【0017】
第3の水溶液に酸及び骨形成イオンを含む水溶液を使用する場合の酸及び骨形成イオン濃度は通常、それぞれ0.001〜100mMおよび1〜1000mMであり、好ましくはそれぞれ0.01〜100mM及び1〜1000mMである。いずれも下限に満たない場合、水を用いた場合と同程度の効果しか得られず、上限を越える場合、アパタイト形成に不利な安定な化合物を表面に形成しやすくなる。骨形成イオン含有水溶液は通常、酸性、中性又は弱アルカリ性であり、pH=10以上のものは好ましくない。
基材を浸漬するときの第3の水溶液の温度および浸漬時間は通常、それぞれ60℃以上、3時間以上であり、好ましくはそれぞれ80℃以上、24時間以上である。この第3の水溶液に酸溶液を使用した場合、水を使用した場合よりも短時間で活性化される。酸水溶液に含まれる好ましい酸は、塩酸、硝酸、酢酸及び硫酸から選択される1つ以上である。これらの酸は、取り扱いが容易であるし、基材を浸食することもないからである。浸漬温度及び浸漬時間が下限に満たない場合、十分に活性化されない。
第2及び第3の水溶液における骨形成イオンの濃度を変えることにより、前記チタン酸塩層における濃度を変えることが出来る。
【実施例】
【0018】
−実施例1−
10mm×10mm×1mmの大きさの純チタン金属板を#400のダイヤモンドパッドを用いて研磨し、アセトン、2−プロパノール、超純水で各30分間超音波洗浄した後、5Mの水酸化ナトリウム水溶液5mlに60℃で24時間浸漬し(以下、「アルカリ処理」という)、超純水で30秒間洗浄した。このチタン金属板を塩化カルシウムと塩化ストロンチウムの濃度がいずれも50mMになるように混合した水溶液10mlに40℃で24時間浸漬した。(以下、「カルシウム/ストロンチウム処理」という。)次いで、チタン金属板を電気炉中で常温から600℃まで5℃/minの速度で昇温し、大気中600℃で1時間保持して、炉内で放冷した(以下、「加熱処理」という。)。その後、80℃の温水に24時間浸漬し(以下、「温水処理」という)、超純水により30秒間洗浄した。
【0019】
−実施例2−
実施例1において、温水処理の代わりに1Mの塩化ストロンチウムに80℃で24時間浸漬した(以下、「ストロンチウム処理」という。)ことを除く他は実施例1と同じ条件で試料を製造した。
【0020】
−実施例3−
実施例1のカルシウム/ストロンチウム処理において、塩化カルシウムと塩化ストロンチウムの濃度がそれぞれ80mMと20mMになるように混合した水溶液10mlに40℃で24時間浸漬したことを除く他は実施例1と同じ条件で試料を製造した。
【0021】
−実施例4−
実施例1において、カルシウム/ストロンチウム処理の代わりに塩化カルシウムと塩化マグネシウムの濃度がそれぞれ40mMと60mMになるように混合した水溶液10mlに40℃で24時間浸漬した(以下、「カルシウム/マグネシウム処理」という。)ことを除く他は実施例1と同じ条件で試料を製造した。
【0022】
−実施例5−
実施例4において、温水処理の代わりに1Mの塩化マグネシウム水溶液に80℃で24時間浸漬した(以下、「マグネシウム処理」という。)ことを除く他は実施例4と同じ条件で試料を製造した。
【0023】
−実施例6−
実施例4のカルシウム/マグネシウム処理において、塩化カルシウムと塩化マグネシウムの濃度がそれぞれ2Mと3Mになるように混合した水溶液10mlに40℃で24時間浸漬し、温水処理の代わりにマグネシウム処理したことを除く他は実施例4と同じ条件で試料を製造した。
【0024】
−実施例7−
実施例1において、カルシウム/ストロンチウム処理の代わりに酢酸カルシウムと酢酸亜鉛の濃度がそれぞれ99.99mMと0.01mMになるように混合した水溶液10 mlに40℃で24時間浸漬し(以下、「カルシウム/亜鉛処理」という。)、温水処理の代わりに1mMの酢酸に80℃で24時間浸漬した(以下、「酢酸処理」という。)ことを除く他は実施例1と同じ条件で試料を製造した。
【0025】
−実施例8−
実施例1において、カルシウム/ストロンチウム処理の代わりに塩化カルシウムと塩化リチウムの濃度がそれぞれ0.01mMと99.99mMになるように混合した水溶液10mlに40℃で24時間浸漬し(以下、「カルシウム/リチウム処理」という。)、温水処理の代わりに1Mの塩化リチウム水溶液に80℃で24時間浸漬した(以下、「リチウム処理」という)ことを除く他は実施例1と同じ条件で試料を製造した。
【0026】
−実施例9−
実施例1において、カルシウム/ストロンチウム処理の代わりに塩化カルシウムと塩化ガリウムの濃度がそれぞれ99.95mMと0.05mMになるように混合した水溶液10mlに40℃で24時間浸漬した(以下、「カルシウム/ガリウム処理」という。)ことを除く他は実施例1と同じ条件で試料を製造した。
【0027】
−比較例1−
実施例1において、温水処理を行わなかった他は実施例1と同じ条件で試料を製造した。
−比較例2−
実施例1において、加熱処理における保持温度を200℃にし、温水処理を行わなかった他は実施例1と同じ条件で試料を製造した。
−比較例3−
実施例1において、加熱処理及び温水処理を行わなかった他は実施例1と同じ条件で試料を製造した。
【0028】
以上の実施例及び比較例の試料の製造条件をまとめて表1に記載する。
【表1】
【0029】
[組成分析]
実施例及び比較例の試料表面の組成を加速電圧9kVでエネルギー分散X線分析法により分析し、あるいは1Mの塩酸に80℃で24時間浸漬することで溶出したカルシウムイオン及びリチウムイオンをICPにより分析した。その結果、各試料とも製造途中におけるアルカリ処理直後にはナトリウムが5.5原子%検出されたが、表2に示すようにカルシウム/ストロンチウム、カルシウム/マグネシウム、カルシウム/亜鉛、カルシウム/リチウム、カルシウム/ガリウム処理を施した試料ではナトリウムが消失し、代わりに1.5〜3.3原子%のカルシウムと0.4〜1.7原子%のストロンチウム、マグネシウム、亜鉛、ガリウムが検出され、あるいは0.27ppmのカルシウムイオンと0.19ppmのリチウムイオンが検出された。表1及び表2に示されるように、第2の水溶液に含まれるカルシウムイオン及び骨形成イオンの濃度比を変えることにより、また第3の水溶液に含まれる骨形成イオンの濃度を変えることにより、導入されるカルシウムイオン及び骨形成イオンの割合を任意に制御することができた。
【0030】
【表2】
【0031】
実施例1、2、4及び5のXPS及び実施例7〜9のGD−OES結果によれば、
図1〜7に示すように表面より1μmの深さまでカルシウムイオンと共にストロンチウムイオン、マグネシウムイオン、亜鉛イオン、リチウムイオンまたはガリウムイオンが導入され、それらの濃度が深さと共に傾斜的に減少していることが認められた。
表面試料の結晶構造を薄膜X線回折により調べると、
図8に示すように実施例1、4、7−9の試料すべてに骨形成イオンを含むチタン酸カルシウムとルチル型及びアナターゼ型酸化チタンが形成されていることがわかった。
【0032】
[ひっかき抵抗評価]
実施例1−3の試料及び比較例1−3の試料のひっかき抵抗をスクラッチテスターにより測定したところ、表3に示すように200℃以下で加熱処理された試料のひっかき抵抗は10mN未満と低かったが、600℃で加熱処理された試料のひっかき抵抗は50mN以上と高かった。
【0033】
【表3】
【0034】
[アパタイト形成能評価]
実施例及び比較例の試料を36.5℃に保たれたISO規格23317の擬似体液(SBF)に浸漬したところ、表2及び表3に示すようにすべての実施例でSBF浸漬3日以内にアパタイトが表面全体すなわち全表面積の99%以上を覆うように析出した。したがって、これらの試料は生体内で高いアパタイト形成能を示すことが確かめられた。一方、加熱処理後、第3の水溶液処理を施さなかった比較例1の試料はSBF浸漬3日以内にアパタイトを形成しなかった。
【0035】
[骨形成イオンの溶出性評価]
実施例1−2、4−5、7−9の試料を36.5℃に保たれたリン酸緩衝液(PBS)に様々な時間浸漬し、各PBS中に溶出する骨形成イオンの濃度をICPにより測定した。その結果、
図9に示すようにPBS中にそれぞれ、0.03〜0.9ppmの骨形成イオンが徐々に溶出する様子が認められた。したがって、この試料は生体内で骨形成イオンを徐放することがわかった。特に第3の水溶液として骨形成イオンを含むものを用いた実施例2及び5の試料は、
図10及び11に示すように温水を用いた実施例1及び4の試料に比べて浸漬開始時から骨形成イオンの溶出量が多かった。また、実施例7の試料から溶出した亜鉛イオン濃度は非特許文献5で骨形成に効果があったと報告されている濃度のおよそ倍の濃度であるので、高い骨形成効果が期待される。更に、表3に示すように、第2及び第3の水溶液におけるストロンチウムイオンの濃度を変えることにより、表面層におけるストロンチウムイオン濃度を変え、その結果、溶出するストロンチウムイオンの濃度を変えることが出来ることも確認できた。