(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6203423
(24)【登録日】2017年9月8日
(45)【発行日】2017年9月27日
(54)【発明の名称】弓形ベーン用のタービン翼冷却システム
(51)【国際特許分類】
F01D 9/02 20060101AFI20170914BHJP
F01D 5/18 20060101ALI20170914BHJP
F02C 7/18 20060101ALI20170914BHJP
【FI】
F01D9/02 102
F01D5/18
F02C7/18 A
【請求項の数】10
【全頁数】12
(21)【出願番号】特願2016-555737(P2016-555737)
(86)(22)【出願日】2014年3月5日
(65)【公表番号】特表2017-518451(P2017-518451A)
(43)【公表日】2017年7月6日
(86)【国際出願番号】US2014020555
(87)【国際公開番号】WO2015134005
(87)【国際公開日】20150911
【審査請求日】2016年11月4日
(73)【特許権者】
【識別番号】390039413
【氏名又は名称】シーメンス アクチエンゲゼルシヤフト
【氏名又は名称原語表記】Siemens Aktiengesellschaft
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ジョージ リアン
【審査官】
倉田 和博
(56)【参考文献】
【文献】
米国特許第5215431(US,A)
【文献】
特開平09−280004(JP,A)
【文献】
米国特許出願公開第2005/0095119(US,A1)
【文献】
欧州特許出願公開第1947295(EP,A1)
【文献】
英国特許出願公開第1012899(GB,A)
【文献】
米国特許第6422811(US,B1)
【文献】
特開2008−142777(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 1/00 − 11/24
F02C 7/18
(57)【特許請求の範囲】
【請求項1】
タービン翼(12)であって、
概して細長い中空翼(36)が外壁(38)により形成されていて、前記中空翼は、前縁(16)と、後縁(18)と、圧力側(40)と、吸込側(42)と、前記中空翼(36)の第1端部(46)における内径プラットフォーム(44)と、前記第1端部(46)とは反対側の第2端部(50)における外径プラットフォーム(48)と、前記概して細長い中空翼(36)の内側に位置している冷却システム(10)とを有しており、
前記冷却システム(10)の少なくとも1つの冷却通路(28)が、前記中空翼(36)の端部近くで、スパン中央位置における横断面積よりもより大きな横断面積を有しており、
少なくとも1つのコーナブロッカ(30)が、前記少なくとも1つの冷却通路(28)を形成する内面(56)の角隅(54)における第1端部(52)から、前記少なくとも1つの冷却通路(28)の中央点(60)のより近くに位置する第2端部(58)に向かってスパン方向の延在方向で延びていて、前記内面(56)における基部(64)から、前記少なくとも1つの冷却通路(28)の中心軸線(34)のより近くに位置する先端(66)へと対角線状に延在していることを特徴とする、タービン翼(12)。
【請求項2】
前記少なくとも1つのコーナブロッカ(30)は、比較的大きな横断面積を有する前記第1端部(52)から、比較的小さな横断面積を有し、かつ前記少なくとも1つの冷却通路(28)の前記中央点(60)のより近くに位置している前記第2端部(58)へと先細りしている、請求項1記載のタービン翼(12)。
【請求項3】
前記少なくとも1つのコーナブロッカ(30)の前記基部(64)は、前記少なくとも1つの冷却通路(28)を形成する前記内面(56)に、前記少なくとも1つのコーナブロッカ(30)の第1端部(52)から前記少なくとも1つのコーナブロッカ(30)の第2端部(58)まで接触している、請求項1記載のタービン翼(12)。
【請求項4】
前記少なくとも1つのコーナブロッカ(30)は2つのコーナブロッカ(30)を含み、第1のコーナブロッカ(72)は、前記少なくとも1つの冷却通路(28)の前記吸込側(42)にある第1角隅(74)から延在しており、第2のコーナブロッカ(76)は、前記少なくとも1つの冷却通路(28)の前記吸込側(42)にある第2角隅(78)から延在している、請求項1記載のタービン翼(12)。
【請求項5】
前記少なくとも1つのコーナブロッカ(30)は2つのコーナブロッカ(30)を含み、第1のコーナブロッカ(80)は、前記少なくとも1つの冷却通路(28)の前記吸込側(42)にある第1角隅(82)から延在し、かつ前記圧力側(40)から前記吸込側(42)へと延在する第1の内部リブ(84)から延在しており、第2のコーナブロッカ(86)は、前記少なくとも1つの冷却通路(28)の前記圧力側(40)にある第1角隅(88)から延在し、かつ前記第1の内部リブ(84)から延在している、請求項1記載のタービン翼(12)。
【請求項6】
前記少なくとも1つのコーナブロッカ(30)は4つのコーナブロッカ(30)を含み、第1のコーナブロッカ(90)は、前記少なくとも1つの冷却通路(28)の前記吸込側(42)にある第1角隅(92)から延在しており、第2のコーナブロッカ(94)は、前記少なくとも1つの冷却通路(28)の前記吸込側(42)にある第2角隅(96)から延在しており、第3のコーナブロッカ(98)は、前記少なくとも1つの冷却通路(28)の前記圧力側(40)にある第1角隅(100)から延在しており、第4のコーナブロッカ(102)は、前記少なくとも1つの冷却通路(28)の前記圧力側(40)にある第2角隅(104)から延在している、請求項1記載のタービン翼(12)。
【請求項7】
前記冷却システム(10)の前記少なくとも1つの冷却通路(28)は、前縁冷却通路(106)を有しており、該前縁冷却通路(106)は、前記外径プラットフォーム(48)に入口(108)を、前記内径プラットフォーム(44)に出口(110)を有している、請求項1記載のタービン翼(12)。
【請求項8】
前記冷却システム(10)の前記少なくとも1つの冷却通路(28)は、前記外径プラットフォーム(48)から前記内径プラットフォーム(44)へと延在する翼弦中央蛇行冷却通路(112)を有し、該翼弦中央蛇行冷却通路(112)は、翼弦方向に延在する冷却通路脚部(114)を有している、請求項7記載のタービン翼(12)。
【請求項9】
前記中空翼(36)の前記後縁(18)は、前記後縁(18)と前記外径プラットフォーム(48)の交差部(148)と、前記後縁(18)と前記内径プラットフォーム(44)との交差部(150)とにおいて、前記内径プラットフォーム(44)と前記外径プラットフォーム(48)との間の位置よりも上流方向に位置している、請求項1記載のタービン翼(12)。
【請求項10】
前記中空翼(36)の前記前縁(16)は、前記前縁(16)と前記外径プラットフォーム(48)の交差部(152)と、前記前縁(16)と前記内径プラットフォーム(44)との交差部(154)とにおいて、前記内径プラットフォーム(44)と前記外径プラットフォーム(48)との間の位置よりも上流方向に位置している、請求項9記載のタービン翼(12)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般にタービン翼、特に中空タービンベーンにおける冷却システムに関する。
【背景技術】
【0002】
通常、ガスタービンエンジンは、空気を圧縮するための圧縮機と、圧縮空気を燃料と混合し、混合物に点火するための燃焼器と、電力を発生させるためのタービンブレードアセンブリとを有する。燃焼器はしばしば、華氏2260度を超過し得る高温で作動する。典型的なタービン燃焼器構成は、
図1及び
図3に示すようなタービンベーンアセンブリをこのような高温に曝す。従って、タービンベーンは、このような高温に耐え得る材料から製造されなければならない。加えて、タービンベーンはしばしば、ベーンの耐用寿命を拡大し、過度に高い温度の結果として生じる故障の可能性を減じるために冷却システムを含んでいる。
【0003】
通常、タービンベーンは、内側端部に内径(ID)プラットフォームを有し、外側端部に外径(OD)プラットフォームを有する翼から形成されている。ベーンは通常、前縁と後縁とを含み、殆どのタービンベーンの内面は通常、冷却システムを形成する冷却通路の入り組んだラビリンスを有している。ベーン内の冷却通路は通常、タービンエンジンの圧縮機からの空気を受容し、その空気をベーンに通過させる。冷却通路はしばしば、タービンベーンの全ての側面を比較的一様な温度に維持するように設計された多重流路を有している。ID及びODにおいて大きな横断面流面積を有するタービンベーンに十分な冷却を提供することは困難であることが認識されている。
【発明の概要】
【課題を解決するための手段】
【0004】
ガスタービンエンジンのタービン翼であって、該タービン翼は弓形の構造を有しているタービン翼用の冷却システムが開示されている。このタービン翼は、前縁又は後縁、又はその両方が、中央区分よりも上流方向に位置する前縁及び後縁の外側端部を有することができるように構成されていてよい。冷却システムの1つ以上の冷却通路は、スパン中央位置における横断面積よりも翼の端部の近くでより大きな横断面積を有していてよい。1つ以上の冷却通路は、1つ以上のコーナブロッカを有していてよい。コーナブロッカは、冷却通路内を翼弦方向に延びていて、角隅から中心軸線に向かって延在しているので、これにより冷却通路の横断面積は減じられる。コーナブロッカは、翼を通る冷却流体の流れを所望の設計パラメータ内に維持するように、冷却システム内に配置されていてよい。
【0005】
タービン翼は、外壁を含む概して細長い中空翼から成っていてよく、この中空翼はさらに前縁と、後縁と、圧力側と、吸込側と、タービン翼の第1端部における内径プラットフォームと、この第1端部とは反対側の第2端部における外径プラットフォームと、概して細長い中空翼の内側に位置している冷却システムと、を有している。冷却システムの1つ以上の冷却通路は、スパン中央位置における横断面積よりも翼の端部の近くでより大きな横断面積を有していてよい。冷却システムはさらに、1つ以上のコーナブロッカを有していてよく、該コーナブロッカは、前記少なくとも1つの冷却通路を形成する内面の角隅における第1端部から、前記少なくとも1つの冷却通路の中央点の近くに位置する第2端部に向かってスパン方向の延在方向で延びていて、前記内面における基部から、前記少なくとも1つの冷却通路の中心軸線のより近くに位置する先端へと対角線状に延在している。
【0006】
1つ以上のコーナブロッカは、比較的大きな横断面積を有する第1端部から、比較的小さな横断面積を有し、冷却通路の中央点のより近くに位置している第2端部へと先細りしていてよい。コーナブロッカの基部は、冷却通路を形成する内面に、コーナブロッカの第1端部から少なくとも1つのコーナブロッカの第2端部まで接触していてよい。先端から、基部から先端までの長さの25パーセント以内にあるコーナブロッカの横断面積は、基部から、基部から先端までの長さの25パーセント以内にあるコーナブロッカの横断面積よりも大きくてよい。少なくとも1つの実施の形態では、コーナブロッカは、丸み付けされた先端、又は別の適当な構造を有していてよい。
【0007】
少なくとも1つの実施の形態では、冷却システムは、2つのコーナブロッカを有していてよく、第1のコーナブロッカは、冷却通路の吸込側にある第1角隅から延在していて、第2のコーナブロッカは、冷却通路の吸込側にある第2角隅から延在している。冷却システムは2つのコーナブロッカを有していてもよく、第1のコーナブロッカは、冷却通路の吸込側にある第1角隅から延在し、かつ前記圧力側から前記吸込側へと延在する第1の内部リブから延在しており、第2のコーナブロッカは、冷却通路の圧力側にある第1角隅から延在し、かつ前記第1の内部リブから延在している。冷却システムはさらに4つのコーナブロッカを有していてもよく、第1のコーナブロッカは、冷却通路の吸込側にある第1角隅から延在しており、第2のコーナブロッカは、冷却通路の吸込側にある第2角隅から延在しており、第3のコーナブロッカは、冷却通路の圧力側にある第1角隅から延在しており、第4のコーナブロッカは、冷却通路の圧力側にある第2角隅から延在している。1つ以上のコーナブロッカは、半径方向内側に向かって、又は半径方向外側に向かって延在していてよい。特に、コーナブロッカの第1端部は、外径プラットフォームに位置していてよい。コーナブロッカの第1端部は、内径プラットフォームに位置していてよい。冷却システムは前縁冷却通路を有していてよく、この前縁冷却通路は、外径プラットフォームに入口を、内径プラットフォームに出口を有している。冷却システムの冷却通路は、外径プラットフォームから内径プラットフォームへと延在する翼弦中央蛇行冷却通路を含んでいてもよく、翼弦中央蛇行冷却通路は、翼弦方向に延在する冷却通路脚部を有している。
【0008】
翼は弓形の外側形状を有していてよい。特に、翼の後縁は、後縁と外径プラットフォームの交差部と、後縁と内径プラットフォームとの交差部とにおいて、内径プラットフォームと外径プラットフォームとの間の位置よりも上流方向に位置していてよい。同様に、翼の前縁は、前縁と外径プラットフォームの交差部と、前縁と内径プラットフォームとの交差部とにおいて、内径プラットフォームと外径プラットフォームとの間の位置よりも上流方向に位置していてよい。
【0009】
この冷却システムの利点は、この冷却システムが、弓形の翼、即ち通常、スパン中央領域の外側の、内側端部又は外側端部における冷却通路の部分と比較して、スパン中央領域において体積が減じられている冷却通路を有する翼を冷却するために極めて良好に機能することにある。
【0010】
この冷却システムの別の利点は、1つ以上のコーナブロッカを使用することで、通路流マッハ数の著しい減少を回避することにある。通路流マッハ数の著しい減少は、冷却流拡散を生じさせることがあり、又はいくつかの場合では、蛇行流内で流れの分離を生じさせることがある。
【0011】
この冷却システムのさらに別の利点は、蛇行通路流面積が、流路を通るマッハ数を維持するには大きくなり過ぎるところで、蛇行冷却通路の内部又は外部又はその両方に1つ以上のコーナブロッカを組み込むことにより、内径プラットフォーム及び外径プラットフォームにおける低質量流束に関する拡散問題を解消することができることにある。
【0012】
この冷却システムの別の利点は、ここで説明したコーナブロッカの配置は、通常、低質量流束流路で生じる冷却流の不均等分布を解消することができ、冷却空気を翼壁の内面に向かって押し、流路を通る流速を増幅することができ、これにより通路の熱伝達程度を増大させることにある。
【0013】
この冷却システムのさらに別の利点は、コーナブロッカのサイズ設定を、冷却通路の全部又は一部内で一定の冷却流通路横断面積を得るためにカスタマイズすることができることにある。
【0014】
本発明の別の利点は、蛇行冷却通路によって、従来の穿孔された半径方向孔による冷却設計よりも高い冷却効率レベルが得られることにある。
【0015】
本発明のさらに別の利点は、3経路蛇行冷却通路によって、ブレード下方スパンのためのより低くより一様なブレード部分質量平均温度が得られることにある。これによりブレードのクリープ寿命性能が改善される。
【0016】
これらの実施の形態及びその他の実施の形態を以下でさらに詳細に説明する。
【0017】
明細書の一部に組み込まれ、明細書の一部を形成する添付の図面は、ここに開示される発明の実施の形態を例示し、詳細な説明と共に発明の原理を開示する。
【図面の簡単な説明】
【0018】
【
図1】ガスタービンエンジン内で使用可能な従来のベーンを示す側面図である。
【
図2】ガスタービンエンジン内で使用可能な弓形のベーンを示す側面図である。
【
図3】ガスタービンエンジン内で使用可能な
図1の従来のベーンを示す正面図である。
【
図4】ガスタービンエンジン内で使用可能な
図2の弓形のベーンを示す正面図である。
【
図6】
図5の6−6線に沿って切断した
図2の弓形のベーンの断面図である。
【
図7】
図5の7−7線に沿って切断した
図2の弓形のベーンの断面図である。
【
図8】
図5の8−8線に沿って切断した
図2の弓形のベーンの断面図である。
【
図9】タービンベーン内の冷却システムを示す概略図である。
【
図10】
図5の9−9線に沿って切断したタービンベーンの断面図である。
【
図11】
図10の11−11線に沿って切断したタービンベーンの断面図である。
【
図12】
図11の12−12線に沿って切断したタービンベーン内の冷却通路を示す断面図である。
【発明を実施するための形態】
【0019】
図1〜
図12に示すように、ガスタービンエンジンのタービン翼12であって、弓形の構造を有しているタービン翼12用の冷却システム10が開示されている。
図2、
図4及び
図5に示すように、タービン翼12は、前縁16又は後縁18、又はその両方が、前縁16及び後縁18のスパン中央位置20よりも上流方向22にあるように配置された外側端部24,26を有することができるように構成されていてよい。
図6〜
図8、
図10及び
図11に示すように、冷却システム10の1つ以上の冷却通路28が、スパン中央位置20よりも翼12の端部24,26の近くでより大きな横断面積を有していてよい。1つ以上の冷却通路28は、1つ以上のコーナブロッカ30を有していてよい。コーナブロッカ30は、冷却通路28内で翼弦方向に延びていて、角隅32から中心軸線34に向かって延在しているので、これによって冷却通路28の横断面積が減じられる。コーナブロッカ30は、翼12を通る冷却流体の流れを所望の設計パラメータ内に維持するように、冷却システム10内に配置されていてよい。
【0020】
図2、
図4、
図5及び
図10に示すように、少なくとも1つの実施の形態では、タービン翼12は、外壁38によって形成された概して細長い中空翼36から成っていてよく、さらに前縁16と、後縁18と、圧力側40と、吸込側42と、タービン翼12の第1端部24における内径プラットフォーム44と、この第1端部24とは反対側の第2端部26における外径プラットフォーム48と、概して細長い中空翼36の内側に位置している冷却システム10とを有している。冷却システム10の1つ以上の冷却通路28が、スパン中央位置20よりも翼36の端部24,26の近くでより大きな横断面積を有していてよい。少なくとも1つの実施の形態では、冷却通路28を形成する壁は、翼のスパン中央位置20で互いにより近付いて配置されていてよい。1つ以上のコーナブロッカ30は、冷却通路28を形成する内面56の角隅54における第1端部52から、冷却通路28の中央点60の近くに位置する第2端部58に向かって、スパン方向の延在方向62で延びていてよく、内面56における基部64から、冷却通路28の中心軸線34のより近くに位置する先端66へと対角線状に延在している。
【0021】
図10、
図11に示すように、コーナブロッカ30は、比較的大きな横断面積を有する第1端部52から、比較的小さな横断面積を有し、冷却通路28の中央点60のより近くに位置している第2端部58へと先細りしていてよい。コーナブロッカ30の基部64は、冷却通路28を形成する内面56に、コーナブロッカ30の第1端部52からコーナブロッカ30の第2端部58まで接触していてよい。
図12に示すように、先端66から、基部64から先端66までの長さの25パーセント以内にあるコーナブロッカ30の横断面積68は、基部64から、基部64から先端66までの長さの25パーセント以内にあるコーナブロッカ30の横断面積70よりも大きくてよい。少なくとも1つの実施の形態では、コーナブロッカ30は、丸み付けされた先端66、又は別の適当な形状を有していてよい。
図6及び
図8に示すように、冷却システム10は2つのコーナブロッカ30を有していてよい。第1のコーナブロッカ72は、冷却通路28の吸込側42にある第1角隅74から延在していてよく、第2のコーナブロッカ76は、冷却通路28の吸込側42にある第2角隅78から延在していてよい。
図8に示すように、冷却システム10は2つのコーナブロッカ30を有していてよい。第1のコーナブロッカ80が、冷却通路28の吸込側42にある第1角隅82から延在していてよく、かつ圧力側40から吸込側42へと延在する第1の内部リブ84から延在していてよい。第2のコーナブロッカ86は、冷却通路28の圧力側40にある第1角隅88から延在していてよく、かつ前記第1の内部リブ84から延在していてよい。さらに別の実施の形態では、
図6及び
図12に示すように、冷却システム10は、4つのコーナブロッカ30を有していてよい。第1のコーナブロッカ90は、冷却通路28の吸込側42にある第1角隅92から延在していてよい。第2のコーナブロッカ94は、冷却通路28の吸込側42にある第2角隅96から延在していてよい。第3のコーナブロッカ98は、冷却通路28の圧力側40にある第1角隅100から延在していてよく、第4のコーナブロッカ102は、冷却通路28の圧力側40にある第2角隅104から延在していてよい。少なくとも1つの実施の形態では、コーナブロッカ30の第1端部52は、外径プラットフォーム48に位置していてよい。コーナブロッカ30の第1端部52は、内径プラットフォーム44に位置していてよい。
【0022】
図6〜
図8及び
図10に示すように、冷却システム10は、外径プラットフォーム48に入口108を、内径プラットフォーム44に出口110を有する前縁冷却通路106を有していてよい。冷却システム10は、外径プラットフォーム48から内径プラットフォーム44へと延在する翼弦中央蛇行冷却通路112も含んでいてよく、この翼弦中央蛇行冷却通路112は、翼弦方向に延在する冷却通路脚部114を有している。少なくとも1つの実施の形態では、翼弦中央蛇行冷却通路112は、
図9及び
図10に示すように3経路の蛇行冷却通路112であってよい。入口108は、外径プラットフォーム48に位置していてよい。翼弦中央蛇行冷却通路112は、最後の脚部118の端部116における出口110を外径プラットフォーム48に有していてよい。翼弦中央蛇行冷却通路112は、翼弦中央蛇行冷却通路112の最後の脚部118に、翼弦方向で外径プラットフォーム48と内径プラットフォーム44との間に延在する複数の排出出口120を有していてもよい。翼弦中央蛇行冷却通路112の最後の脚部118における排出出口120は、後縁冷却通路122に連通していてよい。後縁冷却通路122は1つ以上の排出出口124を有していてよい。少なくとも1つの実施の形態では、後縁冷却通路122は、翼弦方向で外径プラットフォーム48と内径プラットフォーム44との間に延在する複数の排出出口124を有していてよい。後縁冷却通路122は、圧力側40から吸込側42へと延在する1つ以上のピンフィン150を有していてもよい。
【0023】
図10に示すように、冷却システム10は、前縁冷却通路106と流体接続された内側インピンジメントチャンバ128を有していてよい。特に、前縁冷却通路106の出口110によって、内側インピンジメントチャンバ128内に冷却流体を排出することができる。内側インピンジメントチャンバ128は、前縁冷却通路106の内側に位置するインピンジメントリブ136によって形成されていてよい。少なくとも1つの実施の形態では、内側インピンジメントチャンバ128は、内径プラットフォーム44の内側に位置していてよい。少なくとも1つの実施の形態では、内側インピンジメントチャンバ128は、段間シールハウジング(ISSH)であってよい。ISSHからの空気は、前方及び後方リムキャビティとマット面ギャップとをパージするために使用されてよい。
【0024】
翼弦中央蛇行冷却通路112の第1の脚部130は、内側転回部127内へ冷却流体を排出することができる。翼弦中央蛇行冷却通路112の第2の脚部134の入口132は、内側転回部127に連通していてよく、これにより内側転回部127は、冷却流体を第2の脚部134へと供給する。
【0025】
前縁冷却通路106は、前縁16を形成する外壁38の内面142をインピンジメント冷却するために、前縁冷却通路106内に位置する1つ以上のインピンジメントプレート140によって形成された前縁インピンジメントチャンバ138も有していてよい。インピンジメントプレート140は、前縁冷却通路106内でスパン方向に延在していてよい。少なくとも1つの実施の形態では、インピンジメントプレート140は、内径プラットフォーム44から外径プラットフォーム48へとスパン方向に延在していてよい。インピンジメントプレート140は、1つ以上のインピンジメントオリフィス144を有していてよい。少なくとも1つの実施の形態では、インピンジメントプレート140は、翼弦方向で内径プラットフォーム44から外径プラットフォーム48へと延在する複数のインピンジメントオリフィス144を有していてよい。
【0026】
少なくとも1つの実施の形態では、冷却システム10は、第1の脚部130、第2の脚部134、第3の脚部146によって形成された3経路の翼弦中央蛇行冷却通路112を有していてよい。第1の脚部130は、内径プラットフォーム44から延在する2つのコーナブロッカ30を有していてよい。第1のコーナブロッカ80は、冷却通路28の吸込側42にある第1角隅82から延在していてよく、かつ圧力側40から吸込側42へと延在する第1の内部リブ84から延在していてよい。第2のコーナブロッカ86は、冷却通路28の圧力側40にある第1角隅88から延在していてよく、かつ前記第1の内部リブ84から延在していてよい。第2の脚部134は、内径プラットフォーム44から延在する2つのコーナブロッカ30を有していてよい。第1のコーナブロッカ72は、冷却通路28の吸込側42にある第1角隅74から延在していてよい。第2のコーナブロッカ76は、冷却通路28の第2の脚部134の吸込側42にある第2角隅78から延在していてよい。第2の脚部134はさらに、外径プラットフォーム48における4つのコーナブロッカ30を有していてよい。特に、第1のコーナブロッカ90は、冷却通路28の第3の脚部146の吸込側42にある第1角隅92から延在していてよい。第2のコーナブロッカ94は、冷却通路28の第3の脚部146の吸込側42にある第2角隅96から延在していてよい。第3のコーナブロッカ98は、冷却通路28の第3の脚部146の圧力側40にある第1角隅100から延在していてよい。第4のコーナブロッカ102は、冷却通路28の第3の脚部146の圧力側40にある第2角隅104から延在していてよい。第2の脚部134の外径プラットフォーム48における第1、第2、第3、第4のコーナブロッカ90,94,98,102は、それぞれ基部64から先端66へと中心軸線34に向かって延在していてよい。従って、第1及び第4のコーナブロッカ90,102は、互いに一列に整列していてよく、第2及び第3のコーナブロッカ94,98は互いに一列に整列していてよい。第3の脚部146は、内径プラットフォーム44から延在する2つのコーナブロッカ30を有していてよい。第1のコーナブロッカ72は、冷却通路28の吸込側42にある第1角隅74から延在していてよい。第2のコーナブロッカ76は、冷却通路28の第3の脚部146の吸込側42にある第2角隅78から延在していてよい。
【0027】
図12に示すように、冷却システムは、1つ以上のトリップストリップ158を有していてもよい。トリップストリップ158は、任意の適切な形状を有していてよく、任意のパターン又は配列で使用されてよい。トリップストリップ158は、任意の適切な材料から形成されてよく、1つ以上の冷却通路28内に位置していてよい。
【0028】
図2、
図4、
図5に示すように、翼12は弓形の形状を有していてよい。従って、翼36の後縁18は、後縁18と外径プラットフォーム48の交差部148と、後縁18と内径プラットフォーム44との交差部150とにおいて、内径プラットフォーム44と外径プラットフォーム48との間の位置23よりも上流方向22に位置していてよい。同様に、翼36の前縁16は、前縁16と外径プラットフォーム48の交差部152と、前縁16と内径プラットフォーム44との交差部154とにおいて、内径プラットフォーム44と外径プラットフォーム48との間の位置23よりも上流方向22に位置していてよい。
【0029】
使用中、冷却流体は、冷却流体供給源から前縁冷却通路106の入口108を通って冷却システム10内へ流れることができる。冷却流体の少なくとも一部は、インピンジメントプレート140を通って前縁インピンジメントチャンバ138内へと流れてよい。冷却流体は、前縁冷却通路106を通って流れ、出口110を通って内側インピンジメントチャンバ128内へと排出されてよい。冷却流体は、外径プラットフォーム48において翼弦中央蛇行冷却通路112の第1の脚部130にも進入してよく、内側転回部127を通って第2の脚部134内へと流れ、ここで冷却流体は、第2の脚部134において半径方向外側に流れる。冷却流体は、外側転回部156内へ流れ、第3の脚部146内へと流れてよい。冷却流体は、半径方向内側に向かって内径プラットフォーム44へと流れて、排出出口120を通って後縁冷却通路122内へと入る。冷却流体はピンフィン150に接触してよく、排出出口124を通って後縁16へと排出されてよい。
【0030】
3経路の翼弦中央蛇行冷却通路112に関して、第1の脚部130の横断面積は、外径プラットフォーム48からスパン中央領域に向かう動きを制限する。従って、冷却流は、外径プラットフォーム48からスパン中央領域へと加速され、これにより、正の通路流マッハ数が得られる。第1の脚部130の横断面積は、スパン中央領域から内径プラットフォーム44への動きを拡大する。従って、冷却流は、スパン中央領域から外径プラットフォーム48へと減速され、これにより、負の通路流マッハ数が得られる。翼弦中央蛇行冷却通路112の第2の脚部134に関して、通路流マッハ数は、流れの収縮、次いで流れの拡散によって、スパン中央領域に向かう動きを増大させ、次いで、スパン中央領域から外径プラットフォーム48への動きを減じさせる。スパン中央領域と外径プラットフォーム48との間の第2の脚部134では、マッハ数は、短距離において0.15〜0.05へと減じられてよい。従って、0.10の負のマッハ数が、短い通路流距離のために形成される。この通路流マッハ数の著しい減少は、冷却流拡散を生じさせることがあり、又はいくつかの場合では、蛇行流通路112内での流れの分離を生じさせることがある。
【0031】
内径プラットフォーム44及び外径プラットフォーム48における低質量流束に関する拡散問題は、蛇行冷却通路112の内側部分又は外側部分又は両方への1つ以上のコーナブロッカ30の組み込みによって解決することができる。この場合、蛇行通路流面積は、流路を通るマッハ数を維持するには大きくなり過ぎる。
図6〜
図8、
図10及び
図11に示すように、翼弦中央蛇行冷却通路112の第2の脚部134は、複数のコーナブロッカ30を有している。1つ以上のコーナブロッカ30は、外径プラットフォーム48からスパン中央領域への、又は内径プラットフォーム44からスパン中央領域への先細りする横断面積を有していてよい。コーナブロッカ30は、基部64から先端66へと増大する横断面積を有していてよい。従って、コーナブロッカ30は、基部64において比較的狭く、先端66において比較的広くてよい。
【0032】
少なくとも1つの実施の形態では、
図6〜
図8、
図10及び
図12に示すように、冷却システム10は、冷却通路28の各角隅に4つのコーナブロッカ30を有していてよい。コーナブロッカ30は、翼36から熱を導出し、これにより内部リブ84と外壁38との接合部における熱勾配を低減する。さらに、少なくとも1つの実施の形態では、コーナブロッカ30は、外径プラットフォーム48又は内径プラットフォーム44に取り付けられていなくてもよく、第1端部52は、互いに相対的に自由に動くことができる。冷却通路28の中央における先端66でコーナブロッカ30の横断面積が比較的大きいことにより、冷却流体を翼の高温の外壁38に向かって方向付けることができ、これによって冷却流体をより良好に利用することができる。コーナブロッカ30のサイズ設定は、冷却通路28の全部又は一部内で一定の冷却流通路横断面積を得るためにカスタマイズされていてよい。冷却システム10は、この場合、上述した拡散問題の解消を示しており、翼の外径プラットフォーム48及び内径プラットフォーム44において流路を通る高い速度を形成しているので、内部の対流熱伝達係数の高い比率と、冷却特性全体における改善が得られる。コーナブロッカ30はさらに、冷却通路28内及び翼弦中央蛇行冷却通路112内に、より多くの内部の対流面積を形成する。コーナブロッカ30の大きさは冷却通路28に沿って変更することができるので、冷却システム10は、必要に応じてより多くの冷却容量を追加するための将来の拡大に適していてもよい。
【0033】
少なくとも1つの実施の形態では、コーナブロッカ30を備えた冷却システム10の構造はプリント部品製造技術を使用して形成されてよい。コーナブロッカ30は、翼内部リブに対して同じ平行方向ではないので、本明細書で開示したこの複雑な冷却形状のためのセラミックコアをセラミックコア型によって製造することは不可能である。プリント部品製造技術により、セラミックコアをプリントし、次いで、コーナブロッカ30を備えた冷却システム10を有する翼12を形成するために使用することができる。代替的に、コーナブロッカ30を備えた冷却システム10を有する翼12を、1つ以上の金属からプリントすることもできる。
【0034】
コーナブロッカ30は、冷却通路28内の内部リブ84とは異なる角度で配置されてよい。内部リブ84を、3度〜5度だけ面取りしたり、内部リブ84を、コア型を引くことができるように平行に並べたりする必要はない。ここで説明したコーナブロッカ30の配置は、通常、低質量流束の流路で生じる冷却流の不均等分布を解消することができ、冷却空気を翼壁の内面に向かって押し、流路を通る流速を増幅することができ、これにより通路の熱伝達程度を増大させる。
【0035】
上記説明は、本発明を例示、説明及び記述するという目的で提供されている。これらの実施の形態に対する変更及び適応は、当業者に明らかになるであろうし、本発明の範囲又は思想から逸脱することなく成し得るものである。