【実施例】
【0039】
以下、本実施の形態を実施例に基づいて具体的に説明するが、本実施の形態は下記実施例に制限されるものではない。
【0040】
〔アニオン当量濃度の測定方法〕
アニオン性高分子の水分散液を、25℃、飽和NaCl水溶液30mlと混和し、攪拌しながら30分間放置した。次いで、飽和NaCl水溶液中のプロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和後の溶液を真空乾燥して残った固形物を秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、真空乾燥後に残った固形物の質量をW(mg)とし、下記式より当量質量EW(g/eq)を求めた。
EW=(W/M)−22
さらに、得られたEW値の逆数をとることにより、アニオン性高分子のアニオン当量(eq/g)を算出した。
そしてアニオン性高分子の水分散液1Lを真空乾燥して残った固形物を秤量して求めた固形分(g/L)とアニオン当量(Eq/g)の積をとり、アニオン当量濃度(Eq/L)を求めた。
【0041】
〔実施例1〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水1.6mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後、パーフルオロカーボンスルホン酸水分散液(以下、「PFSA」ともいう。)(固形分10%)4.7mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。さらに硫酸1.6mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が6mol/Lでバナジウムイオン濃度の2倍であり、アニオン性高分子のアニオン当量濃度が0.1Eq/Lでバナジウムイオン濃度の0.033倍である4価のバナジウムイオンを含む電解液10mLを得た。
【0042】
(5価のバナジウムイオンを含む電解液の調製)
上記の手順のスケールを10倍にし、同様の作業を行うことで、4価のバナジウムイオンを含む電解液100mLを得た。それを下記の方法で電解を行い、3価のバナジウムイオンを含む電解液50mLと5価のバナジウムイオンを含む電解液50mLを得た。
【0043】
(電解方法)
電解条件に詳細に説明する。
図1に電解装置の概略図を示す。電解装置は炭素電極からなる正極を含む正極セル室と、炭素電極からなる負極を含む負極セル室と、正極セル室と、負極セル室とを隔離分離させる、隔膜としての電解質膜と、を含むセル1を有する。以下、正極セル室に含まれる電解液を正極電解液、負極セル室に含まれる電解液を負極電解液とする。正極電解液及び負極電解液は、正極電解液タンク2及び負極電解液タンク3によって貯蔵され、送液チューブポンプ4等によって送液チューブ5を介して各セル室に供給される。
【0044】
電解装置の正極電解液タンク2と、負極電解液タンク3に、4価のバナジウムイオンを含む電解液を50mLずつ供給した。セル1の正極と負極間の電位差をモニタしながら、セル1に定電流50mA/cm
2を通電し、負極電解液中のバナジウムイオンの4価から3価への還元と、正極電解液中のバナジウムイオンの4価から5価への酸化を行った。電解中、正極及び負極の電解液は送液チューブポンプ4にて50mL/minにて送液チューブ5を介して送液し、正極電解液タンク2及び負極電解液タンク3中には窒素を10mL/minでフローさせた。セル1の正極と負極間の電位差が約1.7V程度になった時点で、液の色を目視で確認すると、負極は濃緑色、正極は赤茶色であった。その時点で正極液を採取し、正極側の電解液から5価のバナジウムイオンを含む電解液を得た。
【0045】
(析出試験)
(4価のバナジウムイオンを含む電解液)
50mLポリプロピレン製容器内に4価のバナジウムイオンを含む電解液を10mL入れ、−5℃に保持した冷却槽内に60分間静置し、液中に青色の粉もしくは結晶状の析出物発生の有無を調べた。析出物は発生しなかった。その結果を表1に示す。
【0046】
(5価のバナジウムイオンを含む電解液)
50mLポリプロピレン製容器内に5価のバナジウムイオンを含む電解液を10mL入れ、ウォーターバスにて50℃で60分間加温し、赤茶色の粉状の析出物発生の有無を調べた。析出物は発生しなかった。その結果を表1に示す。
【0047】
〔実施例2〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水0.9mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後、ポリビニルスルホン酸水分散液(以下「PVS」ともいう。)(固形分10%)5.4mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。さらに硫酸1.6mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が6mol/Lでバナジウムイオン濃度の2.0倍であり、アニオン性高分子のアニオン当量濃度が0.5Eq/Lでバナジウムイオン濃度の0.17倍である、4価のバナジウムイオンを含む電解液10mLを得た。
【0048】
(5価のバナジウムイオンを含む電解液の調製)
実施例1と同様の方法により5価のバナジウムイオンを含む電解液を10mL調製した。
【0049】
(析出試験)
4価のバナジウムイオンを含む電解液及び5価のバナジウムイオンを含む電解液の析出試験を、実施例1と同様に実施した。4価のバナジウムイオンを含む電解液に析出物は発生せず、5価のバナジウムイオンを含む電解液にも析出物は発生しなかった。その結果を表1に示す。
【0050】
〔比較例1〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水6.3mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後、硫酸1.6mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が6mol/Lでバナジウムイオン濃度の2.0倍である、4価のバナジウムイオンを含む電解液10mLを得た。
【0051】
(5価のバナジウムイオンを含む電解液の調製)
実施例1と同様の方法により5価のバナジウムイオンを含む電解液を10mL調製した。
【0052】
(析出試験)
4価のバナジウムイオンを含む電解液及び5価のバナジウムイオンを含む電解液の析出試験を、実施例1と同様に実施した。4価のバナジウムイオンを含む電解液に析出物が発生した。5価のバナジウムイオンを含む電解液には析出物は発生しなかった。その結果を表1に示す。
【0053】
〔比較例2〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水7.1mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後、硫酸0.8mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が4.5mol/Lでバナジウムイオン濃度の1.5倍である、4価のバナジウムイオンを含む電解液10mLを得た。
【0054】
(5価のバナジウムイオンを含む電解液の調製)
実施例1と同様の方法により5価のバナジウムイオンを含む電解液を10mL調製した。
【0055】
(析出試験)
4価のバナジウムイオンを含む電解液及び5価のバナジウムイオンを含む電解液の析出試験を、実施例1と同様に実施した。4価のバナジウムイオンを含む電解液に析出物は発生しなかった。5価のバナジウムイオンを含む電解液に析出物が発生した。その結果を表1に示す。
【0056】
実施例1、2及び比較例1、2の結果から明らかなように、アニオン性高分子としてPFSA,もしくはPVS等のスルホン酸基及び/又はホスホン酸基を有する高分子を用いることで、4価と5価のバナジウム析出物の発生を抑制することができることが確認された。
【0057】
〔比較例3〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水5.6mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後無水リン酸0.7gを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。さらに硫酸1.6mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が6mol/Lでバナジウムイオン濃度の2倍であり、リン酸濃度が0.5mol/Lでバナジウムイオン濃度の0.17倍である、4価のバナジウムイオンを含む電解液10mLを得た。
【0058】
(5価のバナジウムイオンを含む電解液の調製)
実施例1と同様の方法により5価のバナジウムイオンを含む電解液を10mL調製した。
【0059】
(析出試験)
4価のバナジウムイオンを含む電解液及び5価のバナジウムイオンを含む電解液の析出試験を、実施例1と同様に実施した。4価のバナジウムイオンを含む電解液に析出物が発生した。5価のバナジウムイオンを含む電解液には析出物は発生しなかった。その結果を表1に示す。
【0060】
〔比較例4〕
(4価のバナジウムイオンを含む電解液の調製)
50mLポリプロピレン製容器に、酸化硫酸バナジウム6.9gと純水6.0mLとを仕込み、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌し、溶解させた。その後メタンスルホン酸0.3mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。さらに硫酸1.6mLを添加し、ウォーターバスにて50〜60℃程度に加温し、スターラーチップにて30分撹拌した。以上の手順により、バナジウムイオン濃度が3mol/L、硫酸イオン濃度が6mol/Lでバナジウムイオン濃度の2倍であり、メタンスルホン酸濃度が0.5mol/Lでバナジウムイオン濃度の0.17倍である、4価のバナジウムイオンを含む電解液10mLを得た。
【0061】
(5価のバナジウムイオンを含む電解液の調製)
実施例1と同様の方法により5価のバナジウムイオンを含む電解液を10mL調製した。
【0062】
(析出試験)
4価のバナジウムイオンを含む電解液及び5価のバナジウムイオンを含む電解液の析出試験を、実施例1と同様に実施した。4価のバナジウムイオンを含む電解液に析出物が発生した。5価のバナジウムイオンを含む電解液には析出物は発生しなかった。その結果を表1に示す。
【0063】
実施例1、2及び比較例3、4の結果の比較から明らかなように、アニオン性高分子としてPVS等のスルホン酸基及び/又はホスホン酸基を有する高分子を添加することで、バナジウムイオン濃度が3mol/Lである電解液の析出物の発生を抑制することができることが確認された。また、リン酸や、スルホン酸を有する有機酸であるメタンスルホン酸を使用した比較例3〜4と、実施例1〜2との比較により、高分子であるPFSA、PVS等のスルホン酸基及び/又はホスホン酸基を有する高分子は析出物発生を抑制する効果が高いことが確認された。
【0064】
バナジウム系レドックスフロー電池のエネルギー容量は、バナジウムイオンのモル数に比例する。電解液中のバナジウムイオン濃度が高ければ、体積当たりのバナジウムイオンのモル数が増加するため、エネルギー密度が高いといえる。これにより、本発明に係るアニオン性高分子を用いることにより、高いエネルギー密度のバナジウム系レドックスフロー電池が得られることが示された。
【0065】
【表1】