【実施例】
【0077】
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0078】
(実施例1)
図1は、リチウムイオン電池の正極の構成を説明する図であり、
図1(a)は正極の平面図、
図1(b)は正極の側面図である。
図2は、リチウムイオン電池の負極の構成を説明する図であり、
図2(a)は負極の平面図、
図2(b)は負極の側面図である。
図3は、リチウムイオン電池の捲回後の電極群の構成を説明する断面図である。
【0079】
先ず、
図1を参照して正極の作製について説明する。LiMn
2O
4を91質量%、導電補助材としてアセチレンブラックを5質量%、バインダーとしてポリフッ化ビニリデン4質量%とを混合したものに、N−メチルピロリドンを加えてさらに混合して正極スラリーを作製した。これをドクターブレード法により集電体となる厚さ20μmのAl箔2の両面にロールプレス処理後の厚さが160μmになるように塗布し、120℃で5分間の乾燥を行い、プレス工程を経て正極活物質塗布部3、4(正極活物質層14)を形成した。その際、両端部にはいずれの面にも正極活物質が塗布されていない正極活物質非塗布部5を設け、一方の正極活物質非塗布部5に正極導電タブ6を設けた。なお、正極活物質塗布部3、4のうち、タブ6を設けた正極活物質非塗布部5に隣り合う部分は、片面のみ塗布されている(正極活物質片面塗布部4)。以上のプロセスを経て正極1を得た。
【0080】
次に、
図2を参照して負極の作製について説明する。黒鉛94質量%、導電補助剤としてアセチレンブラックを1質量%、バインダーとしてポリフッ化ビニリデン5質量%とを混合し、N−メチルピロリドンを加えてさらに混合して負極スラリーを作製した。これを集電体となる厚さ10μmのCu箔8の両面にロールプレス処理後の厚さが120μmとなるように塗布し、120℃で5分間の乾燥を行い、プレス工程を経て負極活物質塗布部9、10(負極活物質層15)を形成した。その際、両端部にはいずれの面にも負極極活物質が塗布されていない負極活物質非塗布部11を設け、一方の負極活物質非塗布部11に負極導電タブ12を設けた。なお、負極活物質塗布部9、10のうち、タブ12を設けた負極活物質非塗布部11に隣り合う部分は、片面のみ塗布されている(負極活物質片面塗布部10)。以上のプロセスを経て負極7を得た。
【0081】
次に、
図3を参照して電極群の作製について説明する。膜厚25μm、気孔率55%の親水処理を施したポリプロピレン微多孔膜からなるセパレータ13を二枚重ねて端部を溶着して切断加工した部分を捲回装置の巻き芯に固定し巻きとり、その際、正極1(
図1)、及び負極7(
図2)の先端を導入した。正極1は、正極導電タブ6側の端部とは反対側の端部を先端として導入し、負極7は、負極導電タブ12側の端部を先端として導入した。負極は二枚のセパレータの間に配置し、正極は一方のセパレータの外側上面にそれぞれ配置して巻き芯を回転させ捲回し、電極群(ジェリーロール)を形成した。
【0082】
次に、上記の電極群を、エンボス加工したラミネート外装体に収容し、正極導電タブ6と負極導電タブ12を引き出し、ラミネート外装体の1辺を折り返し、注液用の部分を残して熱融着を行った。
【0083】
ゲル電解質用ポリマーAは、次のようにして形成した。エチルアクリレート74質量部、及び(3−エチル−3−オキセタニル)メチルメタクリレート26質量部を反応容器へ仕込み、反応溶剤としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液(EC/DEC=30/70(体積比))、及び重合開始剤としてN,N’−アゾビスイソブチロニトリルをモノマー重量に対して2500ppm加え、ドライ窒素ガスを導入しながら65〜70℃で加熱し、反応後、室温まで冷却した。その後、希釈溶剤としてECとDECの混合液(EC/DEC=30/70(体積比))を加え、全体が均一になるまで撹拌して、GPC(ゲルパーミエーションクロマトグラフィ)(標準試料:標準ポリスチレン)による重量平均分子量20万の濃度4.0質量%のポリマー溶液を得た。
【0084】
上記のポリマー濃度が2.0質量%、SEI形成剤として1,3−プロパンスルトン(化合物a)の濃度が3.0質量%、LiPF
6の濃度が1.0mol/Lとなるように上記の希釈溶剤を用いて配合して、プレゲル溶液を作製した。このプレゲル溶液の粘度は30cP(3cPa・s)であった。
【0085】
次に、このプレゲル溶液を、前記ラミネート外装体の注液部分から注入し、チャンバー内にて真空含浸(圧力:10kPa(abs))を行い、注液部分を真空封止することでプレ電池を得た。
【0086】
得られたプレ電池を、定電流定電圧充電(CC−CV充電、上限電圧3.0V、電流0.2C、CV時間0.5時間)を行った。
【0087】
続いて、次のようにして再含浸処理を行った。プレ電池のラミネートの融着部分の一部を開放し、チャンバー内で10kPa(abs)に到達した後1分間保持し大気開放を行うことを3回繰り返し(減圧再含浸)、その後、開放部分を再度真空封止(再封止)した。
【0088】
続いて、CC−CV充電(上限電圧4.2V、電流0.2C、CV時間1.5時間)にて充電を行った。
【0089】
続いて、45℃恒温槽内にて7日間静置(エージング)させることで、プレゲル溶液中のポリマーの架橋反応を行ってポリマーゲル電解質を形成し、目的のポリマー電池を得た。
【0090】
得られた電池のレート特性として、20℃での0.2C容量に対する3C容量の割合を表1に示した。
【0091】
得られた電池のサイクル試験を次のようにして行った。CC−CV充電(上限電圧4.2V、電流1C、CV時間1.5時間)と、CC放電(下限電圧3.0V、電流1C)を、いずれも45℃で1000サイクル実施した。1000サイクル後の容量維持率として、1サイクル目の放電容量に対する1000サイクル目の放電容量の割合を表1に示した。
【0092】
本実施例並びに以下の実施例および比較例により得られた電池について、TEM(transmission electron microscope)により、電極活物質上に形成されたポリマー層の観察を次の通り行った。前記プレ電池の充電後に45℃恒温槽内にて7日間静置させてポリマーの架橋反応を行って得た電池を1V以下まで放電処理を行い、その後、Arガス中にてこの電池を分解し、電極を所定の大きさに切り出した。この電極片をジエチルカーボネート(DEC)に1分間浸漬させて支持電解質および溶媒成分を洗浄し、その後、1時間以上乾燥させた。この電極片を、FIB(focused ion beam)法により薄片化処理を行い、得られた薄片試料についてTEM観察を行った。
【0093】
また、SIM(scanning ion microscope)により、電極表面の観察を次の通り行った。上記と同様にして得た電極片をジエチルカーボネート(DEC)に1分間浸漬させて支持電解質および溶媒成分を洗浄し、その後、1時間以上乾燥させた。得られた電極片についてSIM観察を行った。
【0094】
(実施例2)
再含浸処理として、チャンバー内で0.5kPa(abs)に到達した後1分間保持し大気開放を行うことを3回繰り返すこと(減圧再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0095】
(実施例3)
再含浸処理として、チャンバー内で0.5kPa(abs)に到達した後1分間保持し大気開放を行うことを1回行うこと(減圧再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0096】
(実施例4)
再含浸処理として、チャンバー内で0.2kPa(abs)に到達した後1分間保持し大気開放を行うことを3回繰り返すこと(減圧再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0097】
(実施例5)
再含浸処理として、プレ電池に周波数10kHzの超音波振動を30秒間与えること(超音波再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0098】
(実施例6)
再含浸処理として、プレ電池に周波数10kHzの超音波振動を3分間与えること(超音波再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0099】
(実施例7)
再含浸処理として、プレ電池に周波数100kHzの超音波振動を3分間与えること(超音波再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0100】
(実施例8)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池に周波数100kHzの超音波振動を3分間与えること(超音波再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0101】
(実施例9)
再含浸処理として、プレ電池に周波数100kHzの超音波振動を与えながら減圧して0.2kPa(abs)に到達した後1分間保持し大気開放を行うことを3回繰り返すこと(超音波減圧再含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0102】
(実施例10)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池の平面に対し、板を設置して0.5kgf/cm
2(49kPa)の圧力を1秒間印加することを30回繰り返すこと(加圧含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0103】
(実施例11)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池の平面に対し、板を設置して2kgf/cm
2(196kPa)の圧力を1秒間印加することを30回繰り返すこと(加圧含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0104】
(実施例12)
再含浸処理として、プレ電池の融着部分を開放し、プレ電池の平面に対し、板を設置して2kgf/cm
2(196kPa)の圧力を1秒間印加することを30回繰り返すこと(加圧含浸)を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0105】
(実施例13)
再含浸処理として、プレ電池の融着部分を開放し、プレ電池の平面に対し、板を設置して2kgf/cm
2(196kPa)の圧力を1秒間印加することを30回繰り返し(加圧含浸)、その後、実施例4と同様にして減圧再含浸処理を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0106】
(実施例14)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池の平面に対し、ローラーを用いて0.5kgf/cm
2(49kPa)の圧力をかけながら10mm/sの速度でローラーをプレ電池の平面全体にわたって移動させることを10回行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0107】
(実施例15)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池の平面に対し、ローラーを用いて2kgf/cm
2(196kPa)の圧力をかけながら10mm/sの速度でローラーをプレ電池の平面全体にわたって移動させることを10回行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0108】
(実施例16)
再含浸処理として、プレ電池の融着部分を開放することなく、プレ電池の平面に対し、ローラーを用いて2kgf/cm
2(196kPa)の圧力をかけながら50mm/sの速度でローラーをプレ電池の平面全体にわたって移動させることを10回行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0109】
(実施例17)
再含浸処理として、プレ電池の融着部分を開放し、プレ電池の平面に対し、ローラーを用いて2kgf/cm
2(196kPa)の圧力をかけながら10mm/sの速度で移動させることを10回行い、その後、実施例4と同様にして減圧再含浸処理を行った以外は、実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0110】
(実施例18)
恒温槽内での静置(エージング)の期間を14日とした以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0111】
(実施例19)
恒温槽内での静置(エージング)の期間を21日とした以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0112】
(実施例20)
恒温槽内の温度を55℃とした以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0113】
(実施例21)
恒温槽内での静置(エージング)時のSOCを80%とした以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0114】
(実施例22)
プレゲル溶液のSEI形成剤として、1,3−プロパンスルトンに代えて、エチレンメタンジスルホネート(1,5,2,4−ジオキサジチエパン−2,2,4,4−テトラオキシド)(化合物b)を2.0質量%添加した以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0115】
(実施例23)
プレゲル溶液のSEI形成剤として、エチレンメタンジスルホネート(1,5,2,4−ジオキサジチエパン−2,2,4,4−テトラオキシド)(化合物b)を1.5質量%および1,3−プロパンスルトン(化合物a)を1.0質量%添加した以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0116】
(実施例24)
プレゲル溶液のSEI形成剤として、1,3−プロパンスルトン(化合物a)に代えて、ビス(オキサラト)ホウ酸リチウム(化合物c)を1.0質量%およびビニレンカーボネート(化合物d)を0.5質量%添加した以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表1に示した。
【0117】
(実施例25)
プレゲル溶液のSEI形成剤として、1,3−プロパンスルトン(化合物a)を添加しない以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0118】
(実施例26)
再含浸処理をしない以外は実施例1と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0119】
(実施例27)
再含浸処理をしない以外は実施例22と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0120】
(実施例28)
再含浸処理をしない以外は実施例24と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0121】
(実施例29)
本実施例では、電極上に形成するポリマーとして、ポリメチルメタクリレート(PMMA)(ポリマーB)を用い、予め電極表面に非晶質ポリマー層を形成した。具体的には、DMF(ジメチルホルムアミド)にPMMAを溶解したPMMA濃度が10質量%の溶液を調製し、この溶液を、電極群の作製前に、正極および負極上に均一に塗布し、乾燥させた。このようにして作製した正極および負極を用いた以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0122】
(比較例1)
実施例1と同様にしてプレ電池を得た後、定電流定電圧充電を行う前に、60℃恒温槽内で24時間静置することでポリマーを架橋させ、その後、定電流定電圧充電(CC−CV充電、上限電圧3.0V、電流0.2C、CV時間0.5時間)を行った。以降は、実施例9と同様にして電池を作製した(45℃恒温槽内にて7日静置も実施)。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0123】
(比較例2)
再含浸処理を実施しない以外は比較例1と同様にて電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0124】
(比較例3)
本比較例では、電極上に形成する結晶性ポリマーとして、ポリフッ化ビニリデン(PVDF)(ポリマーC)を用いた。具体的には、DMF(ジメチルホルムアミド)にPVDFを溶解したPVDF濃度が10質量%の溶液を調製し、この溶液を、電極群の作製前に、正極および負極上に均一に塗布し、乾燥させた。このようにして作製した正極および負極を用いた以外は、実施例9と同様にして電池を作製した。得られた電池について実施例1と同様にしてレート特性とサイクル特性を評価し、結果を表2に示した。
【0125】
【表1】
【0126】
【表2】
【0127】
実施例4の
図4および
図5と比較例1の
図6、
図7および
図8が示すように、本実施例においては、電極活物質上に薄い(5nm程度の)非晶質ポリマー層が形成されており、リチウムイオンのイオン伝導を阻害しないためレート特性が良好であることがわかる。これに対し、比較例1では、電極活物質上に結晶性ポリマーを含む厚い(数十nmの)ポリマー層が存在し、また電極表面側の活物質粒子間の空隙にも結晶性ポリマーが多量に存在する。そのため、レート特性が低く、十分なサイクル特性が得られないことがわかる。
【0128】
図4(実施例4のSIM像)は、電極活物質上に均一に非晶質ポリマーが形成されていることを示している(電極活物質粒子の輪郭が比較的よく見える)。これに対して、
図6(比較例1のSIM像)は、電極活物質上に結晶性ポリマーが多量に存在し、空隙には鱗片上の結晶性ポリマーが存在することを示している。
【0129】
また、
図5(実施例4のTEM像)は、電極活物質上に薄い非晶質ポリマー層(5nm程度)が形成されていることを示している。これに対して、
図7(比較例1のTEM像)は、電極活物質上に厚い結晶性ポリマー層(数十nm)が存在することを示している。さらに、
図8(比較例1のTEM像)は、電極表面側の活物質粒子間の空隙内の電極活物質上にも結晶性ポリマーが存在することを示している。
【0130】
比較例1から3においては、電極活物質表面に結晶性ポリマーや結晶性/非晶質ポリマー混在の状態からなる40nmから80nm程度の厚いポリマー層が存在したのに対し、本実施例のすべてにおいて、
図5に示すような、電極活物質表面に薄い非晶質ポリマー層が形成されることがわかった。
【0131】
実施例4および29と、比較例3との対比より、ポリマー種が変わっても非晶質ポリマー層が電極活物質表面に存在することが、結晶性ポリマー層が存在する場合に対して、レート特性に大きく影響することがわかった。
【0132】
実施例25が示すように、SEI形成剤を添加しなくても、電解質の溶媒成分であるカーボネートがSEIを形成し、良好なレート特性が得られることがわかった。
【0133】
実施例1〜24から明らかなように、SEIをさらに強固にするために、減圧再含浸、超音波再含浸、平板やローラーを用いた加圧再含浸、もしくはこれらを組み合わせることにより、良好なレート特性およびサイクル特性が得られることが分かる。また、再含浸処理において、プレ電池の融着部分の開放・再封止を実施することによりさらにレート特性およびサイクル特性が改善したことが分かる。
【0134】
このように、プレゲル溶液がゲル化しないようにプレ電池の充電を行って電極表面にSEIを形成し、その後、充電しポリマーゲル電解質を形成することで、良好なレート特性とサイクル特性が得られる。
【0135】
また、プレゲル溶液がゲル化しないようにプレ電池の充電を行って電極表面にSEIを形成し、その後、再含浸処理を行い、プレゲル溶液を均一化する(SEI形成剤を用いている場合は残留SEI形成剤も均一化する)ことができる。その後、充電し充電状態で加温静置処理(エージング)を行うことにより、ポリマーゲル電解質を形成するとともに、プレゲル溶液の細孔内への含浸が十分に行われ、均一で長期にわたり安定なSEIを形成でき、電池のレート特性およびサイクル特性が改善できる。
【0136】
以上、発明の実施の形態および実施例を参照して本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
【0137】
この出願は、2012年9月10日に出願された日本出願特願2012−198566を基礎とする優先権を主張し、その開示の全てをここに取り込む。