用可能帯域幅等の通信環境に関する情報を得るようにしてもよい。そして、配信サーバ1002が、ここで得た情報を基に、適切なレイヤを選択するようにしてもよい。
【0462】
なお、レイヤの抽出は、端末装置において行うようにしてもよい。例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011を復号し、ベースレイヤの画像を表示しても良いし、エンハンスメントレイヤの画像を表示しても良い。また、例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011から、ベースレイヤのスケーラブル符号化データ(BL)1012を抽出し、記憶したり、他の装置に転送したり、復号してベースレイヤの画像を表示したりするようにしてもよい。
【0463】
もちろん、スケーラブル符号化データ記憶部1001、配信サーバ1002、ネットワーク1003、および端末装置の数はいずれも任意である。また、以上においては、配信サーバ1002がデータを端末装置に伝送する例について説明したが、利用例はこれに限定されない。データ伝送システム1000は、スケーラブル符号化された符号化データを端末装置に伝送する際、端末装置の能力や通信環境等に応じて、適切なレイヤを選択して伝送するシステムであれば、任意のシステムに適用することができる。
【0464】
(第2のシステム)
また、スケーラブル符号化は、例えば、
図89に示される例のように、複数の通信媒体を介する伝送のために利用される。
【0465】
図89に示されるデータ伝送システム1100において、放送局1101は、地上波放送1111により、ベースレイヤのスケーラブル符号化データ(BL)1121を伝送する。また、放送局1101は、有線若しくは無線またはその両方の通信網よりなる任意のネットワーク1112を介して、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する(例えばパケット化して伝送する)。
【0466】
端末装置1102は、放送局1101が放送する地上波放送1111の受信機能を有し、この地上波放送1111を介して伝送されるベースレイヤのスケーラブル符号化データ(BL)1121を受け取る。また、端末装置1102は、ネットワーク1112を介した通信を行う通信機能をさらに有し、このネットワーク1112を介して伝送されるエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を受け取る。
【0467】
端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121を、復号してベースレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
【0468】
また、端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121と、ネットワーク1112を介して取得したエンハンスメントレイヤのスケーラブル符号化データ(EL)1122とを合成して、スケーラブル符号化データ(BL+EL)を得たり、それを復号してエンハンスメントレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
【0469】
以上のように、スケーラブル符号化データは、例えばレイヤ毎に異なる通信媒体を介して伝送させることができる。したがって、負荷を分散させることができ、遅延やオーバフローの発生を抑制することができる。
【0470】
また、状況に応じて、伝送に使用する通信媒体を、レイヤ毎に選択することができるようにしてもよい。例えば、データ量が比較的多いベースレイヤのスケーラブル符号化データ(BL)1121を帯域幅の広い通信媒体を介して伝送させ、データ量が比較的少ないエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を帯域幅の狭い通信媒体を介して伝送させるようにしてもよい。また、例えば、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する通信媒体を、ネットワーク1112とするか、地上波放送1111とするかを、ネットワーク1112の利用可能帯域幅に応じて切り替えるようにしてもよい。もちろん、任意のレイヤのデータについて同様である。
【0471】
このように制御することにより、データ伝送における負荷の増大を、より抑制することができる。
【0472】
もちろん、レイヤ数は任意であり、伝送に利用する通信媒体の数も任意である。また、データ配信先となる端末装置1102の数も任意である。さらに、以上においては、放送局1101からの放送を例に説明したが、利用例はこれに限定されない。データ伝送システム1100は、スケーラブル符号化された符号化データを、レイヤを単位として複数に分割し、複数の回線を介して伝送するシステムであれば、任意のシステムに適用することができる。
【0473】
(第3のシステム)
また、スケーラブル符号化は、例えば、
図90に示される例のように、符号化データの記憶に利用される。
【0474】
図90に示される撮像システム1200において、撮像装置1201は、被写体1211を撮像して得られた画像データをスケーラブル符号化し、スケーラブル符号化データ(BL+EL)1221として、スケーラブル符号化データ記憶装置1202に供給する。
【0475】
スケーラブル符号化データ記憶装置1202は、撮像装置1201から供給されるスケーラブル符号化データ(BL+EL)1221を、状況に応じた品質で記憶する。例えば、通常時の場合、スケーラブル符号化データ記憶装置1202は、スケーラブル符号化データ(BL+EL)1221からベースレイヤのデータを抽出し、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222として記憶する。これに対して、例えば、注目時の場合、スケーラブル符号化データ記憶装置1202は、高品質でデータ量の多いスケーラブル符号化データ(BL+EL)1221のまま記憶する。
【0476】
このようにすることにより、スケーラブル符号化データ記憶装置1202は、必要な場合のみ、画像を高画質に保存することができるので、画質劣化による画像の価値の低減を抑制しながら、データ量の増大を抑制することができ、記憶領域の利用効率を向上させることができる。
【0477】
例えば、撮像装置1201が監視カメラであるとする。撮像画像に監視対象(例えば侵入者)が写っていない場合(通常時の場合)、撮像画像の内容は重要でない可能性が高いので、データ量の低減が優先され、その画像データ(スケーラブル符号化データ)は、低品質に記憶される。これに対して、撮像画像に監視対象が被写体1211として写っている場合(注目時の場合)、その撮像画像の内容は重要である可能性が高いので、画質が優先され、その画像データ(スケーラブル符号化データ)は、高品質に記憶される。
【0478】
なお、通常時であるか注目時であるかは、例えば、スケーラブル符号化データ記憶装置1202が、画像を解析することにより判定しても良い。また、撮像装置1201が判定し、その判定結果をスケーラブル符号化データ記憶装置1202に伝送するようにしてもよい。
【0479】
なお、通常時であるか注目時であるかの判定基準は任意であり、判定基準とする画像の内容は任意である。もちろん、画像の内容以外の条件を判定基準とすることもできる。例えば、収録した音声の大きさや波形等に応じて切り替えるようにしてもよいし、所定の時間毎に切り替えるようにしてもよいし、ユーザ指示等の外部からの指示によって切り替えるようにしてもよい。
【0480】
また、以上においては、通常時と注目時の2つの状態を切り替える例を説明したが、状態の数は任意であり、例えば、通常時、やや注目時、注目時、非常に注目時等のように、3つ以上の状態を切り替えるようにしてもよい。ただし、この切り替える状態の上限数は、スケーラブル符号化データのレイヤ数に依存する。
【0481】
また、撮像装置1201が、スケーラブル符号化のレイヤ数を、状態に応じて決定するようにしてもよい。例えば、通常時の場合、撮像装置1201が、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。また、例えば、注目時の場合、撮像装置1201が、高品質でデータ量の多いベースレイヤのスケーラブル符号化データ(BL+EL)1221を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。
【0482】
以上においては、監視カメラを例に説明したが、この撮像システム1200の用途は任意であり、監視カメラに限定されない。
【0483】
<第12実施の形態>
(実施のその他の例)
以上において本技術を適用する装置やシステム等の例を説明したが、本技術は、これに限らず、このような装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
【0484】
(ビデオセットの構成例)
本技術をセットとして実施する場合の例について、
図91を参照して説明する。
図91は、本技術を適用したビデオセットの概略的な構成の一例を示している。
【0485】
近年、電子機器の多機能化が進んでおり、その開発や製造において、その一部の構成を販売や提供等として実施する場合、1機能を有する構成として実施を行う場合だけでなく、関連する機能を有する複数の構成を組み合わせ、複数の機能を有する1セットとして実施を行う場合も多く見られるようになってきた。
【0486】
図91に示されるビデオセット1300は、このような多機能化された構成であり、画像の符号化や復号(いずれか一方でもよいし、両方でも良い)に関する機能を有するデバイスに、その機能に関連するその他の機能を有するデバイスを組み合わせたものである。
【0487】
図91に示されるように、ビデオセット1300は、ビデオモジュール1311、外部メモリ1312、パワーマネージメントモジュール1313、およびフロントエンドモジュール1314等のモジュール群と、コネクティビティ1321、カメラ1322、およびセンサ1323等の関連する機能を有するデバイスとを有する。
【0488】
モジュールは、互いに関連するいくつかの部品的機能をまとめ、まとまりのある機能を持った部品としたものである。具体的な物理的構成は任意であるが、例えば、それぞれ機能を有する複数のプロセッサ、抵抗やコンデンサ等の電子回路素子、その他のデバイス等を配線基板等に配置して一体化したものが考えられる。また、モジュールに他のモジュールやプロセッサ等を組み合わせて新たなモジュールとすることも考えられる。
【0489】
図91の例の場合、ビデオモジュール1311は、画像処理に関する機能を有する構成を組み合わせたものであり、アプリケーションプロセッサ、ビデオプロセッサ、ブロードバンドモデム1333、およびRFモジュール1334を有する。
【0490】
プロセッサは、所定の機能を有する構成をSoC(System On a Chip)により半導体チップに集積したものであり、例えばシステムLSI(Large Scale Integration)等と称されるものもある。この所定の機能を有する構成は、論理回路(ハードウエア構成)であってもよいし、CPU、ROM、RAM等と、それらを用いて実行されるプログラム(ソフトウエア構成)であってもよいし、その両方を組み合わせたものであってもよい。例えば、プロセッサが、論理回路とCPU、ROM、RAM等とを有し、機能の一部を論理回路(ハードウエア構成)により実現し、その他の機能をCPUにおいて実行されるプログラム(ソフトウエア構成)により実現するようにしてもよい。
【0491】
図91のアプリケーションプロセッサ1331は、画像処理に関するアプリケーションを実行するプロセッサである。このアプリケーションプロセッサ1331において実行されるアプリケーションは、所定の機能を実現するために、演算処理を行うだけでなく、例えばビデオプロセッサ1332等、ビデオモジュール1311内外の構成を必要に応じて制御することもできる。
【0492】
ビデオプロセッサ1332は、画像の符号化・復号(その一方若しくは両方)に関する機能を有するプロセッサである。
【0493】
ブロードバンドモデム1333は、インターネットや公衆電話回線網等の広帯域の回線を介して行われる有線若しくは無線(またはその両方)の広帯域通信に関する処理を行うプロセッサ(若しくはモジュール)である。例えば、ブロードバンドモデム1333は、送信するデータ(デジタル信号)をデジタル変調する等してアナログ信号に変換したり、受信したアナログ信号を復調してデータ(デジタル信号)に変換したりする。例えば、ブロードバンドモデム1333は、ビデオプロセッサ1332が処理する画像データや画像データが符号化されたストリーム、アプリケーションプログラム、設定データ等、任意の情報をデジタル変調・復調することができる。
【0494】
RFモジュール1334は、アンテナを介して送受信されるRF(Radio Frequency)信号に対して、周波数変換、変復調、増幅、フィルタ処理等を行うモジュールである。例えば、RFモジュール1334は、ブロードバンドモデム1333により生成されたベースバンド信号に対して周波数変換等を行ってRF信号を生成する。また、例えば、RFモジュール1334は、フロントエンドモジュール1314を介して受信されたRF信号に対して周波数変換等を行ってベースバンド信号を生成する。
【0495】
なお、
図91において点線1341に示されるように、アプリケーションプロセッサ1331とビデオプロセッサ1332を、一体化し、1つのプロセッサとして構成されるようにしてもよい。
【0496】
外部メモリ1312は、ビデオモジュール1311の外部に設けられた、ビデオモジュール1311により利用される記憶デバイスを有するモジュールである。この外部メモリ1312の記憶デバイスは、どのような物理構成により実現するようにしてもよいが、一般的にフレーム単位の画像データのような大容量のデータの格納に利用されることが多いので、例えばDRAM(Dynamic Random Access Memory)のような比較的安価で大容量の半導体メモリにより実現するのが望ましい。
【0497】
パワーマネージメントモジュール1313は、ビデオモジュール1311(ビデオモジュール1311内の各構成)への電力供給を管理し、制御する。
【0498】
フロントエンドモジュール1314は、RFモジュール1334に対してフロントエンド機能(アンテナ側の送受信端の回路)を提供するモジュールである。
図91に示されるように、フロントエンドモジュール1314は、例えば、アンテナ部1351、フィルタ1352、および増幅部1353を有する。
【0499】
アンテナ部1351は、無線信号を送受信するアンテナおよびその周辺の構成を有する。アンテナ部1351は、増幅部1353から供給される信号を無線信号として送信し、受信した無線信号を電気信号(RF信号)としてフィルタ1352に供給する。フィルタ1352は、アンテナ部1351を介して受信されたRF信号に対してフィルタ処理等を行い、処理後のRF信号をRFモジュール1334に供給する。増幅部1353は、RFモジュール1334から供給されるRF信号を増幅し、アンテナ部1351に供給する。
【0500】
コネクティビティ1321は、外部との接続に関する機能を有するモジュールである。コネクティビティ1321の物理構成は、任意である。例えば、コネクティビティ1321は、ブロードバンドモデム1333が対応する通信規格以外の通信機能を有する構成や、外部入出力端子等を有する。
【0501】
例えば、コネクティビティ1321が、Bluetooth(登録商標)、IEEE 802.11(例えばWi-Fi(Wireless Fidelity、登録商標))、NFC(Near Field Communication)、IrDA(InfraRed Data Association)等の無線通信規格に準拠する通信機能を有するモジュールや、その規格に準拠した信号を送受信するアンテナ等を有するようにしてもよい。また、例えば、コネクティビティ1321が、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)等の有線通信規格に準拠する通信機能を有するモジュールや、その規格に準拠した端子を有するようにしてもよい。さらに、例えば、コネクティビティ1321が、アナログ入出力端子等のその他のデータ(信号)伝送機能等を有するようにしてもよい。
【0502】
なお、コネクティビティ1321が、データ(信号)の伝送先のデバイスを含むようにしてもよい。例えば、コネクティビティ1321が、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等の記録媒体に対してデータの読み出しや書き込みを行うドライブ(リムーバブルメディアのドライブだけでなく、ハードディスク、SSD(Solid State Drive)、NAS(Network Attached Storage)等も含む)を有するようにしてもよい。また、コネクティビティ1321が、画像や音声の出力デバイス(モニタやスピーカ等)を有するようにしてもよい。
【0503】
カメラ1322は、被写体を撮像し、被写体の画像データを得る機能を有するモジュールである。カメラ1322の撮像により得られた画像データは、例えば、ビデオプロセッサ1332に供給されて符号化される。
【0504】
センサ1323は、例えば、音声センサ、超音波センサ、光センサ、照度センサ、赤外線センサ、イメージセンサ、回転センサ、角度センサ、角速度センサ、速度センサ、加速度センサ、傾斜センサ、磁気識別センサ、衝撃センサ、温度センサ等、任意のセンサ機能を有するモジュールである。センサ1323により検出されたデータは、例えば、アプリケーションプロセッサ1331に供給されてアプリケーション等により利用される。
【0505】
以上においてモジュールとして説明した構成をプロセッサとして実現するようにしてもよいし、逆にプロセッサとして説明した構成をモジュールとして実現するようにしてもよい。
【0506】
以上のような構成のビデオセット1300において、後述するようにビデオプロセッサ1332に本技術を適用することができる。したがって、ビデオセット1300は、本技術を適用したセットとして実施することができる。
【0507】
(ビデオプロセッサの構成例)
図92は、本技術を適用したビデオプロセッサ1332(
図91)の概略的な構成の一例を示している。
【0508】
図92の例の場合、ビデオプロセッサ1332は、ビデオ信号およびオーディオ信号の入力を受けてこれらを所定の方式で符号化する機能と、符号化されたビデオデータおよびオーディオデータを復号し、ビデオ信号およびオーディオ信号を再生出力する機能とを有する。
【0509】
図92に示されるように、ビデオプロセッサ1332は、ビデオ入力処理部1401、第1画像拡大縮小部1402、第2画像拡大縮小部1403、ビデオ出力処理部1404、フレームメモリ1405、およびメモリ制御部1406を有する。また、ビデオプロセッサ1332は、エンコード・デコードエンジン1407、ビデオES(Elementary Stream)バッファ1408Aおよび1408B、並びに、オーディオESバッファ1409Aおよび1409Bを有する。さらに、ビデオプロセッサ1332は、オーディオエンコーダ1410、オーディオデコーダ1411、多重化部(MUX(Multiplexer))1412、逆多重化部(DMUX(Demultiplexer))1413、およびストリームバッファ1414を有する。
【0510】
ビデオ入力処理部1401は、例えばコネクティビティ1321(
図91)等から入力されたビデオ信号を取得し、デジタル画像データに変換する。第1画像拡大縮小部1402は、画像データに対してフォーマット変換や画像の拡大縮小処理等を行う。第2画像拡大縮小部1403は、画像データに対して、ビデオ出力処理部1404を介して出力する先でのフォーマットに応じて画像の拡大縮小処理を行ったり、第1画像拡大縮小部1402と同様のフォーマット変換や画像の拡大縮小処理等を行ったりする。ビデオ出力処理部1404は、画像データに対して、フォーマット変換やアナログ信号への変換等を行って、再生されたビデオ信号として例えばコネクティビティ1321(
図91)等に出力する。
【0511】
フレームメモリ1405は、ビデオ入力処理部1401、第1画像拡大縮小部1402、第2画像拡大縮小部1403、ビデオ出力処理部1404、およびエンコード・デコードエンジン1407によって共用される画像データ用のメモリである。フレームメモリ1405は、例えばDRAM等の半導体メモリとして実現される。
【0512】
メモリ制御部1406は、エンコード・デコードエンジン1407からの同期信号を受けて、アクセス管理テーブル1406Aに書き込まれたフレームメモリ1405へのアクセススケジュールに従ってフレームメモリ1405に対する書き込み・読み出しのアクセスを制御する。アクセス管理テーブル1406Aは、エンコード・デコードエンジン1407、第1画像拡大縮小部1402、第2画像拡大縮小部1403等で実行される処理に応じて、メモリ制御部1406により更新される。
【0513】
エンコード・デコードエンジン1407は、画像データのエンコード処理、並びに、画像データが符号化されたデータであるビデオストリームのデコード処理を行う。例えば、エンコード・デコードエンジン1407は、フレームメモリ1405から読み出した画像データを符号化し、ビデオストリームとしてビデオESバッファ1408Aに順次書き込む。また、例えば、ビデオESバッファ1408Bからビデオストリームを順次読み出して復号し、画像データとしてフレームメモリ1405に順次書き込む。エンコード・デコードエンジン1407は、これらの符号化や復号において、フレームメモリ1405を作業領域として使用する。また、エンコード・デコードエンジン1407は、例えばマクロブロック毎の処理を開始するタイミングで、メモリ制御部1406に対して同期信号を出力する。
【0514】
ビデオESバッファ1408Aは、エンコード・デコードエンジン1407によって生成されたビデオストリームをバッファリングして、多重化部(MUX)1412に供給する。ビデオESバッファ1408Bは、逆多重化部(DMUX)1413から供給されたビデオストリームをバッファリングして、エンコード・デコードエンジン1407に供給する。
【0515】
オーディオESバッファ1409Aは、オーディオエンコーダ1410によって生成されたオーディオストリームをバッファリングして、多重化部(MUX)1412に供給する。オーディオESバッファ1409Bは、逆多重化部(DMUX)1413から供給されたオーディオストリームをバッファリングして、オーディオデコーダ1411に供給する。
【0516】
オーディオエンコーダ1410は、例えばコネクティビティ1321(
図91)等から入力されたオーディオ信号を例えばデジタル変換し、例えばMPEGオーディオ方式やAC3(AudioCode number 3)方式等の所定の方式で符号化する。オーディオエンコーダ1410は、オーディオ信号が符号化されたデータであるオーディオストリームをオーディオESバッファ1409Aに順次書き込む。オーディオデコーダ1411は、オーディオESバッファ1409Bから供給されたオーディオストリームを復号し、例えばアナログ信号への変換等を行って、再生されたオーディオ信号として例えばコネクティビティ1321(
図91)等に供給する。
【0517】
多重化部(MUX)1412は、ビデオストリームとオーディオストリームとを多重化する。この多重化の方法(すなわち、多重化により生成されるビットストリームのフォーマット)は任意である。また、この多重化の際に、多重化部(MUX)1412は、所定のヘッダ情報等をビットストリームに付加することもできる。つまり、多重化部(MUX)1412は、多重化によりストリームのフォーマットを変換することができる。例えば、多重化部(MUX)1412は、ビデオストリームとオーディオストリームとを多重化することにより、転送用のフォーマットのビットストリームであるトランスポートストリームに変換する。また、例えば、多重化部(MUX)1412は、ビデオストリームとオーディオストリームとを多重化することにより、記録用のファイルフォーマットのデータ(ファイルデータ)に変換する。
【0518】
逆多重化部(DMUX)1413は、多重化部(MUX)1412による多重化に対応する方法で、ビデオストリームとオーディオストリームとが多重化されたビットストリームを逆多重化する。つまり、逆多重化部(DMUX)1413は、ストリームバッファ1414から読み出されたビットストリームからビデオストリームとオーディオストリームとを抽出する(ビデオストリームとオーディオストリームとを分離する)。つまり、逆多重化部(DMUX)1413は、逆多重化によりストリームのフォーマットを変換(多重化部(MUX)1412による変換の逆変換)することができる。例えば、逆多重化部(DMUX)1413は、例えばコネクティビティ1321やブロードバンドモデム1333等(いずれも
図91)から供給されたトランスポートストリームを、ストリームバッファ1414を介して取得し、逆多重化することにより、ビデオストリームとオーディオストリームとに変換することができる。また、例えば、逆多重化部(DMUX)1413は、例えばコネクティビティ1321により(
図91)各種記録媒体から読み出されたファイルデータを、ストリームバッファ1414を介して取得し、逆多重化することにより、ビデオストリームとオーディオストリームとに変換することができる。
【0519】
ストリームバッファ1414は、ビットストリームをバッファリングする。例えば、ストリームバッファ1414は、多重化部(MUX)1412から供給されたトランスポートストリームをバッファリングし、所定のタイミングにおいて、若しくは外部からの要求等に基づいて、例えばコネクティビティ1321やブロードバンドモデム1333(いずれも
図91)等に供給する。
【0520】
また、例えば、ストリームバッファ1414は、多重化部(MUX)1412から供給されたファイルデータをバッファリングし、所定のタイミングにおいて、若しくは外部からの要求等に基づいて、例えばコネクティビティ1321(
図91)等に供給し、各種記録媒体に記録させる。
【0521】
さらに、ストリームバッファ1414は、例えばコネクティビティ1321やブロードバンドモデム1333等(いずれも
図91)を介して取得したトランスポートストリームをバッファリングし、所定のタイミングにおいて、若しくは外部からの要求等に基づいて、逆多重化部(DMUX)1413に供給する。
【0522】
また、ストリームバッファ1414は、例えばコネクティビティ1321(
図91)等において各種記録媒体から読み出されたファイルデータをバッファリングし、所定のタイミングにおいて、若しくは外部からの要求等に基づいて、逆多重化部(DMUX)1413に供給する。
【0523】
次に、このような構成のビデオプロセッサ1332の動作の例について説明する。例えば、コネクティビティ1321(
図91)等からビデオプロセッサ1332に入力されたビデオ信号は、ビデオ入力処理部1401において4:2:2Y/Cb/Cr方式等の所定の方式のデジタル画像データに変換され、フレームメモリ1405に順次書き込まれる。このデジタル画像データは、第1画像拡大縮小部1402または第2画像拡大縮小部1403に読み出されて、4:2:0Y/Cb/Cr方式等の所定の方式へのフォーマット変換および拡大縮小処理が行われ、再びフレームメモリ1405に書き込まれる。この画像データは、エンコード・デコードエンジン1407によって符号化され、ビデオストリームとしてビデオESバッファ1408Aに書き込まれる。
【0524】
また、コネクティビティ1321(
図91)等からビデオプロセッサ1332に入力されたオーディオ信号は、オーディオエンコーダ1410によって符号化され、オーディオストリームとして、オーディオESバッファ1409Aに書き込まれる。
【0525】
ビデオESバッファ1408Aのビデオストリームと、オーディオESバッファ1409Aのオーディオストリームは、多重化部(MUX)1412に読み出されて多重化され、トランスポートストリーム若しくはファイルデータ等に変換される。多重化部(MUX)1412により生成されたトランスポートストリームは、ストリームバッファ1414にバッファされた後、例えばコネクティビティ1321やブロードバンドモデム1333(いずれも
図91)等を介して外部ネットワークに出力される。また、多重化部(MUX)1412により生成されたファイルデータは、ストリームバッファ1414にバッファされた後、例えばコネクティビティ1321(
図91)等に出力され、各種記録媒体に記録される。
【0526】
また、例えばコネクティビティ1321やブロードバンドモデム1333(いずれも
図91)等を介して外部ネットワークからビデオプロセッサ1332に入力されたトランスポートストリームは、ストリームバッファ1414にバッファされた後、逆多重化部(DMUX)1413により逆多重化される。また、例えばコネクティビティ1321(
図91)等において各種記録媒体から読み出され、ビデオプロセッサ1332に入力されたファイルデータは、ストリームバッファ1414にバッファされた後、逆多重化部(DMUX)1413により逆多重化される。つまり、ビデオプロセッサ1332に入力されたトランスポートストリームまたはファイルデータは、逆多重化部(DMUX)1413によりビデオストリームとオーディオストリームとに分離される。
【0527】
オーディオストリームは、オーディオESバッファ1409Bを介してオーディオデコーダ1411に供給され、復号されてオーディオ信号が再生される。また、ビデオストリームは、ビデオESバッファ1408Bに書き込まれた後、エンコード・デコードエンジン1407により順次読み出されて復号されてフレームメモリ1405に書き込まれる。復号された画像データは、第2画像拡大縮小部1403によって拡大縮小処理されて、フレームメモリ1405に書き込まれる。そして、復号された画像データは、ビデオ出力処理部1404に読み出されて、4:2:2Y/Cb/Cr方式等の所定の方式にフォーマット変換され、さらにアナログ信号に変換されて、ビデオ信号が再生出力される。
【0528】
このように構成されるビデオプロセッサ1332に本技術を適用する場合、エンコード・デコードエンジン1407に、上述した各実施形態に係る本技術を適用すればよい。つまり、例えば、エンコード・デコードエンジン1407が、第1実施の形態に係る符号化装置や復号装置の機能を有するようにすればよい。このようにすることにより、ビデオプロセッサ1332は、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0529】
なお、エンコード・デコードエンジン1407において、本技術(すなわち、上述した各実施形態に係る画像符号化装置や画像復号装置の機能)は、論理回路等のハードウエアにより実現するようにしてもよいし、組み込みプログラム等のソフトウエアにより実現するようにしてもよいし、それらの両方により実現するようにしてもよい。
【0530】
(ビデオプロセッサの他の構成例)
図93は、本技術を適用したビデオプロセッサ1332(
図91)の概略的な構成の他の例を示している。
図93の例の場合、ビデオプロセッサ1332は、ビデオデータを所定の方式で符号化・復号する機能を有する。
【0531】
より具体的には、
図93に示されるように、ビデオプロセッサ1332は、制御部1511、ディスプレイインタフェース1512、ディスプレイエンジン1513、画像処理エンジン1514、および内部メモリ1515を有する。また、ビデオプロセッサ1332は、コーデックエンジン1516、メモリインタフェース1517、多重化・逆多重化部(MUX DMUX)1518、ネットワークインタフェース1519、およびビデオインタフェース1520を有する。
【0532】
制御部1511は、ディスプレイインタフェース1512、ディスプレイエンジン1513、画像処理エンジン1514、およびコーデックエンジン1516等、ビデオプロセッサ1332内の各処理部の動作を制御する。
【0533】
図93に示されるように、制御部1511は、例えば、メインCPU1531、サブCPU1532、およびシステムコントローラ1533を有する。メインCPU1531は、ビデオプロセッサ1332内の各処理部の動作を制御するためのプログラム等を実行する。メインCPU1531は、そのプログラム等に従って制御信号を生成し、各処理部に供給する(つまり、各処理部の動作を制御する)。サブCPU1532は、メインCPU1531の補助的な役割を果たす。例えば、サブCPU1532は、メインCPU1531が実行するプログラム等の子プロセスやサブルーチン等を実行する。システムコントローラ1533は、メインCPU1531およびサブCPU1532が実行するプログラムを指定する等、メインCPU1531およびサブCPU1532の動作を制御する。
【0534】
ディスプレイインタフェース1512は、制御部1511の制御の下、画像データを例えばコネクティビティ1321(
図91)等に出力する。例えば、ディスプレイインタフェース1512は、デジタルデータの画像データをアナログ信号に変換し、再生されたビデオ信号として、またはデジタルデータの画像データのまま、コネクティビティ1321(
図91)のモニタ装置等に出力する。
【0535】
ディスプレイエンジン1513は、制御部1511の制御の下、画像データに対して、その画像を表示させるモニタ装置等のハードウエアスペックに合わせるように、フォーマット変換、サイズ変換、色域変換等の各種変換処理を行う。
【0536】
画像処理エンジン1514は、制御部1511の制御の下、画像データに対して、例えば画質改善のためのフィルタ処理等、所定の画像処理を施す。
【0537】
内部メモリ1515は、ディスプレイエンジン1513、画像処理エンジン1514、およびコーデックエンジン1516により共用される、ビデオプロセッサ1332の内部に設けられたメモリである。内部メモリ1515は、例えば、ディスプレイエンジン1513、画像処理エンジン1514、およびコーデックエンジン1516の間で行われるデータの授受に利用される。例えば、内部メモリ1515は、ディスプレイエンジン1513、画像処理エンジン1514、またはコーデックエンジン1516から供給されるデータを格納し、必要に応じて(例えば、要求に応じて)、そのデータを、ディスプレイエンジン1513、画像処理エンジン1514、またはコーデックエンジン1516に供給する。この内部メモリ1515は、どのような記憶デバイスにより実現するようにしてもよいが、一般的にブロック単位の画像データやパラメータ等といった小容量のデータの格納に利用することが多いので、例えばSRAM(Static Random Access Memory)のような比較的(例えば外部メモリ1312と比較して)小容量だが応答速度が高速な半導体メモリにより実現するのが望ましい。
【0538】
コーデックエンジン1516は、画像データの符号化や復号に関する処理を行う。このコーデックエンジン1516が対応する符号化・復号の方式は任意であり、その数は1つであってもよいし、複数であってもよい。例えば、コーデックエンジン1516は、複数の符号化・復号方式のコーデック機能を備え、その中から選択されたもので画像データの符号化若しくは符号化データの復号を行うようにしてもよい。
【0539】
図93に示される例において、コーデックエンジン1516は、コーデックに関する処理の機能ブロックとして、例えば、MPEG-2 Video1541、AVC/H.2641542、HEVC/H.2651543、HEVC/H.265(Scalable)1544、HEVC/H.265(Multi-view)1545、およびMPEG-DASH1551を有する。
【0540】
MPEG-2 Video1541は、画像データをMPEG-2方式で符号化したり復号したりする機能ブロックである。AVC/H.2641542は、画像データをAVC方式で符号化したり復号したりする機能ブロックである。HEVC/H.2651543は、画像データをHEVC方式で符号化したり復号したりする機能ブロックである。HEVC/H.265(Scalable)1544は、画像データをHEVC方式でスケーラブル符号化したりスケーラブル復号したりする機能ブロックである。HEVC/H.265(Multi-view)1545は、画像データをHEVC方式で多視点符号化したり多視点復号したりする機能ブロックである。
【0541】
MPEG-DASH1551は、画像データをMPEG-DASH(MPEG-Dynamic Adaptive Streaming over HTTP)方式で送受信する機能ブロックである。MPEG-DASHは、HTTP(HyperText Transfer Protocol)を使ってビデオのストリーミングを行う技術であり、予め用意された解像度等が互いに異なる複数の符号化データの中から適切なものをセグメント単位で選択し伝送することを特徴の1つとする。MPEG-DASH1551は、規格に準拠するストリームの生成やそのストリームの伝送制御等を行い、画像データの符号化・復号については、上述したMPEG-2 Video1541乃至HEVC/H.265(Multi-view)1545を利用する。
【0542】
メモリインタフェース1517は、外部メモリ1312用のインタフェースである。画像処理エンジン1514やコーデックエンジン1516から供給されるデータは、メモリインタフェース1517を介して外部メモリ1312に供給される。また、外部メモリ1312から読み出されたデータは、メモリインタフェース1517を介してビデオプロセッサ1332(画像処理エンジン1514若しくはコーデックエンジン1516)に供給される。
【0543】
多重化・逆多重化部(MUX DMUX)1518は、符号化データのビットストリーム、画像データ、ビデオ信号等、画像に関する各種データの多重化や逆多重化を行う。この多重化・逆多重化の方法は任意である。例えば、多重化の際に、多重化・逆多重化部(MUX DMUX)1518は、複数のデータを1つにまとめるだけでなく、所定のヘッダ情報等をそのデータに付加することもできる。また、逆多重化の際に、多重化・逆多重化部(MUX DMUX)1518は、1つのデータを複数に分割するだけでなく、分割した各データに所定のヘッダ情報等を付加することもできる。つまり、多重化・逆多重化部(MUX DMUX)1518は、多重化・逆多重化によりデータのフォーマットを変換することができる。例えば、多重化・逆多重化部(MUX DMUX)1518は、ビットストリームを多重化することにより、転送用のフォーマットのビットストリームであるトランスポートストリームや、記録用のファイルフォーマットのデータ(ファイルデータ)に変換することができる。もちろん、逆多重化によりその逆変換も可能である。
【0544】
ネットワークインタフェース1519は、例えばブロードバンドモデム1333やコネクティビティ1321(いずれも
図91)等向けのインタフェースである。ビデオインタフェース1520は、例えばコネクティビティ1321やカメラ1322(いずれも
図91)等向けのインタフェースである。
【0545】
次に、このようなビデオプロセッサ1332の動作の例について説明する。例えば、例えばコネクティビティ1321やブロードバンドモデム1333(いずれも
図91)等を介して外部ネットワークからトランスポートストリームを受信すると、そのトランスポートストリームは、ネットワークインタフェース1519を介して多重化・逆多重化部(MUX DMUX)1518に供給されて逆多重化され、コーデックエンジン1516により復号される。コーデックエンジン1516の復号により得られた画像データは、例えば、画像処理エンジン1514により所定の画像処理が施され、ディスプレイエンジン1513により所定の変換が行われ、ディスプレイインタフェース1512を介して例えばコネクティビティ1321(
図91)等に供給され、その画像がモニタに表示される。また、例えば、コーデックエンジン1516の復号により得られた画像データは、コーデックエンジン1516により再符号化され、多重化・逆多重化部(MUX DMUX)1518により多重化されてファイルデータに変換され、ビデオインタフェース1520を介して例えばコネクティビティ1321(
図91)等に出力され、各種記録媒体に記録される。
【0546】
さらに、例えば、コネクティビティ1321(
図91)等により図示せぬ記録媒体から読み出された、画像データが符号化された符号化データのファイルデータは、ビデオインタフェース1520を介して多重化・逆多重化部(MUX DMUX)1518に供給されて逆多重化され、コーデックエンジン1516により復号される。コーデックエンジン1516の復号により得られた画像データは、画像処理エンジン1514により所定の画像処理が施され、ディスプレイエンジン1513により所定の変換が行われ、ディスプレイインタフェース1512を介して例えばコネクティビティ1321(
図91)等に供給され、その画像がモニタに表示される。また、例えば、コーデックエンジン1516の復号により得られた画像データは、コーデックエンジン1516により再符号化され、多重化・逆多重化部(MUX DMUX)1518により多重化されてトランスポートストリームに変換され、ネットワークインタフェース1519を介して例えばコネクティビティ1321やブロードバンドモデム1333(いずれも
図91)等に供給され図示せぬ他の装置に伝送される。
【0547】
なお、ビデオプロセッサ1332内の各処理部の間での画像データやその他のデータの授受は、例えば、内部メモリ1515や外部メモリ1312を利用して行われる。また、パワーマネージメントモジュール1313は、例えば制御部1511への電力供給を制御する。
【0548】
このように構成されるビデオプロセッサ1332に本技術を適用する場合、コーデックエンジン1516に、上述した各実施形態に係る本技術を適用すればよい。つまり、例えば、コーデックエンジン1516が、第1実施の形態に係る符号化装置や復号装置を実現する機能ブロックを有するようにすればよい。さらに、例えば、コーデックエンジン1516が、このようにすることにより、ビデオプロセッサ1332は、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0549】
なお、コーデックエンジン1516において、本技術(すなわち、上述した各実施形態に係る画像符号化装置や画像復号装置の機能)は、論理回路等のハードウエアにより実現するようにしてもよいし、組み込みプログラム等のソフトウエアにより実現するようにしてもよいし、それらの両方により実現するようにしてもよい。
【0550】
以上にビデオプロセッサ1332の構成を2例示したが、ビデオプロセッサ1332の構成は任意であり、上述した2例以外のものであってもよい。また、このビデオプロセッサ1332は、1つの半導体チップとして構成されるようにしてもよいが、複数の半導体チップとして構成されるようにしてもよい。例えば、複数の半導体を積層する3次元積層LSIとしてもよい。また、複数のLSIにより実現されるようにしてもよい。
【0551】
(装置への適用例)
ビデオセット1300は、画像データを処理する各種装置に組み込むことができる。例えば、ビデオセット1300は、テレビジョン装置900(
図84)、携帯電話機920(
図85)、記録再生装置940(
図86)、撮像装置960(
図87)等に組み込むことができる。ビデオセット1300を組み込むことにより、その装置は、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0552】
また、ビデオセット1300は、例えば、
図88のデータ伝送システム1000におけるパーソナルコンピュータ1004、AV機器1005、タブレットデバイス1006、および携帯電話機1007等の端末装置、
図89のデータ伝送システム1100における放送局1101および端末装置1102、並びに、
図90の撮像システム1200における撮像装置1201およびスケーラブル符号化データ記憶装置1202等にも組み込むことができる。ビデオセット1300を組み込むことにより、その装置は、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0553】
なお、上述したビデオセット1300の各構成の一部であっても、ビデオプロセッサ1332を含むものであれば、本技術を適用した構成として実施することができる。例えば、ビデオプロセッサ1332のみを本技術を適用したビデオプロセッサとして実施することができる。また、例えば、上述したように点線1341により示されるプロセッサやビデオモジュール1311等を本技術を適用したプロセッサやモジュール等として実施することができる。さらに、例えば、ビデオモジュール1311、外部メモリ1312、パワーマネージメントモジュール1313、およびフロントエンドモジュール1314を組み合わせ、本技術を適用したビデオユニット1361として実施することもできる。いずれの構成の場合であっても、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0554】
つまり、ビデオプロセッサ1332を含むものであればどのような構成であっても、ビデオセット1300の場合と同様に、画像データを処理する各種装置に組み込むことができる。例えば、ビデオプロセッサ1332、点線1341により示されるプロセッサ、ビデオモジュール1311、または、ビデオユニット1361を、テレビジョン装置900(
図84)、携帯電話機920(
図85)、記録再生装置940(
図86)、撮像装置960(
図87)、
図88のデータ伝送システム1000におけるパーソナルコンピュータ1004、AV機器1005、タブレットデバイス1006、および携帯電話機1007等の端末装置、
図89のデータ伝送システム1100における放送局1101および端末装置1102、並びに、
図90の撮像システム1200における撮像装置1201およびスケーラブル符号化データ記憶装置1202等に組み込むことができる。そして、本技術を適用したいずれかの構成を組み込むことにより、その装置は、ビデオセット1300の場合と同様に、
図6乃至
図13を参照して上述した効果と同様の効果を得ることができる。
【0555】
なお、本明細書では、変換情報、DR変換情報、近似ニーポイントインデックスなどの各種情報が、符号化データに多重化されて、符号化側から復号側へ伝送される例について説明した。しかしながら、これら情報を伝送する手法はかかる例に限定されない。例えば、これら情報は、符号化データに多重化されることなく、符号化データと関連付けられた別個のデータとして伝送され又は記録されてもよい。ここで、「関連付ける」という用語は、ビットストリームに含まれる画像(スライスやブロックなど、画像の一部であってもよい)と当該画像に対応する情報とを復号時にリンクさせ得るようにすることを意味する。即ち、情報は、符号化データとは別の伝送路上で伝送されてもよい。また、情報は、符号化データとは別の記録媒体(又は同一の記録媒体の別の記録エリア)に記録されてもよい。さらに、情報と符号化データとは、例えば、複数フレーム、1フレーム、又はフレーム内の一部分などの任意の単位で互いに関連付けられてよい。
【0556】
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
【0557】
本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0558】
また、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
【0559】
例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
【0560】
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0561】
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0562】
本開示は、以下のような構成もとることができる。
【0563】
(1)
第1のダイナミックレンジの輝度の画像である第1の画像の符号化データと、前記画像の輝度のダイナミックレンジの前記第1のダイナミックレンジから第2のダイナミックレンジへの変換に関する情報である変換情報とを含む符号化ストリームから、前記符号化データと前記変換情報を抽出する抽出部と、
前記抽出部により抽出された前記符号化データを復号し、前記第1の画像を生成する復号部と
を備える復号装置。
(2)
前記抽出部により抽出された前記変換情報に基づいて、前記復号部により生成された前記第1の画像を、前記第2のダイナミックレンジの輝度の前記画像である第2の画像に変換する変換部と
をさらに備える
前記(1)に記載の復号装置。
(3)
前記変換は、前記第1の画像の輝度をニー変換することにより行われる
ように構成された
前記(1)または(2)に記載の復号装置。
(4)
前記変換情報は、前記第1のダイナミックレンジのニー変換対象の輝度の範囲を表す変換前情報と、その範囲に対応する前記第2のダイナミックレンジの輝度の範囲を表す変換後情報とを含む
ように構成された
前記(3)に記載の復号装置。
(5)
前記変換前情報は、前記第1のダイナミックレンジの同一の変換率でニー変換される輝度の範囲を表し、
前記変換情報は、複数の前記変換前情報と前記変換後情報のペアを含む
ように構成された
前記(4)に記載の復号装置。
(6)
前記抽出部により抽出された前記変換情報に含まれる複数の前記ペアから所定数の前記ペアを、前記変換情報に含まれる順に選択する選択部
をさらに備える
前記(5)に記載の復号装置。
(7)
前記ペアの重要度の高い順を表す重要度情報に基づいて、前記変換情報に含まれる複数の前記ペアから所定数の前記ペアを選択する選択部
をさらに備え、
前記抽出部は、前記符号化ストリームに含まれる前記重要度情報を抽出する
ように構成された
前記(5)に記載の復号装置。
(8)
前記選択部により選択された前記所定数のペアを伝送する伝送部
をさらに備える
前記(6)または(7)に記載の復号装置。
(9)
前記変換情報は、前記第1の画像の輝度の最大値と前記第2の画像の輝度の最大値の少なくとも一方を含む
ように構成された
前記(1)乃至(8)のいずれかに記載の復号装置。
(10)
前記変換情報は、前記第1の画像を表示する表示部の明るさの想定値と、前記第2の画像を表示する表示部の明るさの想定値の少なくとも一方を含む
ように構成された
前記(1)乃至(9)のいずれかに記載の復号装置。
(11)
復号装置が、
第1のダイナミックレンジの輝度の画像である第1の画像の符号化データと、前記画像の輝度のダイナミックレンジの前記第1のダイナミックレンジから第2のダイナミックレンジへの変換に関する情報である変換情報とを含む符号化ストリームから、前記符号化データと前記変換情報を抽出する抽出ステップと、
前記抽出ステップの処理により抽出された前記符号化データを復号し、前記第1の画像を生成する復号ステップと
を含む復号方法。
(12)
画像の輝度のダイナミックレンジの第1のダイナミックレンジから第2のダイナミックレンジへの変換に関する情報である変換情報を設定する設定部と、
前記第1のダイナミックレンジの輝度の前記画像である第1の画像を符号化して符号化データを生成する符号化部と、
前記設定部により設定された前記変換情報と、前記符号化部により生成された前記第1の画像の符号化データとを含む符号化ストリームを伝送する伝送部と
を備える符号化装置。
(13)
前記変換は、前記第1の画像の輝度をニー変換することにより行われる
ように構成された
前記(12)に記載の符号化装置。
(14)
前記変換情報は、前記第1のダイナミックレンジのニー変換対象の輝度の範囲を表す変換前情報と、その範囲に対応する前記第2のダイナミックレンジの輝度の範囲を表す変換後情報とを含む
ように構成された
前記(13)に記載の符号化装置。
(15)
前記変換前情報は、前記第1のダイナミックレンジの同一の変換率でニー変換される輝度の範囲を表し、
前記変換情報は、複数の前記変換前情報と前記変換後情報のペアを含む
ように構成された
前記(14)に記載の符号化装置。
(16)
前記変換情報は、重要度の高い順に複数の前記変換前情報と前記変換後情報のペアを含む
ように構成された
前記(15)に記載の復号装置。
(17)
前記伝送部は、前記ペアの重要度の高い順を表す重要度情報を伝送する
ように構成された
前記(15)に記載の復号装置。
(18)
前記変換情報は、前記第1の画像の輝度の最大値と前記第2の画像の輝度の最大値の少なくとも一方を含む
ように構成された
前記(12)乃至(17)のいずれかに記載の符号化装置。
(19)
前記変換情報は、前記第1の画像を表示する表示部の明るさの想定値と、前記第2の画像を表示する表示部の明るさの想定値の少なくとも一方を含む
ように構成された
前記(12)乃至(18)のいずれかに記載の符号化装置。
(20)
符号化装置が、
画像の輝度のダイナミックレンジの第1のダイナミックレンジから第2のダイナミックレンジへの変換に関する情報である変換情報を設定する設定ステップと、
前記第1のダイナミックレンジの輝度の前記画像である第1の画像を符号化して符号化データを生成する符号化ステップと、
前記設定ステップの処理により設定された前記変換情報と、前記符号化ステップの処理により生成された前記第1の画像の符号化データとを含む符号化ストリームを伝送する伝送ステップと
を含む符号化方法。