(58)【調査した分野】(Int.Cl.,DB名)
前記燃焼バーナは、前記火炉の角部に配置され、前記追加空気ノズルは、前記火炉における前記燃焼バーナより上方の角部に配置され、前記燃焼バーナからの燃料ガスの水平方向における吹き込み角度と、前記第1ノズルからの追加空気の水平方向における吹き込み角度とがほぼ同角度に設定されることを特徴とする請求項2に記載のボイラ。
前記第1ノズルからの追加空気の噴射量と前記第2ノズルからの追加空気の噴射量との割合を調整する空気噴射量調整装置が設けられることを特徴とする請求項1から請求項3のいずれか一項に記載のボイラ。
少なくとも前記第2ノズルからの追加空気の噴射方向を上下に調整自在な空気噴射方向上下調整装置が設けられることを特徴とする請求項1から請求項5のいずれか一項に記載のボイラ。
少なくとも前記第2ノズルからの追加空気の噴射方向を左右に調整自在な空気噴射方向左右調整装置が設けられることを特徴とする請求項1から請求項6のいずれか一項に記載のボイラ。
前記追加空気ノズルは、前記火炉における前記第2ノズルとは異なる内壁面に沿って追加空気を吹き込む第3ノズルを有することを特徴とする請求項1から請求項7のいずれか一項に記載のボイラ。
前記追加空気ノズルは、前記火炉から排出された排ガスの少なくとも一部を前記火炉に吹き込み可能であることを特徴とする請求項1から請求項8のいずれか一項に記載のボイラ。
【発明を実施するための形態】
【0031】
以下に添付図面を参照して、本発明に係るボイラの好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
【0032】
[第1実施形態]
図1は、第1実施形態の石炭焚きボイラを表す概略構成図、
図2は、石炭焚きボイラにおける燃焼バーナの平面図、
図3は、石炭焚きボイラにおける追加燃焼用空気ノズルの平面図、
図4は、石炭焚きボイラにおけるNOx還元領域を表す平面図である。
【0033】
第1実施形態のボイラは、石炭(瀝青炭、亜瀝青炭など)を粉砕した微粉炭を微粉燃料(固体燃料)として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能な微粉炭焚きボイラである。
【0034】
この第1実施形態において、
図1に示すように、石炭焚きボイラ10は、コンベンショナルボイラであって、火炉11と燃焼装置12とを有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉11を構成する火炉壁が伝熱管により構成されている。
【0035】
燃焼装置12は、この火炉11を構成する火炉壁(伝熱管)の下部に設けられている。この燃焼装置12は、火炉壁に装着された複数の燃焼バーナ21,22,23,24,25を有している。そして、燃焼装置12は、周方向に沿って4個の燃焼バーナが均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。なお、この燃焼バーナ21,22,23,24,25は、CCF(Circular Corner Firing)燃焼方式であり、火炉11の形状や一つの段における燃焼バーナの数、段数はこの実施形態に限定されるものではない。
【0036】
各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機(ミル)31,32,33,34,35に連結されている。この微粉炭機31,32,33,34,35は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送用空気(1次空気)により分級された微粉炭を微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給することができる。
【0037】
火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37の一端部が連結されており、この空気ダクト37は、他端部に送風機38が装着されている。従って、送風機38により送られた燃焼用空気(2次空気)を空気ダクト37から風箱36に供給し、この風箱36から各燃焼バーナ21,22,23,24,25に供給することができる。
【0038】
ここで、燃焼装置12について詳細に説明するが、この燃焼装置12を構成する各燃焼バーナ21,22,23,24,25は、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ21についてのみ説明する。
【0039】
燃焼バーナ21は、
図2に示すように、火炉11における4つの角部に設けられる燃焼バーナ21a,21b,21c,21dから構成されている。各燃焼バーナ21a,21b,21c,21dは、微粉炭供給管26から分岐した各分岐管26a,26b,26c,26dが連結されると共に、空気ダクト37から分岐した各分岐管37a,37b,37c,37dが連結されている。
【0040】
従って、火炉11の各角部にある各燃焼バーナ21a,21b,21c,21dは、火炉11に対して、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)を吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気を吹き込む。そして、各燃焼バーナ21a,21b,21c,21dからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉11の上方から見て(
図2にて)反時計周り方向に旋回する火炎旋回流となる。
【0041】
また、
図1に示すように、火炉11は、燃焼装置12の上段部に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁11aに装着された複数の追加燃焼用空気ノズル42,43を有している。この追加燃焼用空気ノズル42,43は、周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って2セット、つまり、2段配置されている。即ち、追加燃焼用空気供給装置41(追加燃焼用空気ノズル42,43)は、火炉11における燃焼バーナ21の装着位置より上方に配置されている。この追加燃焼用空気供給装置41は、火炉11に対して追加燃焼用空気(Over Fire Air)を吹き込むものである。そして、この追加燃焼用空気ノズル42,43は、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。
【0042】
従って、送風機38により送られた燃焼用空気を第1分岐空気ダクト44から追加燃焼用空気ノズル42,43に供給することができる。そして、追加燃焼用空気ノズル42,43は、燃焼バーナ21,22,23,24,25が吹き込んだ微粉燃料混合気の上方に追加燃焼用空気を吹き込むことができる。
【0043】
火炉11は、燃焼装置12及び追加燃焼用空気供給装置41より上方に追加空気供給装置51が設けられている。この追加空気供給装置51は、火炉壁11aに装着された複数の追加空気ノズル52を有している。この追加空気ノズル52は、周方向に沿って4個均等間隔で配設されたものが1セット、つまり、1段配置されている。即ち、追加空気供給装置51(追加空気ノズル52)は、火炉11における燃焼バーナ21の装着位置より所定距離だけ上方に配置されている。この追加空気供給装置51は、火炉11に対して追加空気(Additional Air)を吹き込むものである。即ち、追加空気ノズル52は、燃焼バーナ21,22,23,24,25と同様に、火炉11における4つの角部に設けられる複数の追加空気ノズルから構成されており、火炎旋回流と同様の追加空気旋回流を形成する。そして、この追加空気ノズル52は、空気ダクト37から分岐した第2分岐空気ダクト53の端部が連結されている。
【0044】
ここで、追加空気供給装置51について詳細に説明する。
【0045】
追加空気ノズル52は、
図3に示すように、燃焼バーナ21,22,23,24,25と同様に、火炉11における4つの角部に設けられる追加空気ノズル52a,52b,52c,52dから構成されている。各追加空気ノズル52a,52b,52c,52dは、追加空気を火炉11内に向けて吹き込む第1ノズル54a,54b,54c,54dと、追加空気を火炉11の内壁面に沿って吹き込む第2ノズル55a,55b,55c,55dを有しており、水平方向の異なる2方向に空気を噴射することができる。なお、第2ノズル55a,55b,55c,55dは、追加空気を火炉11の内壁面に沿って下方に吹き込むようにすることが好ましい。
【0046】
この第1ノズル54a,54b,54c,54dからの追加空気の水平方向における吹き込み角度は、燃焼バーナ21a,21b,21c,21dからの微粉燃料混合気の水平方向における吹き込み角度と、ほぼ同角度に設定されている。一方、第2ノズル55a,55b,55c,55dは、火炉壁11aの内壁面に沿って水平方向に追加空気を噴射することができる。そして、各追加空気ノズル52a,52b,52c,52dは、第2分岐空気ダクト53から分岐した各分岐管53a,53b,53c,53dが連結されている。
【0047】
従って、送風機38により送られた燃焼用空気を第2分岐空気ダクト53から各分岐管53a,53b,53c,53dを介して追加空気ノズル52a,52b,52c,52dに供給することができる。そして、第1ノズル54a,54b,54c,54dは、燃焼バーナ21a,21b,21c,21dが吹き込んだ微粉燃料混合気の上方に空気流A1,A2,A3,A4を噴射することができ、第2ノズル55a,55b,55c,55dは、火炉壁11aの内壁面に沿って空気流A11,A12,A13,A14を噴射することができる。
【0048】
上述したように、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)及び2次空気を火炉11内に向けて吹き込むことで火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42,43は、燃焼バーナ21,22,23,24,25の上段で、追加燃焼用空気を火炉11内に向けて吹き込むことができる。また、追加空気ノズル52は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。
【0049】
すると、
図4に示すように、追加空気ノズル52の第1ノズル54a,54b,54c,54dは、燃焼バーナ21a,21b,21c,21dによって形成された火炎旋回流Fの上方に空気流A1,A2,A3,A4を形成する。一方、第2ノズル55a,55b,55c,55dは、この火炎旋回流Fと火炉壁11aの内壁面との間に空気流A11,A12,A13,A14を形成する。そのため、空気流A11,A12,A13,A14により火炎旋回流Fが火炉壁11aの内壁面に直接接触することが抑制され、火炉壁11aの内壁面の加熱が防止される。
【0050】
なお、本実施形態の燃焼装置12を構成する各燃焼バーナ21,22,23,24,25は、中心部に油燃料を噴射可能な油ノズルと、この油ノズルの外側に微粉燃料混合気を噴射可能な燃料ノズルと、この燃料ノズルの外側に2次空気を噴射可能な2次空気ノズルを有している。従って、ボイラ起動時に、各燃焼バーナ21,22,23,24,25は、油燃料を火炉11内に噴射して火炎を形成し、その後、微粉燃料混合気と2次空気を火炉11内に噴射して火炎を形成している。
【0051】
そして、
図1に示すように、火炉11は、上部に煙道70が連結されており、この煙道70に、対流伝熱部として排ガスの熱を回収するための過熱器(スーパーヒータ)71,72、再熱器(リヒータ)73,74、節炭器(エコノマイザ)75,76,77が設けられており、火炉11での燃焼で発生した排ガスと水との間で熱交換が行われる。
【0052】
煙道70は、その下流側に熱交換を行った排ガスが排出される排ガス管78が連結されている。この排ガス管78は、空気ダクト37との間にエアヒータ79が設けられ、空気ダクト37を流れる空気と、排ガス管78を流れる排ガスとの間で熱交換を行い、燃焼バーナ21,22,23,24,25に供給する燃焼用空気を昇温することができる。
【0053】
そして、排ガス管78は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。
【0054】
このように構成された石炭焚きボイラ10にて、微粉炭機31,32,33,34,35が駆動すると、生成された微粉炭が搬送用空気と共に微粉炭供給管26,27,28,29,30を通して燃焼バーナ21,22,23,24,25に供給される。また、加熱された燃焼用空気が空気ダクト37から風箱36を介して各燃焼バーナ21,22,23,24,25に供給される。また、加熱された燃焼用空気が空気ダクト37から分岐した各分岐空気ダクト44,53により追加燃焼用空気ノズル42,43、追加空気ノズル52に供給される。
【0055】
すると、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気とが混合した微粉燃料混合気と2次空気を火炉11に吹き込み、このときに着火することで燃焼領域Aに火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42,43は、追加燃焼用空気を火炉11に吹き込むことで、燃焼領域Aを適正に形成することができる。この火炉11では、微粉燃料混合気と2次空気及び追加燃焼用空気が燃焼して火炎旋回流が生じ、燃焼領域Aで火炎旋回流が生じると、火炉11内を燃焼ガス(排ガス)が旋回しながら上昇して還元領域Bに至る。
【0056】
このとき、火炉11にて、燃焼バーナ21,22,23,24,25は、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、燃焼領域Aの上方の還元領域Bが還元雰囲気に保持される。そのため、微粉炭の燃焼により発生したNOxがこの還元領域Bで還元される。
【0057】
そして、追加空気ノズル52(第1ノズル)は、追加空気を火炉11の還元領域Bの上方に吹き込む。すると、燃焼完結領域Cにて、排ガスと追加空気が反応することで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
【0058】
ところで、火炉11の還元領域Bでは、低酸素雰囲気で、且つ、高温雰囲気となることから、腐食成分である硫化水素(H
2S)が発生しやすく、火炉壁11aの内面に腐食が発生するおそれがある。そこで、本実施形態では、火炉11にて、追加空気ノズル52(第2ノズル)が還元領域Bにある火炉壁11aの内壁面に沿って追加空気を吹き込む。この追加空気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0059】
また、追加空気ノズル52(第2ノズル)から火炉壁11aの内壁面と火炎旋回流との間に空気が吹き込まれることで、この領域が高酸素領域でなり、硫化水素の発生が抑制されることから、火炉壁11aの腐食が抑制される。更に、火炉11は、還元領域Bが高酸素雰囲気で、且つ、低温雰囲気に抑制されることから、フライアッシュの溶融を抑制することができ、スラッギングを防止することができる。
【0060】
なお、追加空気ノズル52(第2ノズル)は、還元領域Bに空気が吹き込むことで、この還元領域Bを乱すことが考えられるが、追加空気ノズル52(第2ノズル)から空気は、火炎旋回流の外側であることから、この空気がNOx還元作用に悪影響を及ぼすことはほとんどない。
【0061】
そして、図示しない給水ポンプから供給された水は、節炭器75,76,77によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。更に、図示しない蒸気ドラムの飽和蒸気は過熱器71,72に導入され、燃焼ガスによって過熱される。過熱器71,72で生成された過熱蒸気は、図示しない発電プラント(例えば、タービン等)に供給される。また、タービンでの膨張過程の中途で取り出した蒸気は、再熱器73,74に導入され、再度過熱されてタービンに戻される。なお、火炉11をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
【0062】
その後、煙道70の節炭器75,76,77を通過した排ガスは、排ガス管78にて、図示しない脱硝装置にて、触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
【0063】
このように第1実施形態のボイラにあっては、中空形状をなして鉛直方向に沿って設置される火炉11と、微粉燃料混合気を火炉11内に向けて吹き込むことで火炎旋回流を形成可能な燃焼バーナ21,22,23,24,25と、燃焼バーナ21,22,23,24,25より上方で追加燃焼用空気を火炉11内に向けて吹き込む追加燃焼用空気ノズル42,43と、追加燃焼用空気ノズル42,43より上方で追加空気を火炉11内に向けて吹き込む第1ノズル54a,54b,54c,54dと追加空気を火炉11の内壁面に沿って吹き込む第2ノズル55a,55b,55c,55dとを有する追加空気ノズル52とを設けている。
【0064】
従って、燃焼バーナ21,22,23,24,25が火炉11内に微粉燃料混合気を吹き込むと共に、追加燃焼用空気ノズル42,43が火炉11内に燃焼用空気を吹き込むことで火炎旋回流が形成され、発生した燃焼ガスが燃焼領域Aから旋回しながら上昇する。微粉燃料混合気は、空気量が微粉炭燃料に対して理論空気量未満となるように設定されることで、燃焼領域Aの上方に還元領域Bが形成され、ここで、微粉炭燃料の燃焼により発生したNOxが還元される。その後、追加空気ノズル52の第1ノズル54a,54b,54c,54dが火炉11内に向けて追加空気を吹き込むことで、微粉炭の酸化燃焼が完結される。このとき、追加空気ノズル52の第2ノズル55a,55b,55c,55dが燃焼領域Aと還元領域Bとの間で、火炉壁11aの内壁面に沿って空気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、火炉壁11aの腐食を防止して耐久性を向上することができる。
【0065】
この場合、追加空気ノズル52にて、追加空気を火炉11内に向けて吹き込む第1ノズル54a,54b,54c,54dに対して、追加空気を火炉11の内壁面に沿って吹き込む第2ノズル55a,55b,55c,55dを追加するだけでよく、既設のボイラに対する改造箇所を少なくすることで、製造コストを低減することができる。
【0066】
第1実施形態のボイラでは、火炉11を矩形断面形状とし、追加空気ノズル52を火炉11における燃焼バーナ21,22,23,24,25より上方の角部に配置している。従って、追加空気ノズル52の第1ノズル54a,54b,54c,54dは、火炉11内を上昇した火炎旋回流に対して適正に追加空気を噴射することで、燃焼ガスが火炉11の角部に滞留することなく、適正に下流側に排出することができる。
【0067】
第1実施形態のボイラでは、燃焼バーナ21,22,23,24,25を火炉11の角部に配置し、追加空気ノズル52を火炉11における燃焼バーナ21,22,23,24,25より上方の角部に配置し、燃焼バーナ21,22,23,24,25からの微粉炭混合気の水平方向における吹き込み角度と、第1ノズル54a,54b,54c,54dからの追加燃焼用空気の水平方向における吹き込み角度とをほぼ同角度に設定している。従って、燃焼バーナ21,22,23,24,25により形成されて上昇した火炎旋回流に対して、第1ノズル54a,54b,54c,54dが空気を適正位置に吹き込むこととなり、最適な火炎旋回流を形成することができる。
【0068】
[第2実施形態]
図5は、第2実施形態の石炭焚きボイラにおける追加燃焼用空気ノズルの平面図である。なお、本実施形態のボイラの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、
図1を用いて説明すると共に、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
【0069】
第2実施形態において、
図1に示すように、石炭焚きボイラ10は、火炉11と燃焼装置12とを有しており、燃焼装置12は、複数の燃焼バーナ21,22,23,24,25を有している。燃焼装置12は、周方向に沿って4個の燃焼バーナが均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機31,32,33,34,35に連結されている。
【0070】
また、
図1及び
図5に示すように、火炉11は、燃焼装置12の上方に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁11aに装着された追加燃焼用空気ノズル42,43を有しており、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。火炉11は、追加燃焼用空気供給装置41より上方に追加空気供給装置81が設けられている。この追加空気供給装置81は、火炉壁11aに装着された複数の追加空気ノズル82を有しており、空気ダクト37から分岐した第2分岐空気ダクト53の端部が連結されている。
【0071】
ここで、追加空気供給装置81について、詳細に説明する。追加空気ノズル82は、
図5に示すように、火炉11における4つの角部に設けられる追加空気ノズル82a,82b,82c,82dから構成されている。各追加空気ノズル82a,82b,82c,82dは、追加空気を火炉11内に向けて吹き込む第1ノズル83a,83b,83c,83dと、追加空気を火炉11の内壁面に沿って吹き込む第2ノズル84a,84b,84c,84dを有しており、水平方向の異なる2方向に空気を噴射することができる。
【0072】
ここで、第1ノズル83a,83b,83c,83dからの追加空気の水平方向における吹き込み角度は、燃焼バーナ21a,21b,21c,21d(
図2参照)からの微粉炭混合気の水平方向における吹き込み角度と、ほぼ同角度に設定されている。一方、第2ノズル84a,84b,84c,84dは、火炉壁11aの内壁面に沿って水平方向に追加空気を噴射することができる。そして、各追加空気ノズル82a,82b,82c,82dは、第2分岐空気ダクト53から分岐した各分岐管53a,53b,53c,53dが連結されている。
【0073】
また、追加空気ノズル82は、第1ノズル83a,83b,83c,83dからの追加空気の噴射量と、第2ノズル84a,84b,84c,84dからの追加空気の噴射量との割合を調整する空気噴射量調整装置が設けられている。即ち、第1ノズル83a,83b,83c,83dは、配管85a,85b,85c,85dを介して分岐管53a,53b,53c,53dに連結され、この配管85a,85b,85c,85dに流路面積を調整自在なダンパ86a,86b,86c,86dが設けられている。一方、第2ノズル84a,84b,84c,84dは、配管87a,87b,87c,87dを介して分岐管53a,53b,53c,53dに連結され、この配管87a,87b,87c,87dに流路面積を調整自在なダンパ88a,88b,88c,88dが設けられている。
【0074】
また、追加空気供給装置81は、第2ノズル84a,84b,84c,84dからの追加空気の噴射方向を上下に調整自在な空気噴射方向上下調整装置が設けられている。即ち、第2ノズル84a,84b,84c,84dは、水平方向に沿う支持軸89a,89b,89c,89dにより水平方向に回動自在であり、駆動装置90a,90b,90c,90dにより駆動可能となっている。
【0075】
従って、追加空気は、第2分岐空気ダクト53から各分岐管53a,53b,53c,53dを介して追加空気ノズル82a,82b,82c,82dに供給可能となっている。そして、第1ノズル83a,83b,83c,83dは、空気流A1,A2,A3,A4を噴射することができ、第2ノズル84a,84b,84c,84dは、火炉壁11aの内壁面に沿って空気流A12,A12,A13,A14を噴射することができる。
【0076】
また、ダンパ86a,86b,86c,86d及びダンパ88a,88b,88c,88dの開度を変更することで、第1ノズル83a,83b,83c,83d及び第2ノズル84a,84b,84c,84dからの追加空気の噴射量(噴射割合)を調整することができる。例えば、火炉11の煙道70にNOxセンサを設け、燃焼ガス中のNOx量が増加したら、第2ノズル84a,84b,84c,84dからの追加空気の噴射量(噴射割合)を増加する。また、火炉11の煙道70に未燃分センサを設け、燃焼ガス中の未燃分量が増加したら、第1ノズル83a,83b,83c,83dからの追加空気の噴射量(噴射割合)を増加する。
【0077】
更に、駆動装置90a,90b,90c,90dを駆動することで、第2ノズル84a,84b,84c,84dによる追加空気の噴射方向を調整することができる。例えば、火炉11内に火炉壁11aの温度を計測する温度センサを設け、駆動装置90a,90b,90c,90dは、火炉壁11aの温度が高い領域に向けて追加空気を噴射するように、第2ノズル84a,84b,84c,84dを支持軸89a,89b,89c,89dにより回動して位置を調整する。
【0078】
そして、
図1及び
図5に示すように、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)及び2次空気を火炉11内に向けて吹き込むことで火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42,43は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。また、追加空気ノズル82は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。
【0079】
ここで、追加空気ノズル82は、第2ノズル84a,84b,84c,84dが還元領域Bにある火炉壁11aの内壁面に沿って追加空気を吹き込む。この追加空気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0080】
このように第2実施形態のボイラにあっては、燃焼バーナ21,22,23,24,25より上方で追加空気を火炉11内に向けて吹き込む第1ノズル83a,83b,83c,83dと追加空気を火炉11の内壁面に沿って吹き込む第2ノズル84a,84b,84c,84dとを有する追加空気ノズル82を設けると共に、第1ノズル83a,83b,83c,83dからの追加空気の噴射量と第2ノズル84a,84b,84c,84dからの追加空気の噴射量との割合を調整する空気噴射量調整装置として、ダンパ86a,86b,86c,86d,88a,88b,88c,88dを設けている。
【0081】
従って、追加空気ノズル82の第2ノズル84a,84b,84c,84dが火炉壁11aの内壁面に沿って空気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、火炉壁の腐食を防止して耐久性を向上することができる。また、空気噴射量調整装置により第1ノズル83a,83b,83c,83dからの追加空気の噴射量と第2ノズル84a,84b,84c,84dからの追加空気の噴射量を増減することで、最適な燃焼状態を維持することができる。
【0082】
第2実施形態のボイラでは、第2ノズル84a,84b,84c,84dからの追加空気の噴射方向を上下に調整自在な空気噴射方向上下調整装置として、第2ノズル84a,84b,84c,84dの支持軸89a,89b,89c,89dと駆動装置90a,90b,90c,90dを設けている。従って、火炉11の内壁面における腐食が発生しやすい領域に適正に空気を噴射することができる。
【0083】
なお、この第2実施形態では、第2ノズル84a,84b,84c,84dを上下方向に調整自在としたが、第1ノズル83a,83b,83c,83dを上下方向に調整自在としてもよい。
【0084】
[第3実施形態]
図6は、第3実施形態の石炭焚きボイラにおける追加空気ノズルの平面図、
図7は、追加空気ノズルの斜視図である。なお、本実施形態のボイラの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、
図1を用いて説明すると共に、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
【0085】
第3実施形態において、
図1に示すように、石炭焚きボイラ10は、火炉11と燃焼装置12とを有しており、燃焼装置12は、複数の燃焼バーナ21,22,23,24,25を有している。燃焼装置12は、周方向に沿って4個の燃焼バーナが均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機31,32,33,34,35に連結されている。
【0086】
また、
図1及び
図6に示すように、火炉11は、燃焼装置12の上方に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁11aに装着された追加燃焼用空気ノズル42,43を有しており、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。火炉11は、追加燃焼用空気供給装置41より上方に追加空気供給装置91が設けられている。この追加空気供給装置91は、火炉壁11aに装着された複数の追加空気ノズル92を有しており、空気ダクト37から分岐した第2分岐空気ダクト53の端部が連結されている。
【0087】
ここで、追加空気供給装置91について、詳細に説明する。追加空気ノズル92は、
図6に示すように、火炉11における4つの角部に設けられる追加空気ノズル92a,92b,92c,92dから構成されている。各追加空気ノズル92a,92b,92c,92dは、追加空気を火炉11内に向けて吹き込む第1ノズル93a,93b,93c,93dと、追加空気を火炉11の内壁面に沿って吹き込む第2ノズル94a,94b,94c,94dを有しており、水平方向の異なる2方向に空気を噴射することができる。
【0088】
また、第1ノズル93a,93b,93c,93dと第2ノズル94a,94b,94c,94dは、火炉11内に鉛直方向にずれて配置されている。本実施形態では、第1ノズル93a,93b,93c,93dが上方側に位置し、第2ノズル94a,94b,94c,94dが下方側に位置している。但し、第1ノズル93a,93b,93c,93dが下方側に位置し、第2ノズル94a,94b,94c,94dが上方側に位置するようにしてもよい。
【0089】
また、追加空気供給装置91は、第2ノズル94a,94b,94c,94dからの追加空気の噴射方向を左右に調整自在な空気噴射方向左右調整装置が設けられている。即ち、
図7に詳細に示すように、第2ノズル94a,94b,94c,94dは、鉛直方向に沿う支持軸95a,95b,95c,95dにより水平方向に回動自在であり、駆動装置96a,96b,96c,96dにより駆動可能となっている。例えば、火炉11内に火炉壁11aの温度を計測する温度センサを設け、駆動装置96a,96b,96c,96dは、火炉壁11aの温度が高い領域に向けて追加空気を噴射するように、第2ノズル94a,94b,94c,94dを支持軸95a,95b,95c,95dにより回動して位置を調整する。
【0090】
従って、燃焼用空気は、第2分岐空気ダクト53から各分岐管53a,53b,53c,53dを介して追加空気ノズル92a,92b,92c,92dに供給可能となっている。そして、第1ノズル93a,93b,93c,93dは、空気流A1,A2,A3,A4を噴射することができ、第2ノズル94a,94b,94c,94dは、火炉壁11aの内壁面に沿って空気流A12,A12,A13,A14を噴射することができる。
【0091】
そして、
図1及び
図6に示すように、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)及び2次空気を火炉11内に向けて吹き込むことで火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42,43は、燃焼バーナ21,22,23,24,25の上方で、追加燃焼用空気を火炉11内に向けて吹き込むことができる。また、追加空気ノズル92は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。
【0092】
また、駆動装置96a,96b,96c,96dを駆動することで、第2ノズル94a,94b,94c,94dによる追加空気の噴射方向を調整することができる。例えば、火炉11内に火炉壁11aの温度を計測する温度センサを設け、駆動装置96a,96b,96c,96dは、火炉壁11aの温度が高い領域に向けて追加空気を噴射するように、第2ノズル94a,94b,94c,94dを支持軸95a,95b,95c,95dにより回動して位置を調整する。
【0093】
ここで、追加空気ノズル92は、第2ノズル94a,94b,94c,94dが還元領域Bにある火炉壁11aの内壁面に沿って追加空気を吹き込む。この追加空気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0094】
このように第3実施形態のボイラにあっては、燃焼バーナ21,22,23,24,25より上方で追加空気を火炉11内に向けて吹き込む第1ノズル93a,93b,93c,93dと追加空気を火炉11の内壁面に沿って吹き込む第2ノズル94a,94b,94c,94dとを有する追加空気ノズル92を設け、第1ノズル93a,93b,93c,93dと第2ノズル94a,94b,94c,94dを火炉11内に鉛直方向にずれて配置している。
【0095】
従って、追加空気ノズル92の第2ノズル94a,94b,94c,94dが火炉壁11aの内壁面に沿って空気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、炉壁の腐食を防止して耐久性を向上することができる。また、第1ノズル93a,93b,93c,93dと第2ノズル94a,94b,94c,94dを鉛直方向にずらして配置することで、火炉11内に向けて吹き込む空気の領域と火炉の内壁面に沿って吹き込む空気の領域とを上下の異なる領域とすることで、最適な火炎旋回流を形成することができると共に、火炉壁11aの高温化を適正に抑制することができる。
【0096】
第3実施形態のボイラでは、第2ノズル94a,94b,94c,94dからの追加空気の噴射方向を左右に調整自在な空気噴射方向左右調整装置として、第2ノズル94a,94b,94c,94dの支持軸95a,95b,95c,95dと駆動装置96a,96b,96c,96dを設けている。従って、火炉11の内壁面における腐食が発生しやすい領域に適正に空気を噴射することができる。
【0097】
なお、この実施形態3では、第2ノズル94a,94b,94c,94dを左右方向に調整自在としたが、第1ノズル93a,93b,93c,93dを左右方向に調整自在としてもよい。
【0098】
[第4実施形態]
図8は、第4実施形態の石炭焚きボイラにおける追加空気ノズルの平面図である。なお、本実施形態のボイラの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、
図1を用いて説明すると共に、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
【0099】
第4実施形態において、
図1に示すように、石炭焚きボイラ10は、火炉11と燃焼装置12とを有しており、燃焼装置12は、複数の燃焼バーナ21,22,23,24,25を有している。燃焼装置12は、周方向に沿って4個の燃焼バーナが均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機31,32,33,34,35に連結されている。
【0100】
また、
図1及び
図8に示すように、火炉11は、燃焼装置12の上方に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁11aに装着された追加燃焼用空気ノズル42,43を有しており、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。火炉11は、追加燃焼用空気供給装置41より上方に追加空気供給装置111が設けられている。この追加空気供給装置111は、火炉壁11aに装着された複数の追加空気ノズル112を有しており、空気ダクト37から分岐した第2分岐空気ダクト53の端部が連結されている。
【0101】
ここで、追加空気供給装置111について、詳細に説明する。追加空気ノズル112は、
図8に示すように、火炉11における4つの角部に設けられる追加空気ノズル112a,112b,112c,112dから構成されている。各追加空気ノズル112a,112b,112c,112dは、追加空気を火炉11内に向けて吹き込む第1ノズル113a,113b,113c,113dと、追加空気を火炉11の一方の内壁面に沿って吹き込む第2ノズル114a,114b,114c,114dと、追加空気を火炉11の他方の内壁面に沿って吹き込む第3ノズル115a,115b,115c,115dとを有しており、水平方向の異なる3方向に空気を噴射することができる。
【0102】
ここで、第1ノズル113a,113b,113c,113dからの追加空気の水平方向における吹き込み角度は、燃焼バーナ21a,21b,21c,21d(
図2参照)からの微粉炭混合気の水平方向における吹き込み角度と、ほぼ同角度に設定されている。一方、第2ノズル114a,114b,114c,114dは、火炉壁11aの一方の内壁面に沿って水平方向に追加空気を噴射することができる。また、第3ノズル115a,115b,115c,115dは、火炉壁11aの他方の内壁面に沿って水平方向に追加空気を噴射することができる。そして、各追加空気ノズル112a,112b,112c,112dは、第2分岐空気ダクト53から分岐した各分岐管53a,53b,53c,44dが連結されている。
【0103】
従って、追加空気は、第2分岐空気ダクト53から各分岐管53a,53b,53c,53dを介して追加空気ノズル112a,112b,112c,112dに供給可能となっている。そして、第1ノズル113a,113b,113c,113dは、空気流A1,A2,A3,A4を噴射することができ、第2ノズル114a,114b,114c,114dは、火炉壁11aの一方の内壁面に沿って空気流A12,A12,A13,A14を噴射することができ、第3ノズル115a,115b,115c,115dは、火炉壁11aの他方の内壁面に沿って空気流A21,A22,A23,A24を噴射することができる。
【0104】
そして、
図1及び
図8に示すように、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)及び2次空気を火炉11内に向けて吹き込むことで火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42,43は、燃焼バーナ21,22,23,24,25の上方で、追加燃焼用空気を火炉11内に向けて吹き込むことができる。また、追加空気ノズル112は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。
【0105】
ここで、追加空気ノズル112は、第2ノズル114a,114b,114c,114d及び第3ノズル115a,115b,115c,115dが還元領域Bにある火炉壁11aの内壁面に沿って追加空気を吹き込む。この追加空気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0106】
このように第4実施形態のボイラにあっては、燃焼バーナ21,22,23,24,25より上方で追加空気を火炉11内に向けて吹き込む第1ノズル113a,113b,113c,113dと、追加空気を火炉11の一方の内壁面に沿って吹き込む第2ノズル114a,114b,114c,114dと、追加空気を火炉11の他方の内壁面に沿って吹き込む第3ノズル115a,115b,115c,115dを有する追加空気ノズル112を設けている。
【0107】
従って、追加空気ノズル112の第2ノズル114a,114b,114c,114d及び第3ノズル115a,115b,115c,115dが火炉壁11aの内壁面に沿って空気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、炉壁の腐食を防止して耐久性を向上することができる。また、火炉壁11aにおける全ての内壁面に沿って空気を吹き込むことで、火炉壁11aの高温化を適正に抑制することができる。
【0108】
[第5実施形態]
図9は、第5実施形態の石炭焚きボイラにおける追加燃焼用空気ノズルの平面図である。なお、本実施形態のボイラの基本的な構成は、上述した第1実施形態とほぼ同様の構成であり、
図1を用いて説明すると共に、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
【0109】
第5実施形態において、
図1に示すように、石炭焚きボイラ10は、火炉11と燃焼装置12とを有しており、燃焼装置12は、複数の燃焼バーナ21,22,23,24,25を有している。燃焼装置12は、周方向に沿って4個の燃焼バーナが均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機31,32,33,34,35に連結されている。
【0110】
また、
図1及び
図9に示すように、火炉11は、燃焼装置12の上方に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁11aに装着された追加燃焼用空気ノズル42,43を有しており、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。火炉11は、追加燃焼用空気供給装置41より上方に追加空気供給装置121が設けられている。この追加空気供給装置121は、火炉壁11aに装着された複数の追加空気ノズル82を有しており、空気ダクト37から分岐した第2分岐空気ダクト53の端部が連結されている。
【0111】
ここで、追加空気供給装置121について、詳細に説明する。追加空気ノズル82は、
図9に示すように、火炉11における4つの角部に設けられる追加空気ノズル82a,82b,82c,82dから構成されている。各追加空気ノズル82a,82b,82c,82dは、追加空気を火炉11内に向けて吹き込む第1ノズル83a,83b,83c,83dと、追加空気を火炉11の内壁面に沿って吹き込む第2ノズル84a,84b,84c,84dを有している。
【0112】
また、追加空気ノズル82は、第1ノズル83a,83b,83c,83d及び第2ノズル84a,84b,84c,84dが噴射する追加空気の流速を上昇させる送風機が設けられている。即ち、第1ノズル83a,83b,83c,83dは、配管85a,85b,85c,85dを介して分岐管53a,53b,53c,53dに連結され、この配管85a,85b,85c,85dにファン123a,123b,123c,123dが設けられている。一方、第2ノズル84a,84b,84c,84dは、配管87a,87b,87c,87dを介して分岐管53a,53b,53c,53dに連結され、この配管87a,87b,87c,87dにファン124a,124b,124c,124dが設けられている。
【0113】
従って、空気は、第2分岐空気ダクト53から各分岐管44a,44b,44c,44dを介して追加空気ノズル82a,82b,82c,82dに供給可能となっている。そして、第1ノズル83a,83b,83c,83dは、空気流A1,A2,A3,A4を噴射することができ、第2ノズル84a,84b,84c,84dは、火炉壁11aの内壁面に沿って空気流A11,A12,A13,A14を噴射することができる。また、ファン123a,123b,123c,123d及びファン124a,124b,124c,124dの回転速度を変更することで、第1ノズル83a,83b,83c,83d及び第2ノズル84a,84b,84c,84dからの追加空気の噴射流速を調整することができる。
【0114】
そして、
図1及び
図9に示すように、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気が混合した微粉燃料混合気(燃料ガス)及び2次空気を火炉11内に向けて吹き込むことで火炎旋回流を形成することができる。また、追加燃焼用空気ノズル42は、燃焼バーナ21,22,23,24,25の上方で、追加燃焼用空気を火炉11内に向けて吹き込むことができる。また、追加空気ノズル82は、燃焼バーナ21,22,23,24,25の上方で、追加空気を火炉11内に向けて吹き込むことができる。
【0115】
ここで、追加空気ノズル82は、第2ノズル84a,84b,84c,84dが還元領域Bにある火炉壁11aの内壁面に沿って追加空気を吹き込む。この追加空気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0116】
このように第5実施形態のボイラにあっては、燃焼バーナ21,22,23,24,25より上方で追加空気を火炉11内に向けて吹き込む第1ノズル83a,83b,83c,83dと追加空気を火炉11の内壁面に沿って吹き込む第2ノズル84a,84b,84c,84dとを有する追加空気ノズル82を設けると共に、第1ノズル83a,83b,83c,83d及び第2ノズル84a,84b,84c,84dが噴射する追加空気の流速を上昇させるファン123a,123b,123c,123d及びファン124a,124b,124c,124dを設けている。
【0117】
従って、追加空気ノズル82の第2ノズル84a,84b,84c,84dが火炉壁11aの内壁面に沿って空気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、炉壁の腐食を防止して耐久性を向上することができる。また、ファン123a,123b,123c,123d及びファン124a,124b,124c,124dにより第1ノズル83a,83b,83c,83d及び第2ノズル84a,84b,84c,84dが噴射する追加空気の流速を上昇させることで、火炉壁11aの内壁面により多くの空気を行き渡らせることで、火炉壁11aの高温化を効果的に抑制することができる。
【0118】
[第6実施形態]
図10は、第6実施形態の石炭焚きボイラを表す概略構成図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
【0119】
第6実施形態において、
図10に示すように、石炭焚きボイラ10は、火炉11と燃焼装置12とを有している。燃焼装置12は、火炉壁に装着された複数の燃焼バーナ21,22,23,24,25を有している。各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機31,32,33,34,35に連結されている。火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37が連結されている。
【0120】
火炉11は、燃焼装置12の上段部に追加燃焼用空気供給装置41が設けられている。この追加燃焼用空気供給装置41は、火炉壁に装着された複数の追加燃焼用空気ノズル42,43を有している。追加燃焼用空気ノズル42,43は、空気ダクト37から分岐した第1分岐空気ダクト44の端部が連結されている。
【0121】
火炉11は、燃焼装置12より上方に追加空気供給装置131が設けられている。この追加空気供給装置131は、火炉壁に装着された複数の追加空気ノズル52を有している。追加空気ノズル52は、風箱132に装着され、空気ダクト37から分岐した第2分岐空気ダクト53の端部がこの風箱132に連結されている。また、追加空気ノズル52は、火炉11から排出された排ガスの少なくとも一部を火炉11に吹き込み可能である。即ち、排ガス管78に継続する排気系80から分岐した第3分岐空気ダクト133の端部が風箱132に連結されており、第3分岐空気ダクト133に送風機134が設けられている。
【0122】
そのため、燃焼バーナ21,22,23,24,25は、微粉燃料混合気及び2次空気を火炉11内に向けて吹き込み、このときに着火することで燃焼領域Aに火炎旋回流を形成する。このとき、追加燃焼用空気ノズル42,43は、追加燃焼用空気と排ガスの混合気を火炉11に吹き込むことで、燃焼領域Aを適正に形成する。この火炉11では、微粉燃料混合気と2次空気及び追加燃焼用空気が燃焼して火炎旋回流が生じ、燃焼領域Aで火炎旋回流が生じると、火炉11内を燃焼ガス(排ガス)が旋回しながら上昇して還元領域Bに至る。
【0123】
このとき、火炉11にて、燃焼バーナ21,22,23,24,25は、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、燃焼領域Aの上方の還元領域Bが還元雰囲気に保持される。そのため、微粉炭の燃焼により発生したNOxがこの還元領域Bで還元される。
【0124】
そして、追加空気ノズル52(第1ノズル)は、追加空気を火炉11の還元領域Bの上方に吹き込む。すると、燃焼完結領域Cにて、排ガスと追加空気が反応することで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
【0125】
また、火炉11にて、追加空気ノズル52(第2ノズル)は、還元領域Bにある火炉壁11aの内壁面に沿って追加空気と排ガスの混合気を吹き込む。この追加空気と排ガスの混合気は、火炎旋回流より外側に吹き込まれることから、火炎が火炉壁11aの内壁面に直接接触することがなく、火炉壁11aの低温化により腐食の発生が抑制される。
【0126】
このように第6実施形態のボイラにあっては、燃焼バーナ21,22,23,24,25の上段で追加空気を火炉11内に向けて吹き込む追加空気ノズル52を設け、この追加空気ノズル52は、火炉11から排出された排ガスの少なくとも一部を火炉11内向けて吹き込み可能としている。
【0127】
従って、追加空気供給ノズル52から火炉11の内壁面に沿って水平に空気と排ガスの混合気を吹き込むことで、燃焼ガスと火炉壁11aの内壁面との直接的な接触が抑制され、火炉壁11aの腐食を防止して耐久性を向上することができる。また、追加空気供給ノズル52は、空気に排ガスを混合して火炉11に供給することで、火炉11の内壁面の高温化を抑制することができる。
【0128】
なお、本実施形態では、追加空気供給ノズル52は、空気に排ガスを混合した混合気を火炉11内に吹き込むようにしたが、排ガスだけを火炉11内に吹き込むようにしてもよい。
【0129】
また、上述した実施形態では、燃焼バーナの形態をCCF燃焼方式としたが、CUF(Circular Ultra Firing)燃焼方式としてもよい。
【0130】
また、上述した実施形態では、本発明のボイラを石炭焚きボイラとしたが、燃料としては、バイオマスや石油コークスを使用するボイラであってもよく、また、油焚きボイラに適用してもよい。